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Efficient and Effective Regularized Incomplete
Multi-view Clustering

Xinwang Liu, Miaomiao Li, Chang Tang, Jingyuan Xia, Jian Xiong, Li Liu, Marius Kloft, and En Zhu

Abstract—Incomplete multi-view clustering (IMVC) optimally combines multiple pre-specified incomplete views to improve clustering
performance. Among various excellent solutions, the recently proposed multiple kernel k-means with incomplete kernels (MKKM-IK)
forms a benchmark, which redefines IMVC as a joint optimization problem where the clustering and kernel matrix imputation tasks are
alternately performed until convergence. Though demonstrating promising performance in various applications, we observe that the
manner of kernel matrix imputation in MKKM-IK would incur intensive computational and storage complexities, over-complicated
optimization and limitedly improved clustering performance. In this paper, we firstly propose an Efficient and Effective Incomplete
Multi-view Clustering (EE-IMVC) algorithm to address these issues. Instead of completing the incomplete kernel matrices, EE-IMVC
proposes to impute each incomplete base matrix generated by incomplete views with a learned consensus clustering matrix. Moreover,
we further improve this algorithm by incorporating prior knowledge to regularize the learned consensus clustering matrix. Two
three-step iterative algorithms are carefully developed to solve the resultant optimization problems with linear computational complexity,
and their convergence is theoretically proven. After that, we theoretically study the generalization bound of the proposed algorithms.
Furthermore, we conduct comprehensive experiments to study the proposed algorithms in terms of clustering accuracy, evolution of
the learned consensus clustering matrix and the convergence. As indicated, our algorithms deliver their effectiveness by significantly
and consistently outperforming some state-of-the-art ones.

Index Terms—multiple kernel clustering, multiple view learning, incomplete kernel learning

F

1 INTRODUCTION

MULTI-VIEW clustering (MVC) optimally integrates fea-
tures from different views to improve clustering per-

formance [1]. It has been intensively studied and widely
applied into various applications during the last few decade
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. All
these MVC algorithms assume that the views of samples
are observable. However, in some practical applications [14],
[15], this assumption may not hold anymore due to the
absence of partial views among samples. The violation on
this assumption makes the aforementioned MVC algorithms
not applicable to handle incomplete multi-view clustering
(IMVC) tasks.

Many efforts have been devoted to addressing IMVC,
which can roughly be grouped into two categories. In the

• X. Liu and E. Zhu are with College of Computer, National Uni-
versity of Defense Technology, Changsha, 410073, China. E-mail:
{xinwangliu, enzhu}@nudt.edu.cn.

• M. Li is with Department of Computer, Changsha College, Changsha,
China, 410073 (E-mail: miaomiaolinudt@gmail.com.)

• C. Tang is with School of Computer Science, China University of Geo-
sciences, 430074 (E-mail: tangchang@cug.edu.cn)

• J. Xia is with Department of Electric and Electronic Engineering, Imperial
College London, London, SW72AZ, UK (E-mail: j.xia16@imperial.ac.uk).

• J. Xiong is with School of Business Administration, Southwestern Univer-
sity of Finance and Economics, Chengdu, Sichuan, 611130, China (e-mail:
xiongjian2017@swufe.edu.cn).

• L. Liu is with the College of System Engineering, National University
of Defense Technology, Changsha, China, and also with the Center for
Machine Vision and Signal Analysis, University of Oulu, 90014 Oulu,
Finland (E-mail: li.liu@oulu.fi).

• M. Kloft is with Department of Computer Science, Technische Universität
Kaiserslautern, Kaiserslautern, Germany, 67653. (E-mail: kloft@cs.uni-
kl.de).

Manuscript received January 28, 2020.

first category, the incomplete views are firstly filled with
an imputation algorithm such as zero-filling, mean value
filling, k-nearest-neighbor filling, expectation-maximization
(EM) filling [16] and other advanced ones [17], [18], [19],
[20], [21]. A standard MVC algorithm is subsequently ap-
plied into these imputed views to perform clustering tasks.
This kind of algorithms are termed “two-stage” ones, where
the imputation and clustering processes are separately car-
ried out. By observing that the above-mentioned “two-
stage” algorithms disconnect the processes of imputation
and clustering, the other category, termed as “one-stage”,
puts forward to unify imputation and clustering into a
single optimization procedure and instantiate a clustering-
oriented algorithm termed as multiple kernel k-means with
incomplete kernels (MKKM-IK) algorithm [22]. Specifically,
the clustering result at the last iteration guides the impu-
tation of absent kernel elements, and the latter is used in
turn to conduct the subsequent clustering. By this way, these
two procedures are seamlessly connected, with the aim to
achieve better clustering performance.

Of the above-mentioned IMVC algorithms, the “one-
stage” methods form a benchmark, where the incomplete
views are optimized to best serve clustering. The main con-
tribution of these methods is the unification of imputation
and clustering, so that the imputation would be meaningful
and beneficial for clustering. It has been demonstrated that
the “one-stage” methods can achieve promissing clustering
performance in various applications [22], [23], but they also
suffer from the following non-ignorable drawbacks. i) High
computational and storage complexities. Its computational and
storage complexities are O(n3) and O(mn2) per iteration,
respectively, where n and m are the number of samples
and views. It prevents them from being applied to large-
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scale clustering tasks. ii) Over-complicated imputation. Exist-
ing “one-stage” methods directly impute multiple incom-
plete similarity matrices, in which the number of vari-
ables increases quadratically with the number of samples
for each view. This could make the whole optimization
over-complicated and also considerably increase the risk
of falling into a low-quality local minimum. iii) Limitedly
improved clustering performance. Note that a clustering result
is determined by a whole similarity matrix in [22]. As a
result, the imputation to an incomplete similarity matrix has
impact to the clustering of all samples, no matter whether
a sample is complete or not. When an imputation is not
of high quality, it could adversely affect the clustering per-
formance of all samples, especially for those with complete
views.

All of the above issues signal that directly imputing the
incomplete similarity matrices seems to be problematic and
that a more efficient and effective approach shall be taken.
In this paper, we propose efficient and effective incomplete
multi-view clustering (EE-IMVC) to address these issues.
EE-IMVC imputes each incomplete base clustering matrix
generated by performing clustering on each separated in-
complete similarity matrix, instead of itself. These imputed
base clustering matrices are then used to learn a consensus
clustering matrix, which is then employed to impute each
incomplete base clustering matrix. These two steps are alter-
nately performed until convergence. This idea is fulfilled by
maximizing the alignment between the consensus clustering
matrix and an adaptively weighted base clustering matrices
with an optimal permutation. Though being theoretically
elegant, we also observe that this algorithm does not suffi-
ciently consider that learning the consensus clustering ma-
trix could benefit from some other prior knowledge, besides
the original orthogonal constraint. As a result, we further
improve EE-IMVC by developing another variant, termed
as efficient and effective regularized incomplete multi-view
clustering (EE-R-IMVC). It explicitly designs a regulariza-
tion term where the consensus clustering matrix is required
to lie in the neighborhood of a pre-specified one. This prior
knowledge is beneficial for the learning of the consensus
clustering matrix, leading to improved clustering perfor-
mance. We design two simple and computationally efficient
algorithms to solve the resultant optimization problems by
three singular value decomposition (SVD) per iteration, and
analyze their computational and storage complexities and
theoretically prove the convergence. After that, we conduct
comprehensive experiments on six benchmark datasets to
study the properties of the proposed algorithms, including
the clustering accuracy with the various missing ratios, the
evolution of the learned consensus matrix with iterations
and the objective value with iterations. As demonstrated,
EE-IMVC significantly and consistently outperforms the
state-of-the-art methods in terms of clustering accuracy with
much less running time. Meanwhile, we observe that the
other proposed variant, i.e., EE-R-IMVC, further improves
the clustering performance of EE-IMVC. It is expected that
the simplicity and effectiveness of these clustering algo-
rithms will make them a good option to be considered for
practical applications where incomplete views are encoun-
tered.

This work is a substantially extended version of our orig-

inal conference paper [24]. Its significant improvement over
the previous one can be summarized as follows: 1) We de-
sign a new algorithm, termed EE-R-IMVC, by incorporating
some prior knowledge on the consensus matrix into existing
EE-IMVC, and develop an iterative algorithm to efficiently
solve the resultant optimization problem. The prior knowl-
edge can be treated as an initial clustering partition of data,
which can be obtained by performing traditional clustering
algorithms on imputed kernel matrices. It regularizes the
learning of the consensus matrix, and this is beneficial for
the newly proposed EE-R-IMVC to significantly outperform
EE-IMVC proposed in the previous paper [24]. 2) We the-
oretically study the generalization bound of the proposed
EE-IMVC and EE-R-IMVC on test data. 3) Besides more
detailed discussion and extension, we also conduct more
comprehensive experiments to validate the effectiveness of
the proposed algorithms.

2 RELATED WORK

2.1 Multiple Kernel k-means (MKKM)

Let {xi}ni=1 ⊆ X be a collection of n samples, and
φp(·) : x ∈ X 7→ Hp be the p-th feature mapping
that maps x onto a reproducing kernel Hilbert space
Hp (1 ≤ p ≤ m). In the multiple kernel setting, each sample
is represented as φβ(x) = [β1φ1(x)

>, · · · , βmφm(x)>]>,
where β = [β1, · · · , βm]> consists of the coefficients of
the m base kernels {κp(·, ·)}mp=1. These coefficients will
be optimized during learning. Based on the definition of
φβ(x), a kernel function can be expressed as κβ(xi,xj) =
φβ(xi)

>φβ(xj) =
∑m

p=1 β
2
pκp(xi,xj). A kernel matrix Kβ

is then calculated by applying the kernel function κβ(·, ·)
into {xi}ni=1. Based on the kernel matrix Kβ =

∑m
p=1 β

2
pKp,

the objective of MKKM can be written as

min H,β Tr(Kβ(In −HH>))

s.t. H ∈ Rn×k, H>H = Ik, β
>1m = 1, βp ≥ 0,∀p,

(1)
where Ik is an identity matrix with size of number of
clusters k, and H = [h>1 ;h

>
2 ; · · · ;h>n ] ∈ Rn×k is a clustering

partition matrix. For each hi = [hi1, hi2, · · · , hik]> (1 ≤
i ≤ n), hic = 1/

√
nc if xi belongs to the c-th cluster

(1 ≤ c ≤ k), and 0 otherwise, where nc is the number of
samples belonging to the c-th cluster. It is not difficult to
verify that H>H = Ik. Note that the variables of H are
discrete, which makes the optimization problem difficult to
solve. However, one can approximate this problem through
relaxing H to take arbitrary real values.

The optimization problem in Eq. (1) can be solved by
alternately updating H and β. Specifically, H is updated by
given β, and β is then optimized with updated H. These
two steps are alternately performed until convergence.

2.2 Multiple Kernel k-means with Incomplete Kernels
(MKKM-IK)

The recently proposed MKKM-IK [22] has extended the
existing MKKM in Eq. (1) to enable it to handle multiple
kernel clustering with incomplete kernels. It unifies the
imputation and clustering procedure into a single optimiza-
tion objective and alternately optimizes each of them. That
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is, i) imputing the absent kernels under the guidance of
clustering; and ii) updating the clustering with the imputed
kernels. The above idea is mathematically fulfilled as,

minH, β, {Kp}mp=1
Tr(Kβ(In −HH>))

s.t. H ∈ Rn×k,H>H = Ik,

β>1m = 1, βp ≥ 0,

Kp(sp, sp) = K(cc)
p , Kp � 0, ∀p,

(2)

where sp (1 ≤ p ≤ m) denote the sample indices for
which the p-th view is present and K

(cc)
p be used to denote

the kernel sub-matrix computed with these samples. The
constraint Kp(sp, sp) = K

(cc)
p is imposed to ensure that Kp

maintains the known entries during the course. Different
from the optimization in MKKM, [22] incorporates an extra
step to impute the missing entries of base kernels, leading
to a three-step alternate optimization algorithm. Interested
readers are referred to [22].

Although MKKM-IK demonstrates excellent clustering
performance in handling incomplete multi-view cluster-
ing tasks [22], it also suffers from the following non-
ignorable drawbacks. Firstly, from the above optimization
procedure, we observe that its computational complexity is
O(n3 +

∑m
p=1 n

3
p +m3) per iteration, where n, np (np ≤ n)

and m are the number of all samples, observed samples
of p-th view and views. During the learning procedure, it
requires to store m base kernel matrices with size n. There-
fore, its storage complexity is O(mn2). The relatively high
computational and storage complexities preclude it from
being applied to large-scale clustering tasks. Furthermore, as
seen from Eq. (2), there are 1

2 (n− np)(n+ np + 1) elements
to be imputed for the p-th incomplete base kernel matrix
Kp(1 ≤ p ≤ m). It unnecessarily increases the complexity
of the optimization and the risk of be trapped into a local
minimum, adversely affecting the clustering performance.
In addition, note that a clustering result is determined by a
whole similarity matrix in [22]. As a result, the imputation to
an incomplete similarity matrix has impact to the clustering
of all samples, no matter whether a sample is complete or
not. This improperly increases the influence of imputation
on all samples, especially for those with complete views.

2.3 Late Fusion Incomplete Multi-view Clustering (LF-
IMVC)
Instead of imputing incomplete similarity matrices
{Kp}mp=1, the work in [25] develops a late fusion incom-
plete multi-view clustering (LF-IMVC) algorithm, which
proposes to impute the incomplete base clustering matrices
to overcome the aforementioned disadvantages of MKK-
IK. It simultaneously performs clustering and the imputa-
tion of missing elements among base clustering matrices
Hp ∈ Rn×k (1 ≤ p ≤ m), where the observed part of Hp,
denoted as H

(0)
p ∈ Rnp×k (1 ≤ p ≤ m), can be obtained by

solving kernel k-means in Eq. (2) with m incomplete base
kernel matrices {Kp(sp, sp)}mp=1.

Specifically, LF-IMVC firstly finds a consensus clustering
matrix H from {Hp}mp=1, and then imputes the incomplete
parts of them with the learned consensus matrix. By this
way, the above two learning processes can be seamlessly
coupled and they are allowed to negotiate with each other

to achieve better clustering. The above idea can be fulfilled
as follows,

max
H,{Wp,Hp}mp=1

Tr

H>

 m∑
p=1

HpWp

+ λ
m∑

p=1

Tr
(
H>p Ĥ(0)

p

)
s.t. H ∈ Rn×k, H>H = Ik,

Wp ∈ Rk×k, W>
p Wp = Ik,

Hp ∈ Rn×k, H>p Hp = Ik,
(3)

where H and Hp are the consensus clustering matrix and
the p-th base clustering matrix, respectively, Wp is the p-
th permutation matrix in order to optimally match Hp and
H, Ĥ

(0)
p (sp, :) = H

(0)
p with other elements being zeros

and λ is a regularization parameter to trade of clustering
and imputation. The orthogonal constraints are imposed
on H, Hp and Wp since they are clustering matrices and
permutation matrix, respectively.

Although the recently proposed LF-IMVC [25] has some
nice properties such as less imputation variables and higher
computational efficiency compared with MKKM-IK [22], it
also suffers from the following non-ignorable drawbacks.
i) More vulnerable to low-quality imputation. As seen from
Eq. (3), the observed part of each base clustering matrix
Hp (1 ≤ p ≤ m) doesnot require to be kept unchanged
during the learning course. Consequently, there are n × k
elements to be optimized for each Hp. This unnecessar-
ily increases the complexity of the optimization and the
risk of being trapped into a low-quality local minimum.
In addition, the imputation on {Hp}mp=1 would affect the
clustering of all samples, no matter whether they are com-
plete. This improperly increases the impact of imputation
on all samples, especially for those with complete views. ii)
Lack of Theoretical Guarantee. Although LF-IMVC [25] exper-
imentally demonstrates promising clustering performance
in practical applications, it lacks of necessary theoretical
analysis on the generalization error bound, which is im-
portant to theoretically justify its effectiveness. In addition,
this theoretical analysis also provides a guidance to further
improve the performance. In this work, we design two
new IMVC algorithms to address the aforementioned issues,
where the observed part of each base clustering matrix is
strictly kept unchanged during the learning course. This, on
one hand, is helpful to improve the computational efficiency
by significantly reducing the number of variables to be
filled. On the other hand, it also enhances the robustness
to low-quality imputation. More importantly, we derive a
generalization error bound for the proposed EE-IMVC and
EE-R-IMVC, which provides the theoretical guarantee for
the effectiveness of the proposed algorithms.

3 EFFICIENT AND EFFECTIVE INCOMPLETE MULTI-
VIEW CLUSTERING (EE-IMVC)

3.1 Formulation of EE-IMVC

In this section, we propose Efficient and Effective Incom-
plete Multi-view Clustering (EE-IMVC) which performs
clustering and imputes the incomplete base clustering ma-
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trices simultaneously. We firstly define the p-th (1 ≤ p ≤ m)
base clustering matrix as

Hp = [H(o)
p

>
,H(u)

p

>
]> ∈ Rn×k, (4)

where H
(o)
p ∈ Rnp×k can be obtained by solving kernel k-

means in Eq. (2) with m incomplete base kernel matrices
{Kp(sp, sp)}mp=1, while H

(u)
p ∈ R(n−np)×k denote the in-

complete part of Hp that is required to be filled. Note that
other similarity based clustering algorithms such as spectral
clustering can also be used to generate {H(o)

p }mp=1.
According to the above discussion, EE-IMVC proposes

to simultaneously perform clustering and the imputation of
{H(u)

p }mp=1 while keeping {H(o)
p }mp=1 unchanged during the

learning course. Specifically, it firstly optimizes a consensus
clustering matrix H from imputed {Hp}mp=1, and then fill
the {H(u)

p }mp=1 with H. These two learning processes are
seamlessly integrated. By doing so, they are allowed to
coordinate with each other to achieve optimal clustering.
The above idea can be fulfilled as follows,

max
H,{Wp,H

(u)
p ,βp}mp=1

Tr

[
H>

∑m

p=1
βp

(
H

(o)
p

H
(u)
p

)
Wp

]
s.t. H ∈ Rn×k, H>H = Ik,

Wp ∈ Rk×k, W>
p Wp = Ik,

H(u)
p ∈ R(n−np)×k, H(u)

p

>
H(u)
p = Ik,

β ∈ Rm,
∑m

p=1
β2
p = 1, βp ≥ 0,

(5)

where H and H
(u)
p are the consensus clustering matrix

and the missing part of the p-th base clustering matrix,
respectively, Wp is the p-th permutation matrix to optimally
match Hp and H, and β = [β1, · · · , βm]> is the adaptive
weights of m base clustering matrices. Note that the orthog-
onal constraints are respectively imposed on H and H

(u)
p

since they are clustering matrices. We also put an orthogonal
constraint on Wp because it is a permutation matrix.

Compared with MKKM-IK [22], the objective function of
EE-IMVC in Eq. (5) has the following nice properties. (1)
Less imputation variables: The number of elements needs to
be filled for the p-th view is (n − np) × k, which is much
less than 1

2 (n − np) × (n + np + 1) required by MKKM-
IK. This could dramatically simplify the model and enhance
its robustness to optimization. (2) Less vulnerable to low-
quality imputation: In EE-IMVC, clustering on samples with
complete views will not be affected by the imputation they
are kept unchanged during the learning course. However,
it is not the case for MKKM-IK because it needs to fill all
incomplete elements and conduct eign-decomposition on
the whole imputed similarity for clustering. This is helpful
to make the proposed model be more robust in the whole
course of optimization. (3) More reasonable imputation: EE-
IMVC utilizes H to complete H

(u)
p rather than the incom-

plete base kernels matrices as in [22], which is more reason-
able since both H and H

(u)
p reside in clustering partition

space. Besides, our algorithm is parameter-free once the
number of clusters to form is specified. These advantages
significantly boosts the clustering performance, as demon-
strated in the experimental part. In [24], a three-step iterative
algorithm with proved convergence is designed to solve the

optimization problem in Eq. (5). Interested readers can refer
to [24] for the detail.

3.2 Efficient and Effective Regularized Incomplete
Multi-view Clustering (EE-R-IMVC)

3.2.1 Prior Knowledge Encoded by H0

The proposed EE-IMVC in subsection 3.1 which jointly
performs base clustering matrices completion and clustering
is elegant, and achieves promising clustering performance
as shown in the experimental part. As seen from Eq. (5), EE-
IMVC imputes each base clustering matrix by only utilizing
the consensus clustering matrix H and the imputed base
clustering matrices are optimally combined to learn H. As
a result, it is crucial for EE-IMVC to learn an effective H
in order to improve the clustering performance. However,
apart from the orthogonal constraint, EE-IMVC does not
utilize any auxiliary information to boost the optimization
of H. This could make the optimization with respect to H
being trapped into a local minimum, which could further
adversely affect the imputation of base clustering matrices,
leading to unsatisfying clustering performance.

To address this issue, we aim to further improve the pro-
posed EE-IMVC by incorporating useful prior knowledge,
encoded by H0, to regularize the learning of H. A question
naturally raised is what kind of H0 is expected. We assume
that H0 could be an initial clustering partition of data. For
example, H0 can be the output of existing MKKM where
the incomplete elements of each base kernel matrix can be
filled with zeros, mean-value, EM algorithm, to name just a
few. H0 can also be the output of existing kernel k-means
(KKM) where the kernel is the average of all base kernel
matrices with all missing elements filled with zeros. Further,
there are other choices to generate H0. For example, H0

could be the output of MKKM-IK [22]. By regularizing the
learning of the consensus clustering matrix with H0, the
resultant algorithms can effectively avoid local optimum
and demonstrate superior clustering performance. Finally,
it is worth pointing out that only prior knowledge about the
clusters is far from enough to well partition the data, as will
be shown by the results in Table 3. As a result, we still need
clustering the data even though we have prior knowledge
about the clusters.

3.2.2 Formulation of EE-R-IMVC

Besides the orthogonal constraint, it is assumed that the
consensus clustering matrix H resides in the neighborhood
of a pre-specified H0, and minimizes ‖H −H0‖2F to guide
the learning of H, where H0 could be prior knowledge
about the clusters. Note that minimizing ‖H − H0‖2F is
equivalent to maximizing Tr(H>H0). By integrating the
above regularization term into the objective of EE-IMVC in
Eq. (5), we obtain the objective function of the proposed
efficient and effective regularized incomplete multi-view
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clustering (EE-R-IMVC) as follows:

max
H,{Wp,H

(u)
p ,βp}mp=1

Tr

[
H>

m∑
p=1

βp

(
H

(o)
p

H
(u)
p

)
Wp

]
+ λTr

(
H>H0

)
,

s.t. H ∈ Rn×k, H>H = Ik,

Wp ∈ Rk×k, W>
p Wp = Ik,

H(u)
p ∈ R(n−np)×k, H(u)

p

>
H(u)
p = Ik,

β ∈ Rm,
∑m

p=1
β2
p = 1, βp ≥ 0,

(6)
where H and H

(u)
p are the consensus clustering matrix

and the missing part of the p-th base clustering matrix,
respectively, Wp is the p-th permutation matrix to optimally
match Hp and H, β = [β1, · · · , βm]> is the adaptive
weights of m base clustering matrices, H0 is an initial
estimate of H, and λ is the regularization parameter. Note
that the orthogonal constraints are respectively imposed on
H and H

(u)
p since they are clustering matrices. We also put

an orthogonal constraint on Wp because it is a permutation
matrix.

3.2.3 Alternate Optimization
Jointly optimizing H, {H(u)

p , Wp}mp=1 and β in Eq. (6) is
difficult. In the following, we design a simple and computa-
tionally efficient three-step algorithm to solve it alternately.

Solving H with fixed {Wp,H
(u)
p }mp=1 and β. Given

{Wp, H
(u)
p }mp=1 and β, the optimization w.r.t H in Eq. (6)

is equivalent to

maxH Tr
(
H>T

)
s.t. H ∈ Rn×k, H>H = Ik, (7)

where T =
∑m

p=1 βpHpWp+λH0. As seen, in the proposed
EE-R-IMVC, the optimization of H depends on both the
base clustering matrix and the pre-specified H0, which is
different from EE-IMVC. The optimization in Eq. (7) is a
singular value decomposition (SVD) problem and can be
efficiently solved with computational complexity O(nk2).

Solving {Wp}mp=1 with fixed H, {H(u)
p }mp=1 and β.

Given H, {H(u)
p }mp=1 and β, the optimization w.r.t permuta-

tion matrix Wp in Eq. (6) equivalently reduces to,

maxWp Tr
(
W>

p Qp

)
s.t. Wp ∈ Rk×k, W>

p Wp = Ik, (8)

where Qp = H>p H. Again, it is a SVD optimization problem
with computational complexity O(k3).

Solving {H(u)
p }mp=1 with fixed {Wp}mp=1, H and β.

Given H, {Wp}mp=1 and β, the optimization w.r.t H
(u)
p in

Eq. (5) is equivalent to

max
H

(u)
p

Tr
(
H(u)
p

>
Up

)
s.t. H(u)

p ∈ R(n−np)×k, H(u)
p

>
H(u)
p = Ik,

(9)

where Up = H(ŝp, :)W
>
p and ŝp denotes the sample indices

for which the p-th view is missing. Once again, it is a SVD
problem and can be efficiently solved with computational
complexity O((n− np)k2).

Solving β with fixed H and {Wp, H
(u)
p }mp=1. Given H

and {Wp, H
(u)
p }mp=1, the optimization w.r.t β in Eq. (6) is

equivalent to

maxβ ν>β s.t. β ∈ Rm,
∑m

p=1
β2
p = 1, βp ≥ 0, (10)

where ν = [ν1, ν2, · · · , νm] with νp = Tr(H>HpWp).
As seen, the optimization in Eq. (10) has an analytical

solution if νp ≥ 0 (1 ≤ p ≤ m). The following Theorem 1
tells that the optimal weights of each base clustering matrix
can be obtained analytically.

Theorem 1. The optimal solution for Eq. (10) is β? = ν/‖ν‖.

Proof. Let (H(t), {H(t)
p ,W

(t)
p }mp=1) be the solution at the

t-th iteration. We have ν
(t)
p = Tr((H(t))>H

(t)
p W

(t)
p ) =

max
H

(u)
p

Tr
(
(H(t))>[H

(o)
p

>
,H

(u)
p

>
]>W

(t)
p

)
≥ maxWp Tr

(
(H(t))>[H

(o)
p

>
,
(
H

(u)
p

(t−1))>
]>Wp

)
> 0, ∀p. The proof is com-

pleted by taking the derivative of the Lagrangian function of
Eq. (10) on βp and letting it vanish.

Algorithm 1 The Proposed EE-R-IMVC

1: Input: {H(o)
p , sp}mp=1, k, H0, λ and ε0.

2: Output: H.

3: Initialize W
(0)
p = Ik, H

(u)
p

(0)
= 0, β(0) = 1/

√
m and

t = 1.
4: repeat
5: Update H(t) by solving Eq. (7) with

{W(t−1)
p , H

(u)
p

(t−1)
}mp=1 and β(t−1).

6: Update {W(t)
p }mp=1 with H(t), {H(u)

p

(t−1)
}mp=1 and

β(t−1) by Eq. (8).

7: Update {H(u)
p

(t)
}mp=1 with H(t), {W(t)

p }mp=1 and
β(t−1) by Eq. (9).

8: Update β(t) with H(t), {W(t)
p }mp=1 and {H(u)

p

(t)
}mp=1

by Eq. (10).
9: t = t+ 1.

10: until
(

obj(t) − obj(t−1)
)
/obj(t−1) ≤ ε0

In sum, our algorithm for solving Eq. (6) is outlined
in Algorithm 1, where obj(t) denotes the objective value
at the t-th iteration. The following Theorem 2 shows that
Algorithm 1 is guaranteed to converge to a local maximum.

Theorem 2. Algorithm 1 is guaranteed to converge to a local
optimum.

Proof. Note that for ∀p,Tr
(
H>[H

(o)
p

>
,H

(u)
p

>
]>Wp

)
≤

1
2 [Tr(H

>H)+Tr(W>
p [H

(o)
p

>
,H

(u)
p

>
][H

(o)
p

>
,H

(u)
p

>
]>Wp)] =

1
2 [2k + Tr(W>

p H
(o)
p

>
H

(o)
p Wp)]. Note that the

maximum of Tr(W>
p H

(o)
p

>
H

(o)
p Wp) with con-

straint W>
p Wp = Ik is

∑k
j=1 λ

j
p, where {λjp}kj=1

are the k eigenvalue of H
(o)
p

>
H

(o)
p . We have

Tr
(
H>[H

(o)
p

>
,H

(u)
p

>
]>Wp

)
≤ 1

2 [2k +
∑k

j=1 λ
j
p] , ap.

Correspondingly,
∑m

p=1 βpTr
(
H>[H

(o)
p

>
,H

(u)
p

>
]>Wp

)
≤∑m

p=1 βpap, which is upper-bounded by
∑m

p=1 ‖ap‖ due to
the `2-norm constraint on β. Meanwhile, the objective of
Algorithm 1 is guaranteed to be monotonically increased
when optimizing one variable with others fixed at each
iteration. As a result, our algorithm is guaranteed to
converge to a local minimum.
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3.3 Discussion and Extension
We end up this section by analyzing the computational and
storage complexities, the initialization of {H(u)

p , Wp}mp=1

and potential extensions.
Computational complexity: As seen from Algorithm 1, the

computational complexity of EE-IMVC and EE-R-IMVC is
O(nk2+m(k3+(n−np)k2)) per iteration, where n, m and
k are the number of samples, views and clusters, respec-
tively. Therefore, EE-IMVC and EE-R-IMVC have a linear
computational complexity with number of samples, which
enables it more efficiently to handle large scale clustering
tasks when compared with MKKM-IK [22].

Storage complexity: During the learning procedure, EE-
IMVC and EE-R-IMVC need to store H and {Hp, Wp}mp=1.
Its storage complexity isO(nk+mnk+mk2), which is much
less than that of MKKM-IK with O(mn2) since n � k in
practice.

Initialization of {H(u)
p , Wp}mp=1: In our current imple-

mentation, we simply initialize {H(u)
p }mp=1 as zeros, and

{Wp}mp=1 as identity matrix. This initialization has well
demonstrated superior clustering performance of EE-IMVC
and EE-R-IMVC in our experiments. Further exploring other
initializations and studying their influence on the clustering
performance will be an interesting future work.

Regularization on H: The regularization on H is impor-
tant to improve the subsequent clustering performance. In
this work, we regularize H by assuming that it lies in
the neighborhood of a pre-specified H0. In our current
implementation, H0 is obtained by performing kernel k-
means on unified multiple incomplete kernel matrices with
zero-filling. Other approaches to generate H0 can also be
designed to further improve the clustering performance. In
addition, many task related prior knowledge such as low-
rank can be incorporated to regularize H, which is left as a
piece of future work.

Extensions: EE-IMVC and EE-R-IMVC can be extended
from the following aspects. Firstly, EE-IMVC and EE-R-
IMVC could be further improved by sufficiently considering
the correlation among {Hp}mp=1. For example, we may build
this correlation by criteria such as Kullback-Leibler (KL)
divergence [26] and Hilbert-Schmidt independence criteria
(HSIC), to name just a few. This prior knowledge could
provide a good regularization on mutual base clustering
matrix completion, and would be helpful to improve the
clustering performance. Secondly, the way in generating
{H(o)

p }mp=1 could be readily extendable to other similarity
based clustering algorithms, such us spectral clustering [27].
This could further improve the clustering performance. Last
but not least, the idea of joint imputation and clustering is so
natural that can be generalized to other learning task such
as feature missing.

4 GENERALIZATION ANALYSIS OF THE PROPOSED
ALGORITHMS

The generalization error of k-means clustering has been
studied by fixing the centroids obtained in the training
process and generalizing them for testing [28], [29]. In this
section, we derive generalization bounds of the proposed
algorithms via exploiting the reconstruction error to study

how the centroids obtained by the proposed EE-IMVC and
EE-R-IMVC generalize onto unseen data.

Before defining the reconstruction error of k-means, we
model the absence of views firstly. Specifically, let the indi-
cator function t(x(p)) denote the absence of the p-th view of
the observation x, i.e., if the p-th view is observed, then
t(x(p)) = 1; otherwise its value needs to be optimized.
Note that t(x(p)) is a random variable depending on x,
whose distribution is unknown. Let Σ̂ = [µ̂1, · · · , µ̂k]
be the learned matrix composed of the k centroids, and
β̂, {Wp}mp=1 the learned kernel weights and permutation
matrices by the proposed EE-IMVC and EE-R-IMVC. Effec-
tive k-means clustering algorithms should have the follow-
ing reconstruction error small

E
[

min
y∈{e1,··· ,ek}

∥∥∥hβ,t,{Wp}mp=1
(xi)− Σ̂y

∥∥∥2
F

]
, (11)

where hβ,t,W(xi) =
∑m

p=1 βptp(x
(p)
i )W>

p hp(x
(p)
i ) and

e1, . . . , ek form the orthogonal bases of Rk. We show how
the proposed algorithms achieve this goal.

Let us define a function class first:

F =
{
f : x 7→ min

y∈{e1,··· ,ek}

∥∥∥hβ,t,{Wp}mp=1
(xi)−Σy

∥∥∥2
F

∣∣∣∑m

p=1
β2
p = 1, βp ≥ 0, Σ ∈ Rk×k, W>

p Wp = Ik,

H(u)
p

>
H(u)
p = Ik, ∀p, ∀xi ∈ X

}
.

(12)

Theorem 3. For any δ > 0, with probability at least 1 − δ, the
following holds for all f ∈ F :

E [f(x)] ≤ 1

n

n∑
i=1

f(xi) +

√
2πmG1n(β, t, {Wp}mp=1, {Hp}mp=1)

n

+

√
2πk(k +

√
2)√

n
+ 4

√
log 1/δ

2n
,

(13)
where

G1n(β, t, {Wp}mp=1, {Hp}mp=1) = Eγ
[

sup
β,t,{Wp,Hp}mp=1

n∑
i=1

m∑
p,q=1

γipqβpβqtp(x
(p)
i )tq(x

(q)
i )h>p (x

(p)
i )WpW

>
q hq(x

(q)
i )
]
,

(14)

and γipq, i ∈ {1, . . . , n}, p, q ∈ {1, . . . ,m} are i.i.d. Gaussian
random variables with zero mean and unit standard deviation.

Note that if all the views are accessible, we have
G1n(β, t) ≤ m2

√
n. This implies that with an ideal access to

all views, the proposed algorithms will have generalization
bounds of order O(

√
1/n). However, when the number of

absent views are increasing, the values of G1n(β, t) will
become lager, making it more difficult to learn and more
training examples are required to secure a given clustering
accuracy.

According to Theorem 3, for any learned
β, {Hp,Wp}mp=1 and Σ, to achieve a small

E[f(x)] = E
[

min
y∈{e1,··· ,ek}

∥∥hβ,t,{Hp,Wp}mp=1
(xi)−Σy

∥∥2
F

]
,

(15)
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TABLE 1: Datasets used in our experiments.

Dataset #Samples #Kernels #Classes

Flower17 1360 7 17
Flower102 8189 4 102
CCV 6773 6 20
Caltech102-30 3060 48 102
UCI-Digital 2000 3 10
ProteinFold 694 12 27

the corresponding 1
n

∑n
i=1 f(xi) needs to be as small as pos-

sible. Assuming that β, {Hp,Wp}mp=1 and Σ are obtained
by minimizing 1

n

∑n
i=1 f(xi), we have

n∑
i=1

f(xi) =

n∑
i=1

min
y∈{e1,··· ,ek}

‖hβ,t,W(xi)−Σy‖2F

= Tr
((∑m

p=1
βpHpWp

)(∑m

p=1
βpHpWp

)>
(I−HH>)

)
≤
∑m

p=1
Tr
((
βpHpWp

)(
βpHpWp

)>)
− Tr

((∑m

p=1
βpHpWp

)(∑m

p=1
βpHpWp

)>
HH>

)
= 2k − Tr

((∑m

p=1
βpHpWp

)(∑m

p=1
βpHpWp

)>
HH>

)
≤ 2k − 1

k

(
Tr
(
H>

∑m

p=1
βpHpWp

))2
,

(16)

Eq. (16) implies that 2k − 1
k

(
Tr
(
H>

∑m
p=1 βpHpWp

))2
shall be minimized to ensure a small

∑n
i=1 f(xi)

for good generalization. It is equivalent to maximize
Tr
(
H>

∑m
p=1 βpHpWp

)
, which is the objective of the pro-

posed algorithms in Eq. (5) and Eq. (6). This also verifies the
good generalization ability of the proposed algorithms. The
detailed proof are provided in the supplemental material
due to space limit.

5 EXPERIMENTS

5.1 Experimental settings

The proposed EE-IMVC and EE-R-IMVC are experimentally
evaluated on six widely used multiple kernel benchmark-
data sets shown in Table 1. They are Oxford Flower17
and Flower1021, Caltech1022, Columbia Consumer Video
(CCV)3, UCI Digital4 and Protein Fold Prediction5. For
these datasets, all kernel matrices are pre-computed and
can be publicly downloaded from the above websites. Their
number of samples varies from one thousand to over eight
thousands, clusters from ten to 102, and views from four to
48.

We compare EE-IMVC and EE-R-IMVC with several
commonly used imputation methods, including zero filling
(ZF), mean filling (MF), k-nearest-neighbor filling (KNN)
and the alignment-maximization filling (AF) proposed in
[17]. The widely used MKKM [30] is applied with these
imputed base kernels. These two-stage methods are termed
MKKM+ZF, MKKM+MF, MKKM+KNN and MKKM+AF,

1. http://www.robots.ox.ac.uk/˜vgg/data/flowers/
2. http://files.is.tue.mpg.de/pgehler/projects/iccv09/
3. http://www.ee.columbia.edu/ln/dvmm/CCV/
4. http://ss.sysu.edu.cn/˜py/
5. http://mkl.ucsd.edu/dataset/protein-fold-prediction/

respectively. We also compare with the recently proposed
MKKM-IK [22], which jointly optimizes the imputation and
clustering. In addition, we compare EE-IMVC and EE-R-
IMVC with late fusion IMVC (LF-IMVC) [25], which is re-
garded as the state-of-the-art in handling incomplete multi-
view clustering tasks. Among all the compared algorithms,
only LF-IMVC has one hyper-parameter to be tuned. In
our experiments, we have reused the released Matlab codes
and carefully tuned this hyper-parameter according to the
setting up in [25] to produce their best possible results on
each dataset for fair comparison.

For all data sets, it is assumed that the true number of
clusters k is known and it is set as the true number of classes.
We follow the approach in [22], [23], [25] to generate the
missing vectors {sp}mp=1. The parameter ε, termed missing
ratio in this experiment, controls the percentage of samples
that have absent views, and it affects the performance of the
algorithms in comparison. To show this point in depth, we
compare these algorithms with respect to ε. Specifically, ε
on all the datasets is set as [0.0 : 0.1 : 0.9], where ε = 0
indicates that all views of data are available.

The widely used clustering accuracy (ACC), normal-
ized mutual information (NMI), purity and rand index are
applied to evaluate the clustering performance. For given
xi (1 ≤ i ≤ n), let ci and yi be its predicted cluster
label and the provided ground-truth label, respectively. Let
c = [c1, · · · , cn]> and y = [y1, · · · , yn]> denote the pre-
dicted cluster labels of a clustering algorithm and the pro-
vided ground-truth labels of x1, x2, · · · , xn, respectively.
The clustering accuracy (ACC) is defined as follows,

ACC =

∑n
i=1 δ(yi,map(ci))

n
, (17)

where δ(u, v) is the delta function that equals one if u = v
and equals zero otherwise, and map(ci) is the permutation
mapping function that maps each cluster label ci to the
equivalent label from data. The best mapping can be found
by using the Kuhn-Munkres algorithm [31]. The mutual in-
formation between y and c, denoted as MI(y, c), is defined
as follows:

MI(y, c) =
∑

yi∈y, c′j∈c
p(yi, c

′
j) log2

p(yi, c
′
j)

p(yi)p(c′j)
, (18)

where p(yi) and p(c′j) are the probabilities that a sample
arbitrarily selected from data belongs to the clusters yi and
c′j , respectively, and p(yi, c′j) is the joint probability that the
arbitrarily selected samples belongs to the clusters yi and c′j
at the same time. The normalized mutual information (NMI)
is then defined as follows:

NMI(y, c) =
MI(y, c)

max (H(y),H(c))
, (19)

where H(y) and H(c) are the entropies of y and c, respec-
tively.

For all algorithms, we repeat each experiment for 50
times with random initialization to reduce the effect of
randomness caused by k-means, and report the best result.
Meanwhile, we randomly generate the “incomplete” pat-
terns for 30 times in the above-mentioned way and report
the statistical results. The aggregated ACC, NMI, purity
and rand index are used to evaluate the goodness of the
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algorithms in comparison. Taking the aggregated ACC for
example, it is obtained by averaging the averaged ACC
achieved by an algorithm over different ε.

In the following parts, we conduct comprehensive exper-
iments to study the properties of EE-IMVC and EE-R-IMVC
from the following four aspects: clustering performance, the
evolution of the learned consensus clustering matrix, reg-
ularization on clustering matrix H, algorithm convergence
and the sensitivity of EE-R-IMVC with the regularization
parameter λ.
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Fig. 1: ACC and NMI comparison with the variation of
missing ratios on Flower17 and Flower102 datasets. For
each given missing ratio, the “incomplete patterns” are
randomly generated for 10 times and their averaged results
are reported. The Purity and Rand Index comparison are
provided in the appendix due to space limit.
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Fig. 2: ACC and NMI comparison with the variation of miss-
ing ratios on UCI Digital dataset. For each given missing
ratio, the “incomplete patterns” are randomly generated for
10 times and their averaged results are reported. The Purity
and Rand Index comparison are provided in the appendix
due to space limit.

5.2 Clustering Performance

We compare the proposed EE-IMVC and EE-R-IMVC with
the aforementioned two-stage methods such as MKKM+ZF,
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Fig. 3: ACC and NMI comparison with the variation of
missing ratios on CCV dataset. For each given missing ratio,
the “incomplete patterns” are randomly generated for 10
times and their averaged results are reported. The Purity
and Rand Index comparison are provided in the appendix
due to space limit.
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Fig. 4: ACC and NMI comparison with the variation of miss-
ing ratios on Caltech102-30 dataset. For each given missing
ratio, the “incomplete patterns” are randomly generated for
10 times and their averaged results are reported. The Purity
and Rand Index comparison are provided in the appendix
due to space limit.
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Fig. 5: ACC and NMI comparison with the variation of miss-
ing ratios on Protein Fold dataset. For each given missing
ratio, the “incomplete patterns” are randomly generated for
10 times and their averaged results are reported. The Purity
and Rand Index comparison are provided in the appendix
due to space limit.

MKKM+MF, MKKM+KNN and MKKM+AF, and one-stage
methods such as MKKM-IK [22] and LF-IMVC [25] on Ox-
ford Flower17 and Flower102, which have been widely used
as MKL benchmark data sets [32]. There are seven views
available for these two datasets. For each view, we apply a
Gaussian kernel with the averaged pairwise distance as the
width parameter to generate a kernel matrix. In this way, we
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TABLE 2: Aggregated ACC, NMI, purity and rand index comparison (mean±std) of different clustering algorithms on all
benchmark datasets.

Datasets MKKM+ZF MKKM+MF MKKM+KNN MKKM+AF MKKM-IK LF-IMVC EE-IMVC EE-R-IMVC
[17] [22] [19] Proposed

ACC

Flower17 36.96± 0.42 36.75± 0.66 37.75± 0.61 40.80± 0.40 43.67± 0.42 51.87± 0.69 52.96± 0.69 57.72± 0.71
Flower102 17.98± 0.16 17.95± 0.18 18.20± 0.16 18.73± 0.15 20.90± 0.16 35.26± 0.32 36.44± 0.31 37.25± 0.28

UCI-Digital 42.78± 0.44 43.00± 0.32 71.35± 0.94 47.98± 0.44 48.19± 0.47 78.89± 0.73 79.64± 0.51 89.75± 0.43
CCV 16.13± 0.11 16.29± 0.23 16.52± 0.18 17.37± 0.19 18.09± 0.23 22.81± 0.32 23.37± 0.39 24.35± 0.19

Caltech102-30 14.01± 0.13 14.00± 0.14 15.44± 0.18 15.86± 0.15 17.45± 0.18 32.36± 0.30 31.96± 0.28 33.18± 0.16
ProteinFold 20.64± 0.26 20.22± 0.24 20.95± 0.36 21.02± 0.39 21.36± 0.51 29.73± 0.39 30.50± 0.74 32.62± 0.37

NMI

Flower17 37.30± 0.35 37.21± 0.34 38.22± 0.37 40.31± 0.30 42.99± 0.34 50.06± 0.49 51.38± 0.57 54.17± 0.41
Flower102 37.42± 0.14 37.38± 0.11 37.77± 0.11 37.90± 0.15 39.40± 0.10 49.31± 0.16 50.77± 0.09 51.08± 0.13

UCI-Digital 41.77± 0.15 39.90± 0.22 63.25± 0.49 46.98± 0.24 46.91± 0.26 68.45± 0.50 69.48± 0.42 81.20± 0.53
CCV 12.40± 0.10 12.58± 0.14 12.87± 0.09 13.25± 0.11 13.83± 0.17 17.52± 0.24 18.22± 0.22 18.75± 0.12

Caltech102-30 37.72± 0.11 37.66± 0.12 39.15± 0.08 39.08± 0.09 40.51± 0.14 52.90± 0.19 52.94± 0.13 53.55± 0.05
ProteinFold 28.99± 0.30 29.31± 0.27 30.34± 0.25 29.28± 0.31 29.96± 0.48 37.10± 0.37 38.60± 0.51 40.19± 0.30

Purity

Flower17 38.46± 0.42 38.31± 0.61 39.19± 0.48 42.28± 0.31 45.11± 0.41 53.65± 0.72 54.66± 0.69 59.01± 0.63
Flower102 22.49± 0.17 22.44± 0.17 22.76± 0.17 23.17± 0.21 25.62± 0.18 40.37± 0.17 41.89± 0.18 42.44± 0.23

UCI-Digital 44.71± 0.44 43.30± 0.31 71.47± 0.66 50.42± 0.35 50.84± 0.41 78.94± 0.63 79.69± 0.51 89.75± 0.43
CCV 20.36± 0.11 20.63± 0.15 20.73± 0.10 21.21± 0.13 21.90± 0.20 25.86± 0.34 26.46± 0.42 27.36± 0.18

Caltech102-30 15.35± 0.18 15.29± 0.17 16.97± 0.12 17.06± 0.17 18.84± 0.15 34.56± 0.34 34.25± 0.23 35.32± 0.10
ProteinFold 26.95± 0.36 27.00± 0.42 27.76± 0.34 27.25± 0.47 27.70± 0.54 35.76± 0.38 36.99± 0.72 38.99± 0.41

Rand Index

Flower17 20.05± 0.37 19.92± 0.41 20.83± 0.35 22.81± 0.31 25.57± 0.30 33.99± 0.64 35.29± 0.62 39.07± 0.67
Flower102 8.11± 0.12 8.06± 0.14 8.32± 0.11 8.66± 0.13 10.27± 0.14 22.22± 0.27 23.57± 0.29 24.23± 0.20

UCI-Digital 25.46± 0.19 22.14± 0.22 51.55± 0.69 30.86± 0.31 31.05± 0.27 62.89± 0.61 64.20± 0.48 79.31± 0.70
CCV 4.57± 0.06 4.64± 0.09 4.74± 0.05 5.02± 0.08 5.45± 0.09 7.80± 0.14 8.17± 0.13 8.65± 0.07

Caltech102-30 4.06± 0.09 4.03± 0.09 5.28± 0.12 5.58± 0.11 6.75± 0.14 18.20± 0.18 18.06± 0.21 18.95± 0.13
ProteinFold 6.68± 0.23 6.53± 0.18 7.06± 0.24 6.93± 0.27 7.21± 0.32 12.94± 0.32 14.36± 0.54 15.83± 0.37
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Fig. 6: The evolution of the learned consensus clustering matrix H by EE-IMVC and EE-R-IMVC with missing ratio 0.1 on
all datasets. The curves with other missing ratios are similar and we omit them due to space limit.

obtain seven base kernels, and use them for all the multi-
view clustering algorithms compared in our experiment.

Figure 1 presents the ACC, NMI, purity and rand index
comparison of the above algorithms with different missing
ratios on these two datasets. From this figure, we have the
following observations:

• The proposed MKKM-IK [22] (in green)
outperforms existing two-stage imputation
methods. For example, it exceeds the best
two-stage imputation method (MKKM+AF) by
0.4%, 0.5%, 1.2%, 0.9%, 1.8%, 2.9%, 3.9%, 6.1%
and 8.1% in terms of ACC, with the variation of
missing ratios in [0.1, · · · , 0.9] on Flower17. The
improvement is more significant with the increase of
missing ratios. These results well demonstrates the
effectiveness of its joint optimization on imputation
and clustering.

• The recently proposed LF-IMVC [25] (in

blue) further improve MKKM-IK [22].
For example, it improves the latter by
11.4%, 8.9%, 7.7%, 9.7%, 8.7%, 6.9%, 7.9%, 6.9%
and 5.7% in terms of ACC with the variation of
missing ratios in [0.1, · · · , 0.9] on Flower17. These
results verify the effectiveness of imputing base
clustering matrices rather than kernel matrices.

• Our EE-IMVC achieves comparable or slightly
better performance than LF-IMVC [25]. Moreover,
EE-R-IMVC significantly and consistently
outperforms EE-IMVC. Taking the results on
Flower17 for example. It improves the EE-IMVC by
4.4%, 5.5%, 6.9%, 4.0%, 4.3%, 6.3%, 4.4%, 3.5%
and 3.7% in terms of ACC with the variation
of missing ratios in [0.1, · · · , 0.9], indicating the
effectiveness of incorporating regularization on the
consensus clustering matrix.

• The proposed EE-IMVC and EE-R-IMVC also
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demonstrate superior clustering performance when
all the views of data are available.

• The curves in terms of ACC and NMI on Flower102
are plotted in sub-figures 1c-1d, which is similar to
the results on Flower17.

UCI-Digital dataset has been widely used as a
benchmark in multi-view clustering [22], [25]. We also
compare the clustering performance of the aforementioned
algorithms on this dataset. The clustering accuracy, NMI,
purity and rand index of these algorithms with the variation
of missing ratio are plotted in Figure 2. From Figure 2a,
we observe that the proposed MKKM-IK gives poor
performance on this dataset, which is clearly inferior to the
MKKM+KNN. The proposed LF-IMVC [25] significantly
improves this situation, demonstrating superior clustering
performance. Our proposed EE-IMVC achieve comparable
or slightly better performance than LF-IMVC, and EE-R-
IMVC further significantly and consistently outperforms
the latter. For example, EE-R-IMVC exceeds LF-IMVC by
11.4%, 11.8%, 10.5%, 10.6%, 9.9%, 12.0%, 11.8%, 11.1%
and 8.7% in terms of ACC with the variation of missing
ratios. In addition, the result in terms of NMI is similar, as
seen from sub-figure 2b.

We evaluate the performance of the proposed algo-
rithms on CCV dataset, and report the results in Fig-
ure 3. We once again observe that the proposed EE-
IMVC and EE-R-IMVC significantly outperform the com-
pared ones in terms of ACC, NMI, purity and rand in-
dex. For example, EE-IMVC slightly improves the per-
formance of the second best one (LF-IMCV), and EE-R-
IMVC further significantly increases the improvement by
1.9%, 1.8%, 1.3%, 1.7%, 1.4%, 1.7%, 1.4%, 1.3% and 1.4%
in terms of ACC. The result in terms of NMI is similar, as
shown in sub-figure 3b.

We conduct another experiment on the Caltech102
dataset to evaluate the performance of the proposed algo-
rithms. This dataset consists of a group of kernels derived
from various visual features computed on the Caltech-102
object recognition task with 102 categories. It has 48 base
kernels which are publicly available. The ACC and NMI of
the aforementioned algorithms with the variation of miss-
ing ratios are plotted in sub-figures 4a-4b, respectively. As
seen, the proposed EE-IMVC and EE-R-IMVC demonstrate
comparable or better clustering clustering performance than
the state-of-the-art one in the literature.

Besides the above five visual datasets, we finally com-
pare the aforementioned algorithms on the protein fold
dataset, which is a multi-source and multi-class dataset
based on a subset of the PDB-40D SCOP collection. It
contains 12 different feature spaces, including composition,
secondary, hydrophobicity, volume, polarity, polarizability,
L1, L4, L14, L30, SWblosum62 and SWpam50. This dataset
has been widely adopted in the MKL community [33], [34].
For the protein fold dataset, the input features are available
and the kernel matrices are generated as in [33], where the
second order polynomial kernels are employed for feature
sets one to ten and the linear kernel for the rest two feature
sets.

The clustering performance of these algorithms are plot-
ted in sub-figures 5a-5b. From these sub-figures, we observe

that the proposed EE-IMVC demonstrates slightly better
clustering performance than the second best one (LF-IMVC),
and EE-R-IMVC further consistently and significantly im-
proves EE-IMVC. For example, EE-R-IMVC exceeds LF-
IMVC by 1.8%, 1.9%, 2.8%, 2.6%, 3.5%, 3.1%, 3.0%, 3.4%
and 3.8% in terms of ACC with the missing ratios. Mean-
while, we observe that the results in terms of NMI are also
similar.

We also report the aggregated ACC, NMI, purity
and rand index, and the standard deviation in Table 2,
where the one with the highest performance is shown
in bold. Again, we observe that the proposed EE-R-
IMVC significantly outperforms MKKM+ZF, MKKM+MF,
MKKM+KNN, MKKM+AF, MKKM-IK and LF-IMVC. For
example, EE-R-IMVC exceeds the second best one (LF-
IMVC) by 5.9%, 2.0%, 10.9%, 1.5%, 0.8% and 2.9% in
terms of ACC on Flower17, Flower102, UCI-Digital, CCV,
Caltech102 and ProteinFold, respectively. These results are
consistent with our observations in Figures 1, 2, 3, 4, 5.

The above experimental results on these datasets have
well demonstrated that EE-IMVC and EE-R-IMVC are su-
perior to some state-of-the-art in terms of ACC, NMI, pu-
rity and rand index. We attribute the superiority of EE-
IMVC and EE-R-IMVC as three aspects: i) Completing the
incomplete base clustering matrices with the consensus one.
Different from MKKM-IK where the consensus clustering
matrix H is utilized to fill incomplete base kernels, EE-IMVC
and EE-R-IMVC impute each incomplete base clustering
matrix with H. The latter is more natural and reasonable
since both H and incomplete base clustering matrices re-
side in the same clustering space, leading to more suitable
imputation. ii) The joint optimization on imputation and
clustering. On one hand, the imputation is guided by the
clustering results, which makes the imputation more di-
rectly targeted at the ultimate goal. On the other hand, this
meaningful imputation is beneficial to refine the clustering
results. These factors bring forth the significant improve-
ments on clustering performance. iii) The regularization
on the consensus clustering matrix. We can incorporate
useful prior knowledge to help the learning of H, which
in turn boosts the imputation of incomplete base clustering
matrices, leading to improved clustering performance.

5.3 Effectiveness of the Learned Consensus Matrix

We conduct extra experiments to show the evolution of the
learned consensus clustering matrix H during the learning
procedure. Specifically, we evaluate the ACC, NMI, purity
and rand index of EE-IMVC and EE-R-IMVC based on the
H learned at each iteration on the aforementioned datasets,
and plot the curves in Figure 6. Taking the results in terms
of ACC for example, we observe that i) the ACC of EE-
IMVC and EE-R-IMVC gradually increases to a maximum
and generally maintains it up to slight variation, and ii) the
curves corresponding to EE-R-IMVC is usually on the above
of EE-IMVC. These observations have clearly demonstrated
the effectiveness of learned consensus clustering matrix,
indicating the advantage of regularizing the consensus clus-
tering matrix. Other curves in terms of NMI, purity and
rand index have similar trend.
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Fig. 7: The sensitivity of EE-R-IMVC with the variation of λ with missing ratio 0.1 on Flower17, Flower102, UCI-Digtal,
CCV, Caltech102-30 and ProteinFold datasets. The results of EE-IMVC are also provided as a reference. The results in terms
of ACC, Purity and Rand Index with other missing ratios are similar and omitted due to space limit.
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Fig. 8: The objective values of EE-IMVC and EE-R-IMVC with iterations with missing ratio 0.1 on all datasets. The curves
with other missing ratios are similar and we omit them due to space limit.

5.4 Empirical Study on Regularizing H

In this subsection, we firstly clarify the motivation of in-
corporating prior knowledge to improve the clustering by
conducting an ablation study on all benchmark datasets.
Secondly, we try the best to explore what kind of prior
knowledge is expected by designing different H0s.

We empirically observe that, apart from the orthogonal
constraint, some prior knowledge on H may be helpful
to boost its optimization, leading to improved clustering
performance. To see this point in depth, we design an
ablation study to verify the effectiveness of incorporating
H0 on all benchmark datastes. The clustering algorithms
include: 1) clustering data with only prior knowledge H0,
2) clustering data without prior knowledge (i.e., EE-IMVC),
and 3) clustering data with EE-IMVC and prior knowledge
(i.e., EE-R-IMVC). The experimental results are reported in
Table 3. From these results, we have the following observa-
tions.

• The clustering performance with only prior knowl-
edge H0 is usually inferior to that of EE-IMVC and
EE-R-IMVC. This indicates that only prior knowl-
edge about the clusters is far from enough to well
partition the data. As a result, we still need cluster-
ing the data even though we have prior knowledge
about the clusters.

• The clustering performance of EE-IMVC is inferior
to that of EE-R-IMVC. This demonstrates that the
prior knowledge about the clusters is indeed helpful
to improve the clustering, indicating the necessarity
of incorporating prior knowledge.

These experimental results well explain the effectiveness
of incorporating prior knowledge in optimizing H and
improving clustering.

We then try to explore what kind of prior knowledge
is expected by designing two different H0s, i.e., H

(1)
0 and

H
(2)
0 . 1) H

(1)
0 : We first impute the missing parts of each base

kernel matrix with zeros, and combine them with unified

weight. It is then taken as the input of kernel k-means to
generate H

(1)
0 , and 2) H

(2)
0 : The incomplete parts of base

kernels are firstly filled with zeros. These imputed base
kernel matrices are then taken as the input of multiple
kernel k-means (MKKM) to output H

(2)
0 . The experimental

results with different H0s are reported in Table 3. From these
results, we observe that:

• Different prior knowledge encoded by H0s produces
different clustering performance.

• By integrating different H0s, EE-R-IMVC consis-
tently and significantly outperforms EE-IMVC in
terms of ACC, NMI, purity and rand index.

These results indicate that the prior knowledge on H is able
to boost its optimization, leading to improved clustering
performance. Also, there are other choices to generate H0.
For example, H0 could be the output of MKKM-IK [22]. We
will further explore the affect of different H0s on clustering
in the future work.

5.5 Parameter Sensitivity
As can be seen in Eq. (6), EE-R-IMVC introduces the regular-
ization parameter λ to trade off the clustering and regular-
ization. In the following, we conduct experiments to show
the effect of this parameter on the clustering performance
on all datasets. Figure 7 presents the NMI of EE-R-IMVC
by varying λ from 2−3 to 23, where the EE-IMVC is also
provided as a baseline. From these figures, we observe
that the NMI first increases to a high value and generally
maintains it up to slight variation with the increasing value
of λ. EE-R-IMVC demonstrates stable performance across a
wide range of λ. These experiments have well shown that
EE-R-IMVC is insensitive to the variation of the parameter.

5.6 Convergence
Our algorithms are theoretically guaranteed to converge
according to Theorem 2. We record the objective values of
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TABLE 3: ACC, NMI, purity and rand index comparison (mean±std) of different clustering algorithms on all benchmark
datasets (with missing ratio=0.1).

Datasets Clustering with only H0 EE-IMVC EE-R-IMVC
H

(1)
0 H

(2)
0 H

(1)
0 H

(2)
0

ACC

Flower17 52.63± 2.19 42.69± 1.16 54.88± 2.59 62.47± 2.41 58.56± 1.30
Flower102 32.02± 0.46 21.41± 0.32 42.70± 0.96 43.45± 0.78 43.20± 0.59

UCI-Digital 90.86± 4.42 47.41± 0.76 82.14± 2.01 93.74± 1.86 82.39± 1.86
CCV 17.94± 0.25 17.49± 0.36 24.67± 0.70 25.81± 0.53 25.64± 0.58

Caltech102-30 26.64± 0.73 16.05± 0.41 32.33± 1.21 33.41± 0.55 33.37± 0.46
ProteinFold 29.08± 0.83 26.77± 1.10 34.35± 2.89 36.28± 1.60 36.35± 1.61

NMI

Flower17 52.93± 1.29 43.16± 0.74 54.26± 1.36 59.36± 0.88 56.12± 0.90
Flower102 50.81± 0.27 41.00± 0.18 57.22± 0.41 57.57± 0.35 57.56± 0.33

UCI-Digital 86.35± 2.03 46.42± 0.62 74.34± 1.35 87.73± 1.34 74.57± 1.34
CCV 15.34± 0.30 14.35± 0.31 19.83± 0.34 20.40± 0.25 20.19± 0.29

Caltech102-30 48.88± 0.51 39.44± 0.32 53.27± 0.57 54.02± 0.27 53.88± 0.29
ProteinFold 39.91± 0.64 36.43± 0.86 43.05± 1.23 44.68± 0.84 44.28± 0.80

Purity

Flower17 55.63± 1.64 44.46± 0.95 56.63± 2.23 63.22± 2.04 59.94± 1.36
Flower102 39.51± 0.43 26.32± 0.18 48.98± 0.81 49.70± 0.75 49.53± 0.68

UCI-Digital 91.51± 3.15 50.11± 0.92 82.15± 2.00 93.74± 1.34 82.41± 1.84
CCV 21.60± 0.20 21.72± 0.28 27.78± 0.54 28.94± 0.45 28.87± 0.54

Caltech102-30 29.07± 0.56 17.43± 0.48 34.60± 1.14 35.64± 0.44 35.70± 0.49
ProteinFold 37.12± 1.10 33.04± 1.00 41.50± 1.78 43.29± 1.29 43.10± 1.02

Rand Index

Flower17 35.46± 2.33 25.45± 0.75 38.16± 2.00 44.70± 1.66 40.91± 1.31
Flower102 19.33± 0.37 11.07± 0.19 29.34± 1.04 29.86± 0.61 29.77± 0.66

UCI-Digital 84.02± 3.79 30.22± 0.69 69.46± 1.94 86.85± 2.33 69.69± 1.92
CCV 6.04± 0.09 5.43± 0.15 9.04± 0.27 9.59± 0.27 9.42± 0.31

Caltech102-30 13.39± 0.45 5.66± 0.22 18.35± 0.94 19.48± 0.51 19.33± 0.44
ProteinFold 13.19± 0.69 11.42± 0.71 17.89± 1.94 19.91± 1.12 19.75± 0.91

EE-IMVC and EE-R-IMVC with iterations on all datasets
and plot them in Figure 8. As observed, the objective value
of EE-IMVC and EE-R-IMVC does monotonically increase
at each iteration and that it usually converges in less than
50 iterations.

6 CONCLUSION

While the recently proposed MKKM-IK [22] is able to handle
incomplete multi-view clustering, the relatively high com-
putational and space complexities prevent it from large scale
clustering tasks. This paper firstly proposes the EE-IMVC
to simultaneously clustering and imputing the incomplete
base clustering matrices. We further improve EE-IMVC by
incorporating prior knowledge to regularize the learning
of the consensus clustering matrix. We develop two four-
step algorithms to effectively and efficiently solves the re-
sultant optimization problems. In addition, we analyze and
derive the generalization error bound of the proposed EE-
IMVC and EE-R-IMVC. Extensive experiments on bench-
mark datasets have been conducted and the results well
demonstrate the superiority of our algorithms.

Although demonstrating improvements compared to
others, the proposed EE-IMVC and EE-R-IMVC can be
further improved from the following aspects: 1) As shown
in Eq. (9) in the manuscript, the update of each H

(u)
p only

depends on H(ŝp, :). We plan to sufficiently utilize other

views {Hq}mq=1,q 6=p to improve the imputation of H
(u)
p , lead-

ing to improved clustering performance. 2) As pointed by
reviewers, the prior knowledge encoded by H0 has signifi-
cant affect on clustering performance. In the future, we will
further explore how to automatically learn an optimal H0

from data by following the idea of optimal neighborhood
kernel learning [7].
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