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ABSTRACT
Smartwatches and other wearables are characterized by small-scale
touchscreens that complicate the interaction with content. In this
paper, we present Force9, the first optimized miniature keyboard
leveraging force-sensitive touchscreens on wrist-worn computers.
Force9 enables character selection in an ambiguous layout by an-
alyzing the trade-off between interaction space and the easiness
of force-assisted interaction. We argue that dividing the screen’s
pressure range into three contiguous force levels is sufficient to
differentiate characters for fast and accurate text input. Our pilot
study captures and calibrates the ability of users to perform force-
assisted touches on miniature-sized keys on touchscreen devices.
We then optimize the keyboard layout considering the goodness
of character pairs (with regards to the selected English corpus) un-
der the force-based configuration and the users’ familiarity with
the QWERTY layout. We finally evaluate the performance of the
trimetric optimized Force9 layout, and achieve an average of 10.18
WPM by the end of the final session. Compared to the other state-
of-the-art approaches, Force9 allows for single-gesture character
selection without addendum sensors.
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• Human-centered computing; • Human computer interac-
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1 INTRODUCTION
In recent years, a large number of smartwatches have been launched
onto the market. Originally designed for quick interactions with
the phone environment, smartwatches’ user-accepted usages are
more limited due to insufficient interaction methods. Common us-
ages include message notification, biometric information collection,
user health status monitoring, as well as location positioning and
city navigation. However, text entry for message input on smart-
watches is usually restricted to predefined texts and emojis for
one-click replies. The rising popularity of smartwatches calls for
more efficient and user-friendly input methods.

The soft QWERTY keyboard and its local variants are the de
facto standard on smartphones. Indeed, the input interface of mo-
bile devices is highly influenced by physical keyboards, where the
QWERTY layout is prevalent. This is especially true when a sizable
input interface is available and one keypad corresponds to a discrete
character, number or symbol. By nature, the standard QWERTY
layout is designed for unambiguous, physical keyboards, and mi-
grated as-is to the spacious touchscreen interfaces of smartphones.
However, migrating the layouts to smartwatches makes text input
challenging due to the touchscreen’s limited size [1].

Alternative text-input methods should be considered for the
emerging size-constrained interfaces of smartwatches. Current re-
searches on text entry for smartwatches consider consecutive ges-
tures, including multiple taps [2], swipes [3], shift pointing [4],
panning on the movable keyboard [5], combining the thumb and
index finger to create gesture combination [6], as well as additional
sensors worn on the index and middle fingers [7]. However, all
of these systems require the users to perform a minimum of two
consecutive gestures or a continuous set of gestures to search the
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Figure 1: System Implementation: typing the phrase ‘FORCE
KEYBOARD’ illustrated by the following 5 characters ‘F’ ‘R’
‘C’ ‘E’ ‘Y’, chosen on the ambiguous keys through three levels
of force exertion.

characters in the QWERTY layout. To reduce the gesture complex-
ity, optical sensors are worn on the index finger and middle finger
to distinguish the characters in a 2-level ambiguous keyboard [7],
where the index finger maps to the first character while the mid-
dle finger maps to the alternative character inside the same key.
However, addendum sensors require additional preparation times
for putting on the sensor, on top of constantly carrying two addi-
tional pieces of hardware. In contrast, we address these issues by
proposing a system based on single-step gestures without adden-
dum sensors for text entry on miniature keyboards.

In this paper, we present a force-assisted text input technique
for size-constrained smart wearables. In order to perform charac-
ter selection, we explore the alternative modality of force-assisted
input and leverage the force-sensitive touchscreens available on
smartphones and smartwatches. We arrange 26 characters of the
Roman alphabet (𝑎−𝑧) and white space (“_”) into a 9-key ambiguous
layout. Each key features three characters, composing an ambigu-
ous keyboard layout. Users select the target character among the
three characters in a key by exerting a mapped amount of force (see
Figure 3b). We divide the force spectrum into three ranges: light tap,
shallow force touch, and deep force touch for distinguishing the char-
acters within the same key in our optimized layout. Figure 1 shows
the procedure of typing the word phrase ‘FORCE KEYBOARD’ on
our prototypical implementation on an Apple Watch Series 3. Three
characters are arranged within a key. The applied force level distin-
guishes the target character. For instance, the first character in the
word phrase, ‘F’, is located in the key of ‘OKF’. The user applies a
deep force touch to select this character, with an exerted force of
more than 0.9915N. In addition, swipe gestures maps to the ‘Enter’
and ‘Delete’ keys, e.g., on a left-handed watch, the swipe gestures
trigger from the upper right corner: a swipe from right to left along
the upper edge maps to ‘Delete’; and a swipe along the right edge
from the upper corner to the lower corner leads to ‘Enter’.

Our contribution is threefold: (1) We design a miniature force-
assisted ambiguous keyboard for the constrained interface of smart-
watches. (2) We solve the optimization problem for character place-
ment within our ambiguous keyboard, and propose an intuitive,
yet efficient, layout for force touch interaction. This paper presents

the first optimized force-assisted ambiguous keyboard layout for
the index finger-to-forearm interaction. We design this solution by
combining the three following objectives: ease of force-touch, fa-
miliarity with the QWERTY layout, and goodness of the character
pair configuration. (3) We evaluate the proposed solution (Trimetric
optimized Force9) through a user experiment with 10 participants.
Users achieve a text entry speed of 10.8Word-per-Minutes (WPM)
with error rates of below 3% in the final testing session.

The paper is organized as follows. After discussing the related
work in Section 2, we validate our initial intuition and explain our
design choices in Section 3. We then present our layout optimiza-
tion in Section 4. Accordingly, we evaluate the performance of the
proposed layouts (Section 5), and discuss our findings in Section 6.

2 RELATEDWORK
We discuss the most relevant works in this section: text entry with
tiny touchscreens, force dimension, and layout optimization.

2.1 Text Entry on Tiny Touchscreen Interfaces
As keys on miniature QWERTY keyboards on smartwatches are
hard to choose precisely, several works group the characters into
multiple partitions for easier selection. Zoomboard (9.3 WPM) [2]
requires the user to zoom into a region of interest on a QWERTY
keyboard before selecting the target character. Other similar zoom-
basedminiature QWERTY keyboards such as CallOut and ZShift [5]
achieve similar performance, up to 9.10 WPM. DriftBoard (9.74
WPM) [4], a panning-based interaction technique, controls cursors
on the miniature QWERTY keyboard. Splitboard (14 WPM) [1],
Swipeboard (10.7 WPM) [3], HoldBoard (9.10 WPM) [6], and Swipe-
Key [8] divide the keyboard into a hierarchy of which multiple
partitions contain several characters. However, two or more con-
secutive gestures are required to complete one character selection,
as a first gesture performs a downward search in the top-to-down
traversal. Other techniques (up to 24 WPM) seek a single tap on an
ambiguous key containing several characters. Disambiguation of
characters on the same key can be achieved by statistical decod-
ing [9], gesture recognition [10], predictive input [11], identification
of fingers using additional on-finger sensors [7], or finger tap clas-
sification by machine learning [12]. In comparison, Force9 enables
single-gestures inputs without additional sensors or complex com-
putations.

2.2 Force-assisted Text Input
Prior works prove the human ability to exert force in discrete levels
(6 levels [13], and up to 10 levels [14] with sufficient feedback) and
continuous spectrums [15]. However, there are few works on force-
assisted text input for tiny touchscreen interfaces [16]. Only two
prior works apply force-sensitive interfaces on mobile devices. Hsiu
et al.(12.4 WPM) [17] propose an ambiguous QWERTY keyboard
on smartwatches in which every key contains two characters. The
two characters in the same key are distinguished by two discrete
levels of force exerted on the screen. A force-assisted scanning
ambiguous keyboard (4.2 – 11 WPM) [18] requires a thumb-sized
interface to exert force and select characters. Other variants include
the thumb interaction within a palm area (6.47 WPM) [19] and the
desktop scenario (33 WPM) [20]. In contrast, we are interested in



the feasibility and optimization of an ambiguous keyboard with
multiple force levels.

2.3 Optimization of Keyboard Layout
Numerous studies propose multi-metric optimizations for keyboard
layouts on smartphones. Bi et al. [21] consider the long-term ef-
ficiency and ease of visual search for soft keyboards. Dunlop et
al. [22] strive to balance the keypad size with the prediction prob-
lem on the semi-ambiguous keyboards of mobile phones. In another
work [23], they present a triple metric optimization for keyboard
layouts considering speed, familiarity, and spell-checking ambigu-
ity. Other works [24, 25] find a Pareto frontier between multiple
criteria such as gesture clarity, gesture speed, the similarity to the
QWERTY keyboard, and comfort level. Our solution shares the first
two criteria proposed by the prior works. However, we introduce
the multiple force levels on a tiny touchscreen as a third criterion
to our optimization. To the best of our knowledge, this paper is the
first work to consider the easiness of force exertion in the evalua-
tion of the keyboard arrangement (optimization) problem for index
finger-to-forearm interaction on miniaturized keyboards.

3 A PILOT STUDY AND DESIGN CHOICES
The keyboard layout, that we define as the required number of keys
and the available characters within a key, is subject to the user’s
ability to control the exerted pressure. Prior works [13, 14] investi-
gate the human ability to control the force level on a continuous
spectrum with visual clues. A recent work by Yeo et al. [26] stud-
ies the accuracy of force-assisted gestures on small touchscreens
such as hold-and-release, and twist-and-pan gestures. In this paper,
we consider text input, which involves swift and repetitive force-
assisted taps on the keys. We regard force-assisted clicks on the
keys as quick and discrete actions.

We examine the user’s ability to distinguish the force levels on a
touchscreen. We recruited ten participants from the local university
campus (ages ranging from 19 to 29, all right-handed). Half of
them owned a pressure-sensitive smartphone, but none had prior
experience in pressure-assisted interaction. We implemented the
experimental system on an iPhone 7 plus equipped with a pressure-
sensitive touchscreen (5.5"). The touchscreen can detect pressures
ranging continuously from 0 to 3.3N, corresponding to 0 to 6.66
units in Swift programming. The range is large enough to be split
into several discrete levels. The system records the accuracy of the
force-assisted clicks. A crossbar serves as visual clues regarding the
target level spanning. Users perform Quick Release [27]to complete
the force-assisted clicks. The zone confirmation is estimated by
the averaged force level of the last 240 ms before the finger is
released [28]. We used square-shaped keys [29] sized of 5.5 * 5.5
mm [8] to maximize the tap speed and minimize the error rate.

The pilot study aims to evaluate the accuracy of users in distin-
guishing several discrete force levels. We focused on the number
of errors when performing force-assisted taps. We considered four
force level configurations: 2-level, 3-level, 4-level, and 5-level. The
2-level, 3-level, and 4-level configurations feature two force ranges
(0N – 0.45N and 0.45N – 3.3N), three force ranges (0N – 0.45N,
0.45N – 0.90N and 0.90N – 3.3N), and four force ranges (0N – 0.45N,
0.45N – 0.90N, 0.90N – 1.35N, 1.35 – 3.3N), respectively. For the

Figure 2: Average error number of Force-assisted clicks.

5-level configuration, each level spans over 0.45N as follows: 0N –
0.45N, 0.45N – 0.9N, . . . 1.8N – 3.3N. We held two sessions on two
successive days. In each session, we asked the participants to press
on each level 10 times in continuous order, for instance, 1-2-3-4-5-
1-2-3-4-5 for the 5-level configuration. In the briefing, the users had
10 minutes to familiarize themselves with the interface. Overall,
this experiment consists of 2,800 trials (140 force-assisted clicks x 2
sessions x 10 participants).

Figure 2 shows the average number of errors per session for the
four configurations. The error bars show the standard deviation.
The average accuracy (and total error / total trial) for 2-level, 3-level,
4-level, and 5-level are respectively 96.25% (15/400), 91.50% (51/600),
55.88% (353/800), 42.50% (575/1000). The decreasing accuracy from
2-level to 5-level aligns with the finding in prior work [17, 30]. The
accuracy drops dramatically for 4-level and 5-level, with errors
representing more than half of the inputs. One-way ANOVA shows
that the force level configuration directly impacts the number of
errors of force click (𝐹3,36 = 309.61, p < .001). Bonferroni and Holm
multiple pairwise comparisons show that the 2-level and 3-level
configurations feature an insignificant difference in the number
of errors (Bonferroni p = 0.5995), while other comparisons display
the significant effect of the force level configuration (p < .001).
Participants had trouble distinguishing two or more levels between
the two ends of the force span. In contrast, the majority of users
(8 out of 10) easily applied a force-assisted click to the two ends
of the force span while feeling confident with the middle level of
3-level configuration. This indicates that the 2-level and 3-level
configurations are more accurate than 4-level and 5-level. We also
notice a slight improvement in each configuration during the second
session as users got accustomed to the task.

Regarding the choice between 2-level and 3-level, we first con-
sider the constrained space on the touchscreen of the Apple Watch.
Each key occupies 30.25𝑚𝑚2 (5.5 mm x 5.5mm), regarded as the
minimal size for comfortable key selection [8]. The 2-level, 3-level,
4-level, and 5-level configurations respectively need 14, 9, 7, 6, and
5 keys to accommodate the 27 characters, corresponding to 28.09%,
18.06%, 14.04%, 12.04%, and 10.00% of the Apple Watch’s screen.
The 4-level and 5-level configurations show a low improvement
in space-saving compared to the 3-level configuration, while their
accuracy is not appropriate for text input tasks. The 2-level con-
figuration needs 55.56% more space than the 3-level configuration,
with the 3-level configuration showing comparable accuracy to the
2-level configuration. Therefore, the 3-level configuration repre-
sents a compromise between accuracy and space-saving. By using
the 3-level configuration, we reduce the size of the keyboard to 16.5



mm * 16.5mm. Considering the implementation environment on
an Apple watch (42.0 mm * 35.9 mm), only 18.05% of the screen is
occupied. In contrast, ZoomBoard[2], SwipeBoard [3], ZShift and
CallOut [5], and SpiltBoard [1] take from 50% to 75% of the screen
area.

Based on the pilot study, one ambiguous key maps to three char-
acters in the 3-level configuration. The user selects the character by
tapping with different forces defined as follows: light tap, shallow
force touch and deep force touch. We ask a follow-up question to
understand the users’ force disambiguation on miniature keys inde-
pendently from the optimized layout influence. All ten participants
ranked the easiness of selecting the target force level in descending
order as follows: (i) light tap (the 1st force level), (ii) deep force touch
(The 3rd force level), and (iii) shallow force touch (The 2nd force
level). The users reflected that the light tap is the usual interaction
on smartphones touchscreens. The deep force touch was easy to
reach because users exerted maximum force to complete the charac-
ter input. The shallow force touchwas regarded as the hardest one as
accurate force between the two thresholds is required. Accordingly,
this paper considers three 3-level and 9-key layouts, as follows.

Alphabetical Multi-tap : The alphabetical layout (Figure 7c)
is commonly available in the feature phones [31], which serves as
our baseline condition. Multi-taps on the key have been employed
to disambiguate three characters with the same key. That is, the
alphabetical multi-tap layout requires the user to perform multiple
taps for the 2nd- and 3rd-level characters. The text entry rate of
the alphabetical multi-tap layout has been measured within the
range between 5.33 and 10.53 Words-per-Minute (WPM) for novices
and experts [32]. However, prior work was conducted on larger
oval-shaped physical keys. Moreover, prior works suggest that text
entry on touchscreens are more error-prone than physical keypads
[33, 34]. Thus, we re-evaluate the alphabetical multi-tap layout on
the miniature keys on a small-sized touchscreen.

Alphabetical Force9: The T9 layout and the alphabetically or-
dered layout are commonly applied for testing new modalities
of text entries [10][11]. Users know the character order instinc-
tively [35], which leads to performance improvement [36] and
better usability [37] for novices. The alphabetical Force9 layout
(Figure 7b) is identical to the T9 layout. However, the key disam-
biguation of this layout is accomplished by selecting the appropriate
force level mapped to the three characters in one key. Force-assisted
disambiguation enables the user to use a single force-assisted tap to
select the 2nd- and 3rd-level characters within one discrete tap. For
example, the word phrase ‘COOL’ needs 12 taps with alphabetical
multi-tap layout and 4 taps with force-assisted T9 layout (4 deep
force touch) if no typing error happens. The situation worsens with
the number of characters in the word phrase, for instance, ‘FORCE-
FULLY ’ requires 27 taps with alphabetical multi-tap layout and 10
taps with a force-assisted T9 layout (1 light tap; 1 shallow force
touch; and 8 deep force touch) if no typing errors happen. Specifi-
cally, the easiness of text entry and text entry speed are influenced
by the Key Stroke Per Character (KSPC) [38]. For instance, Zoom-
board (2.15 KSPC), and Spiltboard (1.85 KSPC) show no significant
difference with alphabetical multi-tap (2.03 KSPC). Thus, we derive
a force-assisted experimental condition based on the T9 layout.

Trimetric Optimized Force9: This layout (Figure 7d) employs
the same disambiguation methods as the Alphabetical Force9 but

Figure 3: Interaction on ambiguous keyboards under a 3-
level force spectrum.

the character arrangement in this layout is optimized by three
metrics. For instance, the first character in the word phrase, ‘F’, is
located in the key of ‘OKF’ (Figure 3), where the user applies a deep
force touch to select the character, with an exerted force of the max-
imum level in the spectrum. The prior works [21, 22] demonstrate
that the optimization of keyboard layout can improve text entry
performance, and our optimization model (Section 4) introduces a
metric to enhance the easiness of force-assisted disambiguation.

4 OPTIMIZATION OF KEYBOARD LAYOUT
The alphabetically ordered keyboard does not consider the con-
straints of the force-assisted configuration. We formulate our opti-
mization problem and propose the corresponding optimized key-
board layout.

4.1 Maximizing the goodness of character pair
The goodness of a character pair in a candidate solution keyboard 𝑘
∈ 𝐾 is subject to two key factors: (i) the finger movement distance
and (ii) the ambiguity for auto-correction.

We first address the finger movement distance. The time to input
a character on the soft keyboard can be divided into two temporal
factors – the time for finger movement from one key to another
and the time for targeting on the character key. The nearer and
bigger a key is, the quicker the character input. For our keyboard
configuration design, we design all keys to be of identical size (5.5
mm * 5.5mm [8]).

We compute the frequencies 𝑎𝑖, 𝑗 of key pairs by building the
Bigram of character pairs in the selected English corpus [39]. Let
𝛼={a,b,c,...,x,y,z,_} be the alphabet we consider, 𝐵𝑖𝑔𝑟𝑎𝑚𝑖, 𝑗 refers to
the probability of the finger moving from character i to character
j. We build a character pairing table of size 727 (27*27), 𝐵𝑖𝑔𝑟𝑎𝑚𝑖, 𝑗 ,
by normalizing the frequencies as 𝐵𝑖𝑔𝑟𝑎𝑚𝑖, 𝑗 = 𝑎𝑖, 𝑗/

∑
∀𝑖, 𝑗 ∈𝛼 𝑎𝑖, 𝑗 .

Zhai et al. [40] indicate that the source of the corpus does not
significantly influence the optimization of the keyboard layout. Our
analysis shows that the most common character pair is E_, where _
means white space, with 102,736,597,698 occurrences in our corpus.
The probability of finger movement between E to _ is 0.0354. The
next most frequent character pairs are ER (𝑃𝐸𝑅 = 0.0311), S_ (𝑃𝑆_ =

0.0291), TH (𝑃𝐼𝑁 = 0.0220), ES (𝑃𝐸𝑆 = 0.0199), and IT (𝑃𝐼𝑇 = 0.0190),
while the least probable character pairing was QJ with a 0.0000005
probability. Next, we normalize the probability to a Bigram score,
𝐵𝑖𝑖, 𝑗 defined as follows: 𝐵𝑖𝑖, 𝑗 =

100∗𝐵𝑖𝑔𝑟𝑎𝑚𝑖,𝑗

𝑚𝑎𝑥 (𝐵𝑖𝑔𝑟𝑎𝑚𝑖,𝑗 ) . For instance, the
most common character pair E_ and ER will respectively get 100.00
and 88.10 points.



Figure 4: (a) Top 60 bi-badgram; and (b) last 60 bi-badgram.

Tapping on a soft keyboard is error-prone especially with small
keys on a constrained interface [8]. Automatic correction algo-
rithms alleviate the issue but they have limitations on checking
valid words. For example, the words ‘hit’ and ‘hat’ are both valid
and the ambiguity issue rises if the characters ‘A’ and ‘I’ are ar-
ranged together [23]. To address this issue, we build the table of
badgrams [23] showing the 676 (26*26) possible character pairs. As
the white space character is used to separate words, we exclude
it from the Badgram. We scan all words of identical length in the
corpus and count the Badgram frequency of the character pair, 𝑏𝑖, 𝑗 ,
by checking whether a character substitution in a word leads to an-
other valid word.We then normalize the frequencies as probabilities
𝐵𝑎𝑑𝑔𝑟𝑎𝑚𝑖, 𝑗 = 𝑏𝑖, 𝑗/

∑
∀𝑖, 𝑗 ∈𝛼 𝑏𝑖, 𝑗 . Our analysis gives the following top

Badgrams: AE with 𝑃𝐴𝐸 = 0.0175, AO with 𝑃𝐴𝑂 = 0.0146, AI with
𝑃𝐴𝐼 = 0.0125, EO with 𝑃𝐸𝑂 = 0.0121, EI with 𝑃𝐸𝐼 = 0.0118. Having
A and E as a neighbouring pair leads to many ambiguous words
such as and instead of end, ha instead of he, bat instead of bet, and so
on. Finally, a normalization of the probability of Badgram results in
the Badgram score, 𝐵𝑎𝑑𝑖, 𝑗 = 100 ∗ 𝐵𝑎𝑑𝑔𝑟𝑎𝑚𝑖, 𝑗/max (𝐵𝑎𝑑𝑔𝑟𝑎𝑚𝑖, 𝑗 ).

Finally, we obtain the satisfaction score of the character pairs,
𝐶𝑃𝑖, 𝑗 = 𝐵𝑖𝑖, 𝑗 − 𝐵𝑎𝑑𝑖, 𝑗 [22]. For combinations including the white
space,𝐶𝑃𝑖, 𝑗 = 𝐵𝑖𝑖, 𝑗 We aim to find the most common character pairs
which are not likely to trigger ambiguity with the auto-correction
software. Figure 4a shows the most preferred 60 bi-badgram and
their satisfaction scores, according to the computed Bigrams and
Badgrams. The 10 most preferred character pairs of E_, S_, ER, T_,
N_, D_, IN, R_, and Y_ are ranked in the top 10. Figure 4b shows the
least preferred 60 ranked bi-badgram and their satisfaction scores.
The 10 least preferred character pair are AV, CI, QU, RU, EW, GN,
CE, J_, Q_, and Z_. The goodness of the character pair configuration,
𝑀𝑝𝑎𝑖𝑟 , can be computed by summing the satisfaction score if the
characters are neighbors, as follows.

O1 : 𝑀𝑝𝑎𝑖𝑟 =
∑

∀𝑖, 𝑗 ∈𝛼

{
𝐶𝑃𝑖, 𝑗 if char i & j are adjacent
0 otherwise

Figure 5: Frequencies of characters in the English corpus in-
cluding white space ‘_’.

Prior keyboard optimizations define adjacent keys by their 2D
geometric proximity. Force9 introduces a third dimension driven
by the force level division. We regard two characters within a key
as adjacent to each other if the associated force levels are contin-
uous. In the alphabetical Force9 layout, character ‘a’ is adjacent
to ‘b’ but not ‘c’ and character ‘b’ is adjacent to both ‘a’ and ‘c’.
Regarding geometric proximity, we consider three separate planes
corresponding to the three force levels. For instance, ‘a’ is geometri-
cally adjacent to ‘d’, ‘j’, and ‘m’, while ‘h’ is geometrically adjacent
to ‘e’, ‘n’, and ‘q’. We normalize the 𝑀𝑝𝑎𝑖𝑟 into 𝑀𝑝𝑎𝑖𝑟𝑛 , ranging
from 0 to 1 by 𝑀𝑝𝑎𝑖𝑟𝑛 = 𝑀𝑝𝑎𝑖𝑟 /1.1 ∗𝑀𝑝𝑎𝑖𝑟_𝑏𝑒𝑠𝑡 , 𝑀𝑝𝑎𝑖𝑟_𝑏𝑒𝑠𝑡 being
the highest scored keyboard and 1.1 an offset index to facilitate the
optimal search.

4.2 Maximizing the familiarity with QWERTY
layout

Most computer and smartphone users are accustomed to the QW-
ERTY keyboard layout. Previous studies show that users learn and
adopt QWERTY-like layouts faster than alphabetical layouts [41].
Among physical and virtual keyboards, the trapezoidal-shaped QW-
ERTY configuration consists of 10, 9 and 8 characters on the first,
second and third row. We make minor modifications to fit all the
characters in the 9-keypad configuration. We compute the familiar-
ity between the candidate keyboard and the ‘starter layout’ (Fig-
ure 6d) by rating the summed Euclidean distance of all the char-
acters 𝑖 ∈ 𝛼 between the geometrical center of a given key in the
candidate solution 𝑘𝑖 to the center of the corresponding character
position in the ‘starter layout’ and 𝑠𝑖 , as the reference of home
positions. The character positioned furthest away from their home
position in the candidate solution will be punished. We evaluate
the summed distance of a candidate solution, 𝑘𝑑𝑖𝑠𝑡 in the candidate
solution set 𝐾 as: 𝑘𝑑𝑖𝑠𝑡 =

∑
∀𝑖∈𝛼 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑘𝑖 , 𝑠𝑖 )2. We obtain the

normalized familiarity score in the below. The lesser the distance
generated from the character alternation, the higher the familiarity
in this metric.

O2 : 𝑀𝑓 𝑎𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦 = 1 − 𝑘𝑑𝑖𝑠𝑡

max∀𝑘∈𝐾 (𝑘𝑑𝑖𝑠𝑡 )

4.3 Maximizing the easiness of force keypad
interaction

Taking into account the user feedback in the pilot study, we arrange
the three characters within a given key as follows: light tap – most
preferred, shallow force touch – least preferred, and deep force touch.



Character layout O1 O2 O3 Sum
Alphabetical (Fig. 7b) 0.824 0.265 0.296 1.385
QWERTY (Fig. 6d) 0.763 1.000 0.370 2.133

Mono-OPT (O1) (Fig. 6a) 0.909 0.3062 0.852 2.067
Bi-OPT (O1,O3) (Fig. 6b) 0.899 0.286 1.000 2.184
Tri-OPT (O1–O3) (Fig. 6c) 0.834 0.548 1.000 2.381

Table 1: Optimization results by genetic algorithm: O1 – O3
are the metrics and Sum are the sum of equal weighting
from 0.00 to 3.00, where higher scores mean better objective
functions, or vice versa.

We assign the most frequent character tier to the light tap force
level. The second most frequent character tier occupies the deep
force touch force level. Finally, the least frequent character tier
belongs to the shallow force touch level as users found it to be the
most difficult to access. We rank the characters 𝐶𝐹𝑖∀𝑖, 𝑗 ∈ 𝛼 in
descending order and pair the three tiers with three force levels,
based on the 27 character frequency analysis in our corpus: 𝑇𝑖𝑒𝑟1
[t, a, s, c, i, p, o, b, m] – light tap, 𝑇𝑖𝑒𝑟2 [f, w, d, r, h, l, e, n, g] –
deep force touch, 𝑇𝑖𝑒𝑟3 [u, y, v, j, k, q, ‘_’, x, z] – sallow force touch.
Our intuition is analogous to a prior work [42] that modifies the
multi-press T9 keyboard by character frequency. We compute the
ease of use of our force keyboard by the summed weighted score of
character-tier matches. We define a reward scheme to give a score
to those configurations if the characters in the candidate solution
are assigned to the matched tiers. As the weighted score is summed
by the 𝐶𝐹𝑖 (no normalization).

O3 : 𝑀𝑓 𝑜𝑟𝑐𝑒 =
∑
∀𝑖∈𝛼

{
𝐶𝐹𝑖 if character i in the matched tier
0 otherwise

4.4 Optimized Force9 Layout
Table 1 shows the optimization results under a Force9 configuration.
We intend to choose a layout that considers all the metrics, and
generate the keyboards by progressively adding criteria, as follows.
The keyboard on the third row introduces the goodness of charac-
ter pair as top-priorities. The layout on the fourth row considers
both the goodness of character pair and the ease of force keypad
interaction. The trimetric optimized layout (final row) considers
all the metrics and scores the highest among all the candidate key-
boards. The results show that keyboard layouts can maintain both
the goodness of character pair and ease of force keypad interaction.
The bi-metric layout reduces the goodness of character pair by 1.1%
compared to the mono-metric layout (Figure 6). However, the ease
of force keypad interaction increases by 17.37%. Similarly, the tri-
metric layout shows a reduction of 8% in the goodness of character
pair, which is a satisfactory trade-off for a 51.38% improvement in
the familiarity with the QWERTY layout and a 17.37% improve-
ment to the ease of force interaction. Figure 6c shows the optimized
Force9 layout. This layout scores 71.9% higher than the alphabetical
layout and 11.6% higher than the QWERTY layout.

In summary, the alphabetical constrained layout neglects the
familiarity with the QWERTY-like keyboard (O2) and the ease of
force keypad interaction (O3), while the QWERTY layout does not

Figure 6: Layout on smartwatches: (a) Mono-metric (O1) op-
timized layout; (b) Bimetric (O1 + O3) layout; (c) Trimetric
(O1 + O2 + O3) optimized layout; (d) QWERTY layout.

satisfy the ease of force keypad interaction. In comparison, the
trimetric optimized layout achieves a comparable score (2.381) to
the QWERTY layout (2.067) with a drastic improvement in force
keypad interaction.

5 EVALUATION
To investigate how the users perform with the three keyboard
layouts, we conduct a Within-Subjects evaluation, as follows.

5.1 Participants, Keyboard and Apparatus
We recruited another 10 participants from our university campus
(Age: 18 – 31). None of them owned a pressure-sensitive smartphone
nor had prior experience with one.

Apple Watch is the only force-sensitive smartwatch currently
available on the consumer market. The experiment was performed
on a smartphone due to current limitations in smartwatches. We
were able to implement a demonstration application; however, due
to API restrictions, this implementation leads to constant back-
and-forths between the force-sensitive keyboard and the parent
interface after a short period of time. In long task assessment sce-
narios, it is inappropriate to ask the users to switch between the
interfaces after every phrase. Due to similar issues, smartphones
are usually employed in the literature [17, 43]. Figure 7a shows the
testing environment, and Figure 7b and 7c illustrate the application
interface of traditional alphabetical multi-tap and force-assisted T9
respectively. We arranged the characters in alphabetical order with
‘_’ as the final character in the 3-level configuration.

The experimental system on an iPhone 7 plus device applies the
force span ranges, as follows. In the force-assisted settings (Al-
phabetical and Trimetric Optimized Force9), Quick Release [27] is
employed to select the characters in the keys. The key confirmation
is computed by the averaged value of force level in the last 240
ms once the finger is released [28]. Before the beginning of the
study, we further calibrated the user-independent cut-off points for
the 3-level configuration to improve the ease of force-click. The
force span ranges were as follows: 1st level (light tap): 0.0000 to
0.3718N, 2nd level (shallow force touch): 0.3719 to 0.9914N, and 3rd
level (deep force touch): 0.9915N up to 3.300N (max). The visual cues
dynamically shows the character mapping with one out of three
force levels in the chosen ambiguous key. In the multi-tap setting,
the participants performed multiple taps to select the characters in
the keys in a regular T9 fashion. We applied a time-out of 400 ms to
recognize the final tap on consecutive character switch [44], with



Figure 7: Testing Environment for Trimetric Optimized
Force9 a) the sitting posture of a participant; A closer look
at the layout on the smartphone touchscreen – b) Alphabet-
ical Force9, c) alphabetical multi-tap, and d) Trimetric OPT
Force9.

visual cues showing the currently tapped character. In all three
layouts, the keys were 5.5 mm x 5.5mm [8], and the swipe gestures
for the ‘Enter’ and ‘Delete’ keys were disabled.

5.2 Procedures
The participants had five minutes to familiarize themselves with
three keyboard layouts: Alphabetical Multi-tap, alphabetical Force9
(Figure 7b) and trimetric optimized Force9 (Figure 6c). The par-
ticipants were sitting during the entire experiment and typed on
the smartphone in a stable and silent environment. We allowed
the users to type with their index finger, and instructed them to
type as fast and accurately as possible. We counterbalanced three
keyboard conditions to alleviate the carry-over effect: 1) Alphabeti-
cal Multi-tap, 2) Alphabetical Force9, and 3) Trimetric Optimized
(OPT) Force9. For each condition, we ran a total of five sessions,
one per day for five days. Each of them requiring the user to type
15 word phrases from the MacKenzie’s phrase set [45]. 1-minute
breaks were done when necessary. Three conditions correspond to
a total of 2,250 words (3 conditions x 15 word-phrases x 5 sessions x
10 participants). After the sessions on the first day and the fifth day,
we asked the participants to complete the NASA TLX questionnaire
about the Force9 layouts.

5.3 User Performance
Text entry rate: Figure 8 shows the character-level text entry rate
(Word-per-Minute, WPM) with the trimetric optimized layout. The
error bars represent the standard deviation. Two-way repeated
measures ANOVA demonstrates the significant effect of Layout
(𝐹2,135 = 25.68, p < .001) and Session (𝐹4,135 = 33.44, p < .001) to the
text entry rate, with the existence of Interaction between Layout
and Session (𝐹8,135 = 6.08, p < .001). The statistical significance
in Session indicates a learning effect on the new layout. Partici-
pants achieved 7.43 WPM (𝜎 = 1.86) on average with the trimetric
optimized layout over the five sessions. The average text entry
rate increased to 10.18 WPM (𝜎 = 1.27) on the fifth day from 5.78
WPM (𝜎 = 0.64) on the first day, showing a 76.01% improvement
in speed. In contrast, the participants on the first day achieved an
average of 5.61 WPM (𝜎 = 0.99) and 6.45 WPM (𝜎 = 1.08) for the
alphabetical multi-tap and alphabetical Force9 layouts. Therefore,
our results show that the initial performance of participants with
the trimetric optimized layout was only 89.58% of the alphabetical
layout. The participants with Trimetric optimized layout (�̄� = 8.22
WPM, 𝜎 = 1.05) took four days to compensate up to 97.64% of the

alphabetical Force9 layout (�̄� = 8.99, 𝜎 = 0.84). On the fifth day,
the performance of the trimetric optimized layout surpassed the
alphabetical Force9 layout by 20.93% (�̄� = 8.41 WPM, 𝜎 = 0.96) and
the alphabetical multi-tap layout by 46.96% (�̄� = 6.92 WPM, 𝜎 =
0.80). 4 out of 10 participants achieved 11.19 – 11.75 WPM in the
fifth session, indicating that some fast-learning participants can
achieve even higher text entry rates. The trimetric optimized Force9
layout outperforms the alphabetical Force9 layout that neglects the
familiarity with the QWERTY-like keyboard and the easiness of
the force keypad interaction. In addition, the two Force9 layouts
significantly outperform the alphabetical multi-tap layout because
of the difficulties in repetitive targeting of miniaturized keys. We
also observe that the participants sometime over-tap on the key
for the 2nd- and 3rd-level characters. Accordingly, the participants
need to tap further to make a correction, for example, character
‘B’ is over-tapped as ‘C’ and the user needs two additional taps to
revert to ‘B’, which deteriorates the text entry rate.

Error rate: Figure 9 shows the Uncorrected Error Rate (UER) of
the trimetric optimized layout, where the error bars represent the
standard deviation values. Two-way repeated measures ANOVA
reveals statistical significance in the effect of Layout (𝐹2,135 = 47.10,
p < .001) and Session (𝐹4,135 = 30.48, p < .001) to the Error rate, in
addition to the existence of Interaction between Layout and Ses-
sion (𝐹8,135 = 8.43, p < .001). Trimetric optimized Force9 achieved
a mean UER of 3.98% (𝜎 = 0.0140) throughout the five sessions. In
comparison, the alphabetical layout achieved the averaged UER
values of 6.35% (𝜎 = 0.0180) for the force-assisted condition and
7.30% (𝜎 = 0.0175) for the multi-tap condition. Alphabetical multi-
tap layout is more erroneous than trimetric optimized layout due
to the difficulty of targeting the miniaturized keys. Compared to
the alphabetical Force9 layout, trimetric optimized Force9 layout
considers the neighbouring positions of character pairs and allo-
cates the most frequently used characters at the two ends of the
force spectrum to improve the character easiness and the overall
text entry performance.

The UER in the trimetric optimized Force9 condition improves
significantly from 5.57% (𝜎 = 0.0179) on the first day to 2.89% (𝜎 =
0.0125) on the fifth day. On the first day, the users’ unfamiliarity
with the new layout leads to the initial high error rate. The errors are
classified into two categories: (1) The user mistypes on the adjacent
keys. (2) The user mistakenly selects a neighboring character inside
an ambiguous key due to unintended force exertion.

On the first day, 60.30% of erroneous characters on the trimetric
optimized layout are caused by the first type of error (Spatial er-
ror), while 39.70% of errors are caused by the second type of error
(Force error). On the fifth day, the overall error rate drops and the
percentage of the first type of error decreases to 32.31%. The users
are more familiar with the trimetric optimized layout and hence
the amount of mistyping on the adjacent keys decreases. On the
fifth day, 67.69% of errors belong to the second type. The overall
error rate improves because the absolute number of the second
type error decreases slightly from 17 (1st day) to 15 (5th day) (�̄�
= 14.84, 𝜎 = 1.90). The participants show an improvement in con-
trolling the force exertion for the new input modality. The average
rate of the second type of error is 1.97% (74 out of 3750 characters)
across the 5-day session. In the Trimetric Optimized Force9 layout,
the most frequent characters are assigned to the two ends of the



Figure 8: Mean text entry speed over 5-day sessions.

Figure 9: Mean uncorrected error rate over 5-day sessions.

Figure 10: User Taskloads in NASA TLX.

3-level force span, i.e. ‘light tap’ and ‘deep force touch’, while the
least probable characters located at the middle position (‘shallow
force touch’) inside the keys, where ‘light tap’, ‘shallow force touch’
and ‘deep force touch’ respectively correspond to 63.09%, 6.54%, and
30.37% of the character occurrences (Figure 5).

NASA Task Load Index Our NASA TLX questionnaire aims
to investigate the user loading to the unfamiliar layouts, so we
record the alphabetical layout on the first day and keep track with
the trimetric optimized layout on the first and fifth days. Figure 10
shows the results of NASA TLX [46]. Student’s T-tests between each
session with the alphabetical layout and the trimetric optimized
layout on the first day show a significantly higher mental load
(p < .001), physical load (p < .001), performance (p < .001), effort
(p < .001), and frustration (p < .001) but no significant difference
in the temporal factor (p = 0.841). T-tests yielded no significant
differences in all aspects between the alphabetical layout on the

Figure 11: Miniaturized Force9 vs a coin of 1-cent USD.

first day and the trimetric optimized layout on the fifth day (p <
.001).We conclude that the participant’s perceived load significantly
decreased over the 5-day sessions. To sum up, the user perception
on the trimetric keyboard improved during the 5-day period. As
the alphabetical order is ingrained in the participants’ memory, the
participants prefer alphabetical order over the trimetric optimized
layout. After practicing the trimetric optimized layout over the 5-
day sessions, their typing performance enhanced significantly and
hence improved user perception and had higher user acceptance
results.

6 DISCUSSION
AlternativeDisambiguation Strategy:One priorwork has stated
that the modality of force is non-deterministic and transient [28]. In-
stead of designing probabilistic algorithms tomanage such transient
modality, we demonstrate an alternative solution by computing a
layout to reduce the likelihood of which the users will encounter
the error-prone selection in the ambiguous keyboard. The optimiza-
tion enables users to achieve more accurate character selection on
the ambiguous keys through a single force-assisted gesture, reduc-
ing from 6.35% UER for alphabetical layout to 3.98% UER for the
trimetric optimized layout (Section 5). Additionally, other existing
works relying on consecutive gestures for one character input could
introduce burden in the text entry tasks. That is, the users have to
memorize the association between the swipes/taps and the char-
acters, such as SwipeBoard [3] (13.30% error rate). In contrast, the
users can understand our layout at a glance, although learning a
new layout is less favorable. Our layout also encourages the users
to perform one discrete press, knowing that the visual occlusion on
the miniaturized keys [47] can degrade the user performance [48].
That is, every step in the multi-gesture interaction could possibly
introduce errors, especially when the users’ fingers cause visual
occlusion, for instance, multi-taps for zooming-in the keyboard and
selecting a key in Zoomboard [2] (14% error rate). It is worth men-
tioning that our solution does not install any addendum sensors on
the finger position for key disambiguation [7].

Force-assisted Text Entry: The average character-level entry
rate of trimetric optimized Force9 reaches 10.18 WPM during the
final trial. We acknowledge that other latest text entry solutions des-
ignated for smartwatches demonstrate a faster text entry rate than
our approach, such as Zoomboard [2] (9.3 WPM, 8th trial) ZShift [5]
(5.4 – 9.1 WPM, depending on key sizes), DriftBoard [4] (9.7 WPM,
10th trial), HoldBoard (10.24 WPM, 12nd trial) [6], SwipeKey [8]
(11.0 WPM, 6th trial), and SplitBoard [1] (19.58 WPM, 2-hour train-
ing). The majority of these works employ deterministic gestures



(e.g. taps, swipes, panning) on the touchscreens of highly famil-
iar layouts such as standard QWERTY (Zoomboard, ZShift, Drift-
Board, HoldBoard, and SplitBoard) and alphabetical (SwipeKey)
layouts. It is important to note that Force9 occupies a unique space
of input modality with transient force, demonstrating the feasi-
bility of 3-level ambiguous keys within a 9-key layout. Notable
text entry systems leveraging force-assisted disambiguation with
index finger-to-forearm interaction are as follows: ForceBoard (12.47
WPM, 5th session) [17] containing 2-level ambiguous keys and 15-
key standard QWERTY layout; and an ambiguous (1-line) scanning
keyboard (4.2 – 11 WPM, without/with word prediction).

Design Implications for Smart Wearables: Force-sensitive
layouts can efficiently shrink the on-screen keyboard size, pro-
portionally to the number of force levels employed. Considering
the limit of the human ability of force disambiguation, a 2-level
force-assisted layout and the 3-level force-assisted layout can re-
spectively reduce the keyboard size by a half to two-thirds of the
original size. As shown in Figure 11, achieving the size as small
as a one-cent USD coin. Also, a rising number of smart wearables
are being launched on the market. Such wearables include smart
rings and smart wristbands, which present a screen real estate even
smaller than smartwatches. Force9 can serve as a promising text
entry approach for these size-constrained smart wearables, where
only a tiny area of the force-sensitive touch interface is available.

Limitations and future works: The current user study shows
that users can become familiar with the trimetric optimized layout
in 5 days and recover full performance on the fifth day compared
to the alphabetical layout. Our work has the following limitations:
a) form-factor difference between smartphones and smartwatches;
b) limited proofs of mobility (e.g. walking postures) and the user
performance with smart watches in the wild; c) a potential dif-
ference in the user text entry rate and accuracy with alternative
force confirmation techniques; and d) impact of arm postures to
the user performances. For future work, we will design a longer
period for user studies to investigate the ultimate performance of
trimetric optimized Force9 and explore the user behavior with the
sub-optimized keyboard layouts, for instance, Bimetric vs Trimetric
layout. Our optimizer computes several keyboard layouts of com-
parable score in O1 and O3 but displays large score variations in
O2. An interesting future research direction would be to explore
the user behavior with these various keyboard layouts, for instance,
Bimetric vs Trimetric layout.

7 CONCLUSION
Force9 serves as an alternative approach to performing text input
for the tiny touchscreen of smartwatches, by leveraging the force-
sensitive touchscreens of smart wearable, significantly reducing the
on-screen keyboard’s size (2.7 𝑐𝑚2.). We believe our work presents
an optimized keyboard layout considering the force dimension, and
enhances the understanding of text entry on 9-keypad ambiguous
layouts. The 3-level layout balances the on-screen size (18.05% of
the screen) and the user’s ability to distinguish the force exertion
exerted (91.5% accuracy). We then optimized the keyboard layout
for our 3-level configuration under three equally weighted metrics.
Accordingly, we compared the performance of force disambiguation
and multi-tap disambiguation under the T9-like layout, in which

our participants achieved 10.18WPM on the 5th day. The prominent
feature of the miniaturize-sized layout enables Force9 to work on
the common wearables such as the spectacle frame of smartglasses,
smart jewellery and finger-worn computers.
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