
What Leads to a Confirmatory or Disconfirmatory
Behavior of Software Testers?
Iflaah Salman , Pilar Rodr�ıguez , Burak Turhan ,Member, IEEE,

Ayşe Tosun ,Member, IEEE, and Arda G€ureller

Abstract—Background: The existing literature in software engineering reports adverse effects of confirmation bias on software testing.

Confirmation bias among software testers leads to confirmatory behavior, which is designing or executing relatively more specification

consistent test cases (confirmatory behavior) than specification inconsistent test cases (disconfirmatory behavior).Objective:Weaim to

explore the antecedents to confirmatory and disconfirmatory behavior of software testers. Furthermore, we aim to understand why and

how those antecedents lead to (dis)confirmatory behavior.Method:We follow grounded theory method for the analyses of the data

collected through semi-structured interviewswith twelve software testers.Results:We identified twenty antecedents to (dis)confirmatory

behavior, and classified them in nine categories. Experience and Time are the twomajor categories. Experience is a disconfirmatory

category, which also determineswhich behavior (confirmatory or disconfirmatory) occurs first among software testers, as an effect of

other antecedents. Time Pressure is a confirmatory antecedent of the Time category. It also contributes to the confirmatory effects of

antecedents of other categories.Conclusion: The disconfirmatory antecedents, especially that belong to the testing process, e.g., test

suite reviews by project teammembers, may help circumvent the deleterious effects of confirmation bias in software testing. If a team’s

resources permit, the designing and execution of a test suite could be divided among the test teammembers, as different perspectives of

testers may help to detect more errors. The results of our study are based on a single context where dedicated testing teams focus on

higher levels of testing. The study’s scope does not account for the testing performed by developers. Future work includes exploring other

contexts to extend our results.

Index Terms—Software testing, cognitive biases, confirmation bias, grounded theory, interviews

Ç

1 INTRODUCTION

CONFIRMATION bias is the cognitive tendency to look for
evidence that confirms, rather than refutes, one’s prior

beliefs [1]. In software testing, confirmation bias occurs
when developers or testers exercise a program with the
data that is consistent with its specified behaviour instead
of inconsistent data [2]. Confirmation bias leads to confirma-
tory behaviour by software testers during testing [3]. For
example, if requirements specification state that ...the phone
number field accepts seven digits from 0 to 9; a consistent test
case would validate the behaviour of the field by providing
in, e.g., 0123456 as an input test data. An inconsistent test

case would validate the field’s behaviour with inconsistent
data, e.g., a - a letter instead of a digit.

The higher the level of confirmation bias, the more adverse
effects it has on software testing [4], [5], [6], [7]. For example,
Çalikli and Bener observed a positive correlation between
software defect density and confirmation bias levels of soft-
ware developers [4], [8]. In their experiments, Teasley et al.
observed that participants designed two to four times more
positive test cases compared to negative test cases1 (i.e., confir-
mation bias) [7]. Similarly, Causevic et al. also found a signifi-
cant difference between the number of positive and negative
test cases designed by the participants in an experimental
study on test-driven development [9]. Salman et al.’s work
also supports these findings, in their experiment, participants
designed significantly more consistent test cases, with respect
to provided specifications, compared to inconsistent test cases
in performing functional testing [3].

Mohanani et al. found the primary studies that investi-
gated the effects and antecedents to confirmation bias in
software testing were all experiments [10]. For example, an
experimental study observed that a lack of logical reasoning
skills is an antecedent to confirmation bias [10]. The authors
identified a need to conduct more qualitative research that
explores how cognitive biases are manifested in the soft-
ware engineering (SE) industry rather than only focusing on
causal relationships. The primary studies on antecedents to

� Iflaah Salman is with M3S Group, University of Oulu, 90570 Oulu,
Finland. E-mail: iflaah.salman@oulu.fi.

� Pilar Rodr�ıguez is with M3S Group, University of Oulu, 90570 Oulu,
Finland, and also with Escuela Tecnica Superior de Ingenieros Informaticos,
Universidad Politecnica deMadrid, 28040Madrid, Spain.
E-mail: pilar.rodriguez@upm.es.

� Burak Turhan is with the Faculty of Information Technology, Monash
University, Clayton, VIC 3800, Australia, and also with M3S Group,
University of Oulu, 90570 Oulu, Finland.
E-mail: burak.turhan@monash.edu.

� Ayşe Tosun is with the Faculty of Computer and Informatics Engineering,
Istanbul Technical University, 34467 Istanbul, Turkey.
E-mail: tosunay@itu.edu.tr.

� Arda G€ureller is with Ericsson, Istanbul, Turkey.
E-mail: arda.gureller@ericsson.com.

Manuscript received 5 Sept. 2019; revised 13 Aug. 2020; accepted 19 Aug. 2020.
Date of publication 27 Aug. 2020; date of current version 18 Apr. 2022.
(Corresponding author: Iflaah Salman.)
Recommended for acceptance by E. Murphy-Hill.
Digital Object Identifier no. 10.1109/TSE.2020.3019892

1. Positive/negative test case is another terminology for what we
call consistent/inconsistent test case. We use the latter one for the
remainder of this paper.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022 1351

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4709-3622
https://orcid.org/0000-0003-4709-3622
https://orcid.org/0000-0003-4709-3622
https://orcid.org/0000-0003-4709-3622
https://orcid.org/0000-0003-4709-3622
https://orcid.org/0000-0002-0618-6104
https://orcid.org/0000-0002-0618-6104
https://orcid.org/0000-0002-0618-6104
https://orcid.org/0000-0002-0618-6104
https://orcid.org/0000-0002-0618-6104
https://orcid.org/0000-0003-1511-2163
https://orcid.org/0000-0003-1511-2163
https://orcid.org/0000-0003-1511-2163
https://orcid.org/0000-0003-1511-2163
https://orcid.org/0000-0003-1511-2163
https://orcid.org/0000-0003-1859-7872
https://orcid.org/0000-0003-1859-7872
https://orcid.org/0000-0003-1859-7872
https://orcid.org/0000-0003-1859-7872
https://orcid.org/0000-0003-1859-7872
mailto:iflaah.salman@oulu.fi
mailto:pilar.rodriguez@upm.es
mailto:burak.turhan@monash.edu
mailto:tosunay@itu.edu.tr
mailto:arda.gureller@ericsson.com


confirmation bias in software testing are limited in provid-
ing an insight into the phenomenon [10]. These findings,
therefore, establish a need of not only to explore more ante-
cedents to confirmation bias but also to understand why
and how it occurs among software testers.

The goal of this paper is to explore antecedents that may
lead to confirmation bias in software testing. The antece-
dents may belong to the working environment, could be
part of the testing process or are personal attributes of soft-
ware testers. We additionally aim to understand why and
how these antecedents lead software testers to confirmatory
behaviour. In order to address our objectives, we apply the
Glaserian grounded theory to explore the phenomenon of
confirmation bias among software testers. We conducted
twelve semi-structured interviews with software testers to
collect our data. They were all employees of the same com-
pany but worked in different projects.

We identified nine antecedents to confirmatory behav-
iour and eight to disconfirmatory behaviour. A disconfirma-
tory behaviour is contrasting to a confirmatory behaviour,
i.e., it may mitigate confirmation bias. Additionally, three
more antecedents were found that lead to both (confirma-
tory and disconfirmatory) behaviours by software testers.
Both refers to the completeness of a test suite2 that may also
mitigate confirmation bias. Experience of testing in general
and particular to the project are two major disconfirmatory
antecedents. They determine the confirmatory or disconfir-
matory behaviour of testers due to other antecedents. Proj-
ect’s testing experience also improves the completeness of a
test suite. Time pressure is a major confirmatory antecedent
for software testers. It contributes to promoting the confir-
matory influence of other confirmatory antecedents. For
example, time pressure promotes the confirmatory behav-
iour of a tester in case of a minor functional change (a confir-
matory antecedent).

Our study contributes by generating a grounded theory
that explains the phenomenon of confirmation bias among
software testers. We also contribute with the identification
of thirteen new antecedents, relative to the existing ones in
the SE literature, that may lead to confirmation bias. We
also provide a list of disconfirmatory antecedents that can
be used by practitioners to alleviate confirmation bias.

Section 2 presents the related work and the conceptual
background. Research Method is detailed in Section 3. The
results are presented in Section 4, and discussed along with
the validity threats in Section 5. Section 6 concludes the
paper.

2 RELATED WORK AND BACKGROUND

Humans rely on simplifying heuristics for judgement of
uncertain events instead of relying on formal logic [11]. These
heuristics usually offer a workable solution, butmay also lead
to systematic errors in decision making, known as cognitive
biases [11], [12]. The concept of cognitive biaseswasfirst intro-
duced by Tversky and Kahneman in the early 1970s, and is
defined as, “cognitive biases are cognitions or mental behaviours
that prejudice decision quality in a significant number of decisions

for a significant number of people” [1, p. 59], [10], [12]. Cognitive
biases are also referred to as judgement biases or decision
biases [13]. The human mind is inherent to cognitive biases
[1], [13], [14]. Kahneman et al. elaborate on why humans are
incapable to recognise their own cognitive biases by referring
to two modes of thinking; system-one and system-two, also
referred to as the dual-process theory [14], [15]. System-one�
intuitive, thinking is fast and effortless, which makes it more
prone to biases [10], [16]. System-two � reflective, thinking is
effortful, intentional and slow, therefore, less prone to biases
[10], [16]. Thoughts are usually determined by system-one,
humans are unaware of it because it is proficient in its opera-
tion [15], [16]. In addition to system-one, noisy information
processing, emotion and social influences can also generate
cognitive biases [10]. Cognitive biases also form biasplexes
because some biases may overlap, interact and reinforce each
other [17]. Therefore, when biases occur it is uncertain which
one is the cause andwhich one is the effect [10].

Confirmation bias is a cognitive bias [1], [11].Mohanani et al.
categorise confirmation bias to the category of interest biases
among the categories defined for cognitive biases in the SE dis-
cipline [10]. Confirmation bias negatively affectsmultiple areas
of SE, e.g., maintenance [18], design [19] and testing [2], [20].
The software testing studies that investigated confirmation
bias use different terminologies, e.g., positive test bias, but
essentially refer to the same phenomenon of confirmation bias
[3], [21].

The earliest (1993� 1994) work exploring the impact of
confirmation bias in software testing was conducted by Lev-
enthal et al. and Teasley et al. [2], [6], [7]. These authors, in
their family of experiments conducted with advanced testers
(senior-level and graduate students in computer science),
observed multiple factors that may cause the manifestation
of positive test bias in functional software testing. The results
showed that a higher level of expertise and completeness of
specifications may cause less positive test bias [6], [7].
Another studied factor, error feedback (the effect of presence
or absence errors), was not confirmed to cause the effect pos-
sibly due to the types of software used in the experiments [6].

The second era of focus begins from 2010 when multiple
studies examined the effects of confirmation bias in software
testing. Çalikli and Bener [5] and Çalikli et al. [22], in their
series of experiments, assessed confirmation bias levels of
the participants by deriving measures from psychological
instruments, Wason’s Rule Discovery and Selection Task. In
an experiment with software engineers and graduate stu-
dents, Çalikli et al. found that company culture affected the
confirmation bias levels [23]. The authors also investigated
the effects of logical reasoning skills acquired through educa-
tion, experience and activeness in testing and development,
job titles (tester, developer, analyst, researcher), develop-
ment methods, company size (large, small and medium
enterprises), educational background (undergraduate) and
educational level (bachelor’s, master’s) [5], [8]. They found
that confirmation bias levels were low due to logical reason-
ing skills and for those participants who were experienced
but inactive in testing or development [5], [8]. The rest of the
factors were not observed to affect confirmation bias levels
except the job title - researcher [5], [8]. Çalikli and Bener
related the lower levels of confirmation bias of researchers to
their critical and analytical skills [5].

2. It refers to the completeness of design/execution in terms of con-
sistent and inconsistent test cases.

1352 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022



In a test-driven development (TDD) experiment, carried
out in the industry, Causevic et al. observed that partici-
pants created more positive test cases compared to negative
test cases [9]. The experimenters also observed that negative
test cases have a higher tendency of finding defects com-
pared to positive test cases [9]. Eldh investigated whether
negative testing reveals ‘real important faults’ of the system
under test (SUT) by applying negative testing techniques
referred to as ‘attacks’ by Whittaker et al. [24], [25]. The
author found that negative testing could not find any major
faults for the SUT, albeit notable ones [24]. Eldh attributed
the findings to the high quality of the SUT and the types of
the executed negative test cases [24].

According to Salman et al., confirmation bias occurs
when a software tester designs relatively more consistent
test cases (consistent with the requirements specification) in
comparison to inconsistent test cases [3]. An inconsistent test
case validates a behaviour of the software application that is
not explicit in the requirements specification or is an out-
side-of-the-box test case, within the context of the SUT [3].
In functional test case design, a consistent test case is an
indication of a confirmatory behaviour; similarly, an incon-
sistent test case indicates a disconfirmatory behaviour on a
tester’s end [3].

Multiple qualitative studies on cognitive biases have
used interview data collection method for grounded theory
and case studies. The objectives were to identify the occur-
rence of cognitive biases in the studied context, antecedents
to cognitive biases and mitigation techniques for cognitive
biases [26], [27], [28], [29], [30]. For example, Cunha et al.
conducted semi-structured interviews for a cross-case anal-
ysis of decision-making in project management [26]. The
authors identified antecedents to multiple cognitive biases,
e.g., the absence of records of the learned lessons from pre-
vious projects, can lead to availability bias3 during decision
making by a project manager [26]. These studies support
the use of interview data collection method and grounded
theory as an appropriate approach for exploring and under-
standing the phenomenon of confirmation bias.

This section shows that the existing literature on confir-
mation bias is limited to controlled experiments only. These
studies tested hypotheses about isolated factors as potential
antecedents to confirmation bias. A qualitative study is,
therefore, required to explore what other antecedents lead
to confirmation bias and how? Our study, by applying
grounded theory, explores other antecedents to confirma-
tion bias in software testing. We also aim to understand
how these antecedents lead to confirmation bias. The postu-
lates generated by our theory can be verified by further
empirical studies.

3 RESEARCH METHOD

We apply grounded theory (GT) as our research method.
The objective of GT is to generate a theory that is grounded
in data [31]. According to Urquhart, “Theory asserts a plausi-
ble relationship between concepts and sets of concepts, and the

resulting theory can be reported in a narrative framework or a set
of propositions” [31, p. 5]. GT is suitable to address our
study’s objectives because of a lack of empirical evidence on
the antecedents to confirmation bias, and why testers mani-
fest confirmation bias is yet unknown; to the best of our
knowledge [10]. Therefore, we try to understand, “What’s
going on here?” [32, p.120]. “Here”, refers to our context of
understanding, why and how confirmation bias occurs. We
apply the Glaserian version of GT because we wanted the
specific research questions to emerge during the data analy-
sis [32]. Our ontological position is positivism. By using the
GT’s inductive theory-building process, we first present the
theory of the phenomenon under study in narrative form in
Section 4. An integrative diagram of the theory is then pre-
sented in Section 5 that explains the inter-relationship of the
derived concepts and categories. We follow the guidelines
by Stol et al. for reporting this study [32].

3.1 Goal

In the context of this study, confirmatory behaviour occurs
when a tester designs or executes consistent test case(s), and
a disconfirmatory behaviour otherwise. In order to have
complete coverage for the SUT, a tester should manifest
both confirmatory and disconfirmatory behaviours. In other
words, a test suite should be complete in terms of consistent
and inconsistent test cases. We refer to it as the complete-
ness of a test suite in this study.

Certain antecedents may lead to a compromise of one
behaviour over the other, e.g., disconfirmatory over confir-
matory. Thus, possibly not only promoting confirmation bias
but also limiting the completeness of a test suite. The objec-
tive of this study is to explore the antecedents to the confirma-
tory and disconfirmatory behaviour of software testers while
performing testing. It is worth to find out antecedents also for
disconfirmatory behaviour because the absence of them may
imply the promotion of confirmatory behaviour, which may
lead to confirmation bias by software testers. We, therefore,
answer the following research questions:

RQ1: What are the antecedents to confirmatory and dis-
confirmatory behaviour among software testers?

RQ2: Why or how do the antecedents influence the behav-
iour of software testers as confirmatory or disconfirmatory?

The objective of the study initially helped define RQ1.
RQ2 emerged during the data analysis, which also, in turn,
refined RQ1. The application of the Glaserian coding techni-
ques enabled us to break down the research question into
specific research questions [31].

3.2 Context, Participants, and Data Collection

We used interviews as a primary data collection method for
our study. Interviews are a qualitative source of data that
perfectly aligns with the inductive process of GT [31].

We interviewed twelve professionals working in a world
leading company in Information and Communication Tech-
nology domain. To maintain anonymity, we refer to this
company as Company-ICT in our study. The Company-ICT
is offering services in networks, digitisation of solutions,
managing IT services and providing solutions in IoT areas.
The Company-ICT develops internal software projects using
Agile software development. The projects have dedicated

3. “Availability bias refers to a tendency of being influenced by the
information that is easy to recall and by the information that is recent
or widely publicised” [10, p.21].

SALMAN ETAL.: WHAT LEADS TO A CONFIRMATORYOR DISCONFIRMATORY BEHAVIOR OF SOFTWARE TESTERS? 1353



testing teams who perform higher levels of testing, e.g., inte-
gration testing, while developers are responsible for per-
forming unit testing. In case of a small project team, one
person may perform multiple roles, despite their job title,
e.g., software architect also performs testing when required.
The company also has dedicated test automation teams that
are not part of any particular project; they automate manual
test suites of the projects. We chose this company for two
main reasons: 1) it acts as a vendor to conduct system tests
on behalf of its business contractors, thus, 2) it has been col-
laborating with academia, international partners in EU and
nationally funded projects for improving its testing process,
test effectiveness andmeasurement.

The interviewed professionals participated in this study
voluntarily. We specified the recruitment of test engineers
or engineers with testing experience to our contact person
at the company because we wanted a sample well aligned
with the goal of our study. The champion approached the
pool of more than fifty software testing engineers through
their respective managers. Twelve engineers positively
responded to the call of the champion for participation. The
sample consisted of 10 test engineers. The additional two
were: a solution architect and a software engineer. The solu-
tion architect was also partly performing activities as a test
engineer, and the software engineer was involved in both
development and testing (as a test engineer). The partici-
pants belong to different projects or domains at the
company’s two sites. We refer to all these participants as
testers from now onward in this study. Based on the charac-
teristics of our participants and set-up of the company, test-
ing performed as a developer is not accounted for in this
study’s scope. We focus on the higher levels of testing per-
formed by testers. It is important to note that our study
does not aim to achieve statistical generalisation with this
sample because, in qualitative research, researchers general-
ise to theory instead of a population [31], [33]. We are
exploring the phenomenon in the defined context rather
than achieving representativeness [33]. However, the issue
of achieving generalisability with a positivist GT approach
is discussed later in Section 5.5.

The format of the interviews was semi-structured. Before
conducting the actual interviews, we piloted the script with
a software engineer from a different company. The objective
of the pilot interview was to improve the wording of the
questions and timing of the session. The interviews were

conducted in October 2017 via Skype through video-calls,
and voice-calls when the video was not viable. On average,
it took 65 min per person to interview. We collected approx-
imately 13 hr of audio (with informed consent) and 127
pages of verbatim transcribed data. One of the authors went
through the transcriptions and audio files again to tally the
content and to ensure that technical terms were correctly
transcribed. The interview script is available as an online
appendix4.

The characterisation of participants is given in Table 1.
The participants have at least two years of working experi-
ence at the Company-ICT, except for two of them. Only one
participant has only 6 months of testing experience other-
wise the average testing experience is approx. 6 years. Two
of the testers are automation test engineers, one is perform-
ing testing both manually and in an automated way, the
rest are all manual testers.

3.3 Data Analysis

The data analysis procedures in GT are systematic [31]. The
applied coding techniques are open coding, selective coding
and theoretical coding. The application of the constant com-
parison method (CCM) to the coding techniques made cod-
ing an iterative process [31], [32], [34]. We followed the
guidelines by Urquhart and Boeije for applying the men-
tioned techniques [31], [34]. An example of deriving two of
the antecedents (past experience, project experience) belong-
ing to a single category, experience, through the applied cod-
ing techniques is illustrated in Fig. 1. The sample raw data
from three interviews, P2, P3 and P10, is shown separately in
the figure. We first applied open coding to the individual
interviews and then filtered it to the relevant concepts, i.e.,
antecedents, per the objective of our study. The open coding
is shown as bold texts in the excerpts. After the application
of CCM within the interviews and among the interviews,
and the application of selective coding, concepts emerged.
The emerged concepts were then grouped under a category,
which is a higher level of abstraction. In the illustration -
Fig. 1, the category is experience, which is one of the identified
antecedents to disconfirmatory behaviour. We also applied
memoing and memo sorting along the process of selective
coding and CCM. It enabled us to classify the antecedents as
(dis)confirmatory and to capture the relationships between

TABLE 1
Participants (Exp. in Testing Does Not Account the Duration of Testing as a Software Developer)

P# Job Title Exp. in Company-ICT Exp. in Testing Tester Type Interview Length

P1 Software Engineer 2 yr 11 mos 6 mos Manual 71 min
P2 Test Engineer 6 yr 7 yr Manual 79 min
P3 Senior IT Test Engineer 5 yr 9 yr 6 mos Manual, Automation 57 min
P4 Senior Software Test Engineer 2 yr 2 yr Manual 80 min
P5 Test Engineer 5 mos 9 yr Manual 58 min
P6 Solution Architect 5 yr 6 mos 12 yr Automation 76 min
P7 Experienced Integration Engineer 4 yr 4 yr Manual 81 min
P8 Integration Engineer 2 yr 2 yr Automation 58 min
P9 Configuration Manager & Test Engineer 4 yr 6 yr Manual 68 min
P10 IT System Expert (Software Test Expert) 3 yr 6 yr Manual 51 min
P11 Test TeamManager 5 yr 6 mos 5 yr 6 mos Manual 53 min
P12 Software Test Engineer 1 yr 4 yr 6 mos Manual 39 min

4. http://doi.org/10.5281/zenodo.3376920

1354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

http://doi.org/10.5281/zenodo.3376920


the emerging concepts. This led us to the integrative diagram
as a result of theoretical coding, which is the third stage of
coding in the Glaserian GT [31], [32]. We used NVivo5 data
analysis tool for coding.

We implement coding validity steps because of our posi-
tivist ontological position, as recommended by Urquhart
[31]. In our context, intercoder reliability refers to, two or
more coders identify the same code (antecedent) and use
same classification (e.g., confirmatory, disconfirmatory) for
the code, when coding independently [35]. Intercoder agree-
ment assurance requires that the coders discuss and recon-
cile their coding discrepancies [35]. We performed multiple
steps to ensure intercoder reliability and agreement for the
identification of antecedents to confirmatory or disconfirma-
tory behaviour.

One of the authors (the interviewer) initially formed a list
of the terms that interviewees used to indicate their confir-
matory or disconfirmatory behaviour during testing. After-
wards, we developed a coding protocol that comprised
coding guidelines and the previously formed list of terms.
One of the authors is experienced in applying grounded

theory coding techniques, two of the authors contributed
with knowledge on software testing and cognitive biases.
One of the authors brought in expertise in software testing.
Therefore, we also developed a unanimous understanding
of confirmation bias and its manifestation in the studied
context. The four authors then performed a pilot coding of a
randomly chosen interview (P2) from the set of twelve inter-
views. The objective was to identify antecedents and classify
them as confirmatory or disconfirmatory, and validate the
coding process. The objective was also to ensure that codes
produced by any single knowledgeable coder would be
reproducible by other equally knowledgeable coders, as all
the authors may not be available to code the data [35].

The joint discussion session, after the pilot coding,
revealed a need for a refined understanding of an anteced-
ent and introduction of more categories for classifying ante-
cedents. As, we noticed that some of the antecedents could
neither be classified as confirmatory nor disconfirmatory,
rather both or unknown - see Table 2. Additionally, we
decided to disregard the data where the interviewee’s
understanding of the terms differed from the theoretical
definitions, e.g., referring functional testing to as non-func-
tional testing. This decision was taken to prevent personal
interpretations on the coder’s behalf because further

Fig. 1. GTcoding mechanisms.

TABLE 2
Data Extraction

Concept Definition

Antecedent Of the testing process (e.g., reviews) OR from the environment (project, organisational) OR personal
attributes (e.g., experience) that leads to themanifestation of a (dis)confirmatory behaviour.

Antecedent Classification

Confirmatory The evidence indicates the promotion or manifestation of a confirmatory behaviour.
Disconfirmatory The evidence indicates the promotion or manifestation of a disconfirmatory behaviour.
Both The evidence indicates the manifestation of confirmatory and disconfirmatory behaviours without

stating the relative preference of one behaviour over the other.
Unknown The effect on behaviour is evident but leading to either a confirmatory or disconfirmatory

behaviour is not explicitly mentioned.

5. https://www.qsrinternational.com/nvivo

SALMAN ETAL.: WHAT LEADS TO A CONFIRMATORYOR DISCONFIRMATORY BEHAVIOR OF SOFTWARE TESTERS? 1355

https://www.qsrinternational.com/nvivo


communication with the participant also couldn’t clarify
those misunderstandings. The percentage of such data accu-
mulated to 0.92% by the end of the data analysis of all
interviews.

Due to the recognition of the issue with antecedents’ clas-
sification, we assessed intercoder reliability6 of our pilot
coding only for the identified antecedents. The agreement
between (coder1, coder2) was 54%, (coder1, coder3) was
39% and (coder1, coder4) was 46%. We assessed agreements
in pairs with coder1 because it was decided that coder1
would code the rest of the interviews. In order to improve
the intercoder reliability measure, we performed the follow-
ing steps.

The other three coders then revised their identified antece-
dents and reclassified them according to the classification pre-
sented in Table 2. It was followed by one-on-one discussions
with coder1 on the identified antecedents and their classifica-
tion. For example, between coder1 and coder2; a code was
defined for higher authority involvement in deciding the den-
sity of issues to deliver a patch with. After analysing the
excerpts and context, it was decided that this does not qualify
as an antecedent because it is not influencing a tester’s behav-
iour during testing activities. Later, coder3 and coder4 also
agreed to that decision. These discussions provided input to
coder1 to revise the coding of the P2 interview. Coder1 then
coded the rest of the interviews in three iterations. After each
iteration, we held a joint discussion session in which confu-
sions regarding the codingwere resolved. For example, a con-
fusing excerpt that was coded for the antecedent change
request was resolved to illegible evidence towards any of the
classification: “Actually, we make a task separation between us
[with his colleague] before making test cases, and we start to create
test cases of our products. And, then, we come together and we try to
question our test cases, we try to reveal the solution documents
together and we try to understand, actually, we have a short [tech-
nique name]. We are trying to compare our test cases with these
objectives, smart. And, we are trying tomeet the requirements which
we gathered. There is no specific thing like we do. We’re just dis-
cussing.” - P7. This was an answer to a question about the par-
ticipant’s discussion with their colleague, which did not
indicate any effect (per Table 2) on P7’s behaviour. In each
iteration, coder1 also shared the classification of the excerpts
of the emerging concepts (antecedents) to be validated by
others. These steps ensured that coder1’s bias was minimised
and coding is reproducible.

4 RESULTS

We have identified 20 antecedents, which are classified into
nine categories. First, we define the category, then we intro-
duce the respective antecedents with the description and
evidence of why and how they influence the dis(confirma-
tory) behaviours. The definitions of the formed categories
are based on the collected data. Table 3 summarises the
answers to RQ1 and RQ2. The columns C (confirmatory), D
(disconfirmatory), B (both) and U (unknown) present for
how many participants the respective antecedent influenced
as C/D/B/U for their behaviour. The Total column presents

the total number of participants and the total number of
excerpts that provided the evidence for C/D/B/U for the
respective antecedent as xðyÞ. It is important to note that x
is not a sum of the counts reported in the previous columns
because in a few cases the same interview provided multi-
ple evidence. Why & How (RQ2) summarises how the ante-
cedent influences the behaviour. The example evidence
excerpts presented in this section are revised from gram-
matical and comprehension perspective because the inter-
viewees were not native English speakers.

4.1 Experience

Experience refers to the knowledge of an individual tester
that they acquired by working in either a different, similar or
the same project, roles and company, and the application of
this knowledge for software testing. The data analysis
showed that experience mainly leads to disconfirmatory
behaviour. However, it also promotes a confirmatory behav-
iour, which results in improved completeness of a test suite.

4.1.1 Past Experience

Past experience refers to the experience of the participant in
general or they did not associate it with any particular proj-
ect domain. It promotes disconfirmatory behaviour by
designing inconsistent test cases. For example, “You are mak-
ing the happy path [consistent scenarios] and then you are making
some negative scenarios, that are functional or communicated by
the customer. And then, you think of the need for extra test cases,
which are not written [in specifications], but you should figure
them out based on the decision points [of the functionality] or
other similar conditions that you have learned from your past
experience... Most of such test cases are failure cases [inconsistent]
because the happy cases should be [written] in the documents.” -
P3. In this evidence extra test cases contextually refers to
inconsistent test cases. Past experience also results in the
occurrence of both behaviours because an experienced tes-
ter knows how to approach an SUT, as explained by P7: ”...
the more you do testing, the more you get experienced, and the
more you know how to approach a product or a system... I can say
both [consistent and inconsistent]. I cannot comment about the
preference of one over the other”.

4.1.2 Project Experience

This experience is acquired either by working in the same
project over the years or in the same domain, which may
not be limited to the Company-ICT. Project experience ren-
ders an enhanced perspective on the project due to which
disconfirmatory behaviour manifests. This is explained by
P10: “I use my experience in this project because I know the cus-
tomer, I know the domains in [customer’s company name], and it
gives me many advantages because I can view the system, when it
starts and runs...”; it helps in designing more “Exceptional
paths [inconsistent tests]” - P10. This antecedent also
increases the completeness of the suite by prompting both
behaviours, e.g., P9 stated: “I joined this project when it started
four years ago. As the project scaled up over the years from a little
code base, little tests; I learnt the project well all along. Due to
that knowledge, I can see [visualise] the end-to-end part of the
[domain name]... 90 percent of the times, I can know, yes this is

6. Percentage of the total number of common antecedents divided
by the total number of identified antecedents.

1356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022



an exceptional [inconsistent], and yes this is a happy path [consis-
tent], and it is important to test”.

4.2 Priority

It relates to the priority of a functionality and user stories or
OS platform (e.g., Android). Our data informs that priorities
are defined by customers, roles higher in a hierarchy to a
software engineer (e.g., product owner, project manager, test
manager) and it is based on the functionality (e.g., finance). If
the higher management or customers are not setting the

priority, then testers themselves define them based on their
experience, i.e., past experience or project experience.

4.2.1 High Priority

In the context of automating manual test suites by an auto-
mation engineer, higher priority scenarios take precedence.
According to the data, testing of consistent scenarios usually
have a higher priority. However, if a functionality or particu-
lar scenario is a high priority, then it also leads to both behav-
iours. P6 explains this in the context of automating a manual

TABLE 3
RQ1: Antecedents and Evidence, RQ2: Why and How

Antecedent (RQ1) Why & How (RQ2) C D B U Total

Experience
Past Experience Experience in testing enables how to approach the system, and

which particular functionality checks to test for.
0 3 1 0 4 (6)

Project Experience It enables testers to visualise the end-to-end functional flow of a
system, and a good learning of the customer domain.

0 5 4 1 10 (28)

Priority (of a functionality, user stories or platforms)
High Priority Consistent test cases have higher priority, but inconsistent test

cases also acquire an equal priority in case of high priority
scenarios, of a certain functionality.

2 0 2 0 4 (11)

Medium or Low Priority Testers give either less or no consideration to the designing or
execution of inconsistent test cases.

2 0 0 0 2 (3)

Requirements
Ambiguous Requirements Impedes correct and complete test case designing, which results

into the design/execution of mostly consistent test cases.
3 1 0 2 6 (14)

Clarifying Requirements Clarifying ambiguous requirements leads to the designing of
both consistent and inconsistent test cases.

0 1 3 2 6 (17)

Incomplete Requirements Confirmatory because it limits the testers to test only what is
minimally specified.

1 0 0 1 2 (2)

Functionality Retesting
Production Bug Fix Testing the fix first is confirmatory that is followed by the testing

of relevant inconsistent cases and other consistent test cases.
0 1 3 2 6 (10)

Change Request Both behaviours occur while designing/executing cases for a
change request.

1 0 5 1 7 (8)

Change/Fix Size Minor change is confirmatory due to its minor impact on the
system. Both behaviours occur in case of a major functional
change.

3 0 2 0 3 (9)

Test Suite Reviews
Internal Party Review When performed by members of the same project, it is

disconfirmatory, and also enhance the completeness of a suite.
1 7 3 2 6 (26)

External Party Review By customers who define which devices to test, and set
priorities. Therefore, only adhering to those priorities is
confirmatory.

1 0 0 1 1 (9)

Automated Test Suite Review Manual testers review to validate conformity with the manual
suite. They are not expert in automation to assist with the
handling and coverage of inconsistent test cases.

1 0 0 2 3 (9)

Testing Mode (manual or automated)
Automated Testing Confirmatory because it is difficult to automate every

inconsistent test case and to handle unexpected results.
2 1 1 0 4 (5)

Test Execution Feedback
Detection of Errors It leads to further testing to find more errors, and sometimes the

addition of more inconsistent test cases.
0 5 0 0 5 (7)

Absence of Errors Disconfirmatory because it leads to rethinking of the test
approach, and assessing a test suite from a different perspective.

0 4 0 0 4 (7)

Time
Time Pressure Consistent test cases are prioritised because they ensure the

behaviour of the SUT per the documented specifications.
4 1 3 1 9 (27)

No Time Pressure Leads to more testing e.g., through exploratory testing and the
execution of more inconsistent test cases.

0 1 0 2 3 (8)

Perspective Change (testing from a changed perspective)
Developer & Tester Disconfirmatory because testing as a tester, compared to

development, changes and broadens perspective for the SUT.
0 1 0 0 1(7)

Complement Testing A tester executing test cases that were previously executed or
designed by another tester promotes disconfirmatory behaviour.

0 2 0 1 3(5)

SALMAN ETAL.: WHAT LEADS TO A CONFIRMATORYOR DISCONFIRMATORY BEHAVIOR OF SOFTWARE TESTERS? 1357



suite that they, then, automate consistent and inconsistent
test cases with equal priority: “...It should be definitely both
[consistent, inconsistent]. When we are talking about the top prior-
ity test scenarios or the negative scenarios [inconsistent], it’s
almost equally important like a happy path [consistent] test
scenario.” Our analysis further suggests that high priority
testing may not lead to an enhanced coverage; we discuss
this in Section 5.

4.2.2 Medium or Low Priority

If functionality is not high in priority, then it could be a
medium or low priority. In this case, inconsistent test cases
receive either less or no consideration in designing/execu-
tion, which results in a confirmatory behaviour manifesta-
tion by a tester. P9 explained it as: “If a function is important,
all the happy path [consistent] and the exceptionals [inconsistent]
are also important. But, some functions may not be very impor-
tant, and we can skip the exceptional scenario for not important
functions” - P9.

4.3 Requirements

This category refers to the documents that serve as require-
ments specifications for testers to prepare test cases. It
includes technical documents, business rules, functional
documents, high-level design documents and low-level
design documents.

4.3.1 Ambiguous Requirements

Ambiguous requirements are such requirements that are
either not well defined or are difficult to understand by the
testers. According to P2, such requirements affect the activity
of preparing test cases because testers have to ask for clarifi-
cations; “...these requirements might be not very clear, sometimes
you might need to ask more questions about the documents, to be
able to make all your test cases clear and comprehensive enough, to
be able to test the system” - P2. Other participants’ data indi-
cates that ambiguous requirements promote confirmatory
behaviour. Testers design more consistent test cases because
it helps them in understanding the requirements well to
design inconsistent test cases, afterwards. Otherwise, they
only design and execute consistent test cases based on their
own understanding. For example, “If I do not understand
what’s going on [in requirements], then I’m not able to write test
cases... I code [design] happy [consistent test cases] just because
I’m not clear with what they expect me to do [test]. And, I’m not
sure what system does, so I go with happy path and if products do
not crash, then I say it’s okay” - P12.

4.3.2 Clarifying Requirements

Clarifying requirements is an activity that is performed by
testers to clarify ambiguous requirements to improve the test-
ing of a functionality. Testers clarify the requirements with
customers, product owners, developers or project managers.
It usually leads to the completeness of a test suitewhen testers
manifest both behaviours. P1 states this as: “I don’t know
[understand] all of them [the requirements]. I will exchangemy com-
ments with customers, whether I am understanding them right, or
maybe it’s not required [a particular functionality], it’s not end-

user’s behaviour. I will give comments about all of them... Yes, both
[consistent and inconsistent], I will check all of them”.

4.3.3 Incomplete Requirements

This antecedent is different from the above antecedents
because it refers to minimal requirements. In other words,
requirements may be ambiguous but may not lack details on
the required functionality to be tested. For example: “If no
information [is available] about the task. For example, they [author-
ity figure for preparing the documents] wrote only a single sentence
about a problem’s fix on the production, and developers fix it. It’s
sometimes difficult for the tester to understand [the functional fix],
what did he [the developer] do, and what was the real problem” -
P10. The incomplete specifications, in case of a production
fix, make it difficult for a tester to perform proper testing
because they lack details on the functionality. It promotes
confirmatory behaviour because testers, test per the minimal
information that limits testing inconsistent scenarios. As fur-
ther explained by P10: “it will affect, what I don’t know [the
requirements], so it affects my test cases... Exceptional or failure
ones [inconsistent]. Because I don’t know the details. Only focus on
the happy paths [consistent], maybe I miss [testing] something”.

4.4 Functionality Retesting

Retesting refers to retesting a module or functionality after
its re-implementation, in case of a reported production bug
or a functional change request. In addition to retesting of a
particular fix or change, it is also done for the relevant
impacted functionalities of the SUT.

4.4.1 Production Bug Fix

The data analysis showed that both behaviours occur due to
retesting a fix of the production bug. After validating the
fixed scenario, the tester begins to test the inconsistent sce-
narios of themodule, which is followed by the testing of con-
sistent scenarios. For example, P10 stated: “First failures [that
failed], and then check the happy paths... I also ask the developer,
“which code did you change and which cases does it affect?”. First
we talk, then I check the failure one, and [then] check the success
path”. Per this evidence, the tester first validates particularly
a fixed scenario. It is a confirmatory behaviour because they
are confirming the communicated (serving as a requirement)
functional flow. Then, a disconfirmatory behaviour when
they validate the other relevant inconsistent scenarios, which
is followed by the testing of other confirmatory test cases.

4.4.2 Change Request

Retesting a module, in case of a change request mostly leads
to both behaviours. For example in the context of automa-
tion testing, P8 stated: “We should delete some methods, and we
should have some other control points, and add some other mod-
ules or functions to the automation framework... Both. Happy
[consistent] paths and exceptional [inconsistent] and failure
scenarios”. On further enquiry, the participant explained
that first they prefer to test consistent scenarios.

4.4.3 Change/Fix Size

The size of the implemented change or a bug-fix also influ-
ences the behaviour of testers. In case of a minor change,

1358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022



testing is confirmatory and limited to a particular functional-
ity. For a major change, the manifestation of both behaviours
was reported. A type of a major and minor change is elabo-
rated by P5 as: “for example some text box or button is not in the
right place on graphic user interface. Either it is there or is not visi-
ble. So, I just test this because it’s a makeup thing, just an interface
issue. It’s not a major big problem. But, if I cannot make any stock
or product transfers, i.e., main function is not working at all, of
course, that means that all product transfer function will be tested
from the top to down”. However, time availability also plays a
role in retesting: ”if you don’t have much time; e.g., if you have a
small change, it’s not affecting all the release, all the software out-
come, if it doesn’t affect every part of your platform, you can just
run a quick happy path [consistent] test cases” - P2.

4.5 Test Suite Reviews

It is the review of test suites that are designed by testers, prior
to suite executions, to ensure the completeness of the suite
with respect to the SUT. The antecedents of this category
indicate two types of reviewers, which promote different
kinds of behaviours among testers based on their review-
feedback.

4.5.1 Review By Internal Party

These reviews are conducted by the roles who are employees
of the Company-ICT. They may be part of the same project
or team, i.e., project manager, solution architect, product
owner, team lead, development lead, test expert or fellow
testers, or testers from other projects. The reviews frommem-
bers of the same project/teammostly promote a disconfirma-
tory behaviour by recommending to accommodate more
inconsistent test cases. P11, who also reviews others’ test
suites, stated: “Generally they forget exceptionals [inconsistent]
scenarios because they argue that it works. But, I check and [fore]
see other different bugs. And generally I suggest, “You can write
some exceptional scenarios; [e.g.,] sometimes bad things [situa-
tions], sometimes field checking; it’s important” - P11. According
to P3, reviews enhance the completeness of the suite: “When I
am adding, most probably, you are not adding the happy [consis-
tent] cases. When you are sending it for review, a very small part,
maybe five per cent that they are arguing or asking for an extra
[test cases]”. On enquiring the type of ‘extra’ cases, P3 replied:
“It’s changeable because they are giving review, which you forgot
about [test cases]... Both [consistent and inconsistent]” - P3. The
data analysis also shows that reviews performed by testers
from other projects are confirmatory because they are not
knowledgeable about the functionality. It limits their per-
spective that could promote disconfirmatory behaviour.

4.5.2 Review By External Party

External reviews are performed by customers. The purpose
is to get their feedback, if the suite meets their expectations,
to continue with the test execution. Per P2: ”We have shared
this with customer, if these test cases, test suites meet their expect-
ations to be able to test the system... We test on mobile platforms,
e.g., iPhone, iPad, Android tab, Android phone. So customer can
say, it is enough for us to execute the tests only one Android
device, and only one iOS device. This is enough. So, “Continue
your tests on the set top box, which is more important for us.”
They can say this. So, we have to consider this”. The review

from customer influenced the coverage, which in this case is
limiting testing to certain devices. Additionally, the feed-
back also defined priorities for testing. It is confirmatory
because the tester is confining the testing only to the cus-
tomer’s feedback, per the available evidence.

4.5.3 Automated Test Suite Review

Reviews of automated test suites are internal reviews. How-
ever, it is different from internal and external reviews
because those are performed only for manual test suites.
Contrary to the range of roles involved for manual suites,
automated test suites are reviewed only by manual testers.
The major reason for this is, automated suites development
is based on manual suites. P6 stated this as: “For the main
sources are manual test scenarios. We are expected to automate
the manual test scenarios as it is, the same steps, the same verifica-
tion points, the same databases... we have only the manual tests
and they just want us to simulate it”. The manual testers usu-
ally assess and compare the functional flow of the auto-
mated tests with manual tests. Therefore, the quality (the
level of completeness) of manual suites gets transferred to
the automated suites, as P3 stated: “you are simulating the
manual testing, so you should take a proof review on the manual
testing; It’s OK or not”. P6 explained: “the common observa-
tions they [manual testers] are giving are observation on the
happy path [consistent] test scenarios. But, the exceptional [incon-
sistent], there are some experienced test engineers, giving some
feedback about the negative [inconsistent] scenarios, but this is
less, maybe one in a ten” - P6. This evidence cannot be consid-
ered as Both because the frequency of feedback that can lead
to the addition of inconsistent test cases is considerably low.

4.6 Testing Mode

This category refers to the mode of testing, i.e., manual test-
ing or automated testing.

Automated Testing

Automated testing is the testing performed in an automated
way using tools, e.g., Visual Studio, Selenium. Test automa-
tion engineers develop automation scripts that run the tests
in an automated way. In comparison to manual testing,
automated testing leads to confirmatory behaviour. It is
because of the difficulty to code inconsistent test cases and
automation tool’s limitations in this regard. For example,
P3: “Automation is more [about] happy cases, you can say that.
Of course, it can handle negative [inconsistent] test cases, but
with manual testing, negative cases or unexpected times or results
can be handled better. With automation test cases it’s more diffi-
cult to handle unexpected results”. Also, P8 complemented to
this; ”... from manual testing opinion you should test the whole
thing. Because you are a user on the computer, you are using that
computer with your hands, with your mouse. You can do any-
thing in that time. But in automation testing, you should write a
code. This is not the natural way. This is about the priority of test-
ing, I think. The automation testing mainly focuses the happy
paths”. According to P2, a tester can benefit from the confir-
matory nature of automated testing due to its fast execution
time. ”If you automate 200 cases... you can run them e.g., in one
hour or two hours. Rather than spending a day or two man-days.
So, this shows you a general outcome, result of this. And you can

SALMAN ETAL.: WHAT LEADS TO A CONFIRMATORYOR DISCONFIRMATORY BEHAVIOR OF SOFTWARE TESTERS? 1359



review it. You can say, “Okay let’s now concentrate on these failure
[inconsistent] cases because we haven’t automated [testing of] these
cases and these features. Let’s focus on them.” This gives you a good
time to focus on other features, areas and failure cases” - P2.

4.7 Test Execution Feedback

This category refers to the effect of the results of a test suite
execution especially when a module is tested the first time.
The data analysis has revealed that detection of errors and
also an absence of errors lead to a disconfirmatory behav-
iour by testers.

4.7.1 Detection of Errors

This antecedent refers to the situation when a test case failed
due to the presence of error. It is disconfirmatory because it
leads testers to find more errors in the SUT by performing
further detailed investigations. In case of P9 it leads to
exploratory testing, i.e., performing more manual testing for
finding errors, hence, a disconfirmatory behaviour: “When I
see a bug, I first open a trouble report... And after that I think, [if]
there is a bug, maybe other scenarios are also troubled. And also, I
do free tests [exploratory testing] at that part, at that time maybe...
if there is one bug there must, there can be other bugs. And, I inves-
tigate that part, and sometimes I get [detect] other bugs, sometimes
not” - P9. It also leads to the addition of more test cases, as P5
stated: “if I find a new important bug, I go deeper, and I also won’t
let the test cases [go] unseen. I still run the cases, and if I find some
exceptional cases that I couldn’t consider before, I know they’re
exceptionals, I go deeper, too... Maybe I didn’t consider [it] before
[test cases], and it’s also not written in the requirements, So I write
it down”. This antecedent’s influence on the behaviour is
observed only for manual testers, not for automation test
engineers - discussed in Section 5.

4.7.2 Absence of Errors

This is a situation when all test cases of a suite pass, i.e., no
error is detected by the suite for the SUT. This promotes a
disconfirmatory behaviour among testers because it makes
them curious over the situation and to rethink of their test
approach. Per P10: “I always think, I’m doing something wrong.
“How [could] they develop with no bug?”. P2 explains this situ-
ation as: “If you can’t find some issues with your test set, there
might be issues in your test set approach. So you should be able to
consider error cases [inconsistent], failure cases [inconsistent],
what’s going on. Go over your documents, test sets, and then
detail some of them, change your mindset, how you created them”.
Hence, this situation also prompts testers to force the sys-
tem from a different perspective to reveal its errors. In case
of automation testing, testers execute a few test cases manu-
ally to reassure a 100 percent pass result. “Green is kind of a
very relieving colour, and when you see green all over, you feel
very happy. Of course, we are investigating, we are just executing
manually a couple of test scenarios. Let’s see [if] it really passed
all the test scenarios” - P6. It is a disconfirmatory behaviour
because it led the tester to investigative more rather than
being contented by the test results of automated suite.

4.8 Time

This refers to the available time for two main testing activi-
ties: test suite designing and test suite execution.

4.8.1 Time Pressure

It is an insufficient time availability from testers’ perspective
for performing testing in the situations when they do not
arrange overtime. The data analysis shows, in this situation,
most testers manifest confirmatory behaviour because they
prioritise to validate that SUT accomplishes the specified
functionality. Inconsistent test cases fall second because they
validate implicit functionality, i.e., not explicitly mentioned
in the specifications. P10 stated: “I want to test more but I have
a limited time. I only check the happy path [consistent] or, one or
two exceptional [inconsistent] test cases. But I think, I should test
more and [also] check the other exceptional ones. But I don’t have
time, and should start [testing] the other project. So, it limits my
execution, I think. Exceptional test case execution”. Those who
were observed to manifest both behaviours, for most of them
a confirmatory behaviour occurred prior to a disconfirma-
tory behaviour. For example, “If I have really a short time, really
short time, of course, first I need to see the system is working cor-
rectly, the happy path [consistent]. Whether the happy path passes
right or wrong. I mean, then exceptional cases [inconsistent] of
course. But I have to tell you that happy cases don’t take that long
time, just pass away” - P5. Testers who first manifest a discon-
firmatory behaviour, they compromise on the testing of con-
sistent scenarios. “So for urgency [time shortage], I first start
with exceptional [inconsistent] scenarios. And for urgency some-
times, you make exploratory tests, based on our experience of the
product... If it’s enough urgent, you sometimes, trust the develop-
ment team that they should have developed these according to
requirement” - P7.

4.8.2 No Time Pressure

No time pressure refers to two situations: 1) when testers
are finished before the deadline, or 2) testers have enough
time to perform testing, i.e., without doing overtime.
According to P2: ”You should make enough time to run even
different tests. Sometimes, we have free time and we don’t base it
on any test set [designed tests]. We just start testing a mixture
of functional and non-functional tests”. In this case, the tester
is performing exploratory testing. The influence on the
behaviour is not known because it is not clear, whether
they execute consistent test cases or inconsistent ones.
However, it definitely leads to the execution of more test
cases. However, P9’s behaviour is disconfirmatory in this
regards: ”... if I have enough time, I also execute free tests... not
related with any [designed] test cases. Maybe there are [exist]
test cases, but I do not know... I also do [test] the exceptional
[inconsistent] cases. For example, in this example [case], maybe
more of them will change the status [of the feature] four or five
times, but when I test, I change it [the case]”. P9 also referred
to the execution of exploratory testing that consists of
inconsistent tests. The test case, in this evidence, is validat-
ing the status’ feature for the situation for which a test
case may not already exist.

4.9 Perspective Change

The change in perspective occurs either due to a change of
role or testing the functionality that was previously tested
by another tester. The antecedents of this category pro-
mote disconfirmatory behaviour because of the changed
perspective.

1360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022



4.9.1 Developer and Tester

A software engineer working in two roles, as a developer
and tester in the same project, also influence their behav-
iour. P1 explained this as: “when I am a developer, I just focus
on happy [consistent] paths, maybe one risky [inconsistent] case
but mainly happy path to check it out if it is okay. But when I am
a functional tester, I will see every risky point. If I am an integra-
tion tester, I will force every possible error from the integration
part because it’s the most risky thing in our environment. So it
changes my approach”. After a confirmatory behaviour in test-
ing as a developer, testing as tester changes and broadens
their perspective of the SUT, which leads to a disconfirma-
tory behaviour. However, P1 related the reason for discon-
firmatory behaviour in testing to their past experience.

4.9.2 Complement Testing

This antecedent refers to two situations: 1) a tester executing
test cases, designed by another tester, and 2) a tester, testing
the functionality that was tested by another tester in the pre-
vious test cycle of the same release. P12 explained the first sit-
uation as: “We do not actually check the entire cases because our
test lead separates the things that we do. So we are seven people and
two or three of them write the test cases and the other three or four,
run the cases. And if we find something that was not included in
those cases, we add it”. On enquiring further, they mentioned
that the missing cases are usually inconsistent test cases.
Hence, the execution of the suite that was designed by
another tester prompted a disconfirmatory behaviour
because it enabled a different perspective to test the same
functionality. This antecedent also leverages improved
defect detection, e.g., P4 stated: “I run the [functionality-1
name], [functionality-2 name], [functionality-3 name], for exam-
ple. Other LSV [system testing] cycles, my other friends run [func-
tionality-2 name], [functionality-1 name] and [functionality-3
name]. If I miss something, miss a failure, miss defects, maybe she
finds it. Therefore, we have little defects”.

5 DISCUSSION

We first discuss the classification of the identified antece-
dents and present the integrative diagram, followed by their
comparison with the antecedents from the existing litera-
ture. The section also presents the implications for research
and practice. Finally, the threats to validity are discussed.

5.1 Classification of Antecedents

Based on the results, we can classify the antecedents from
three aspects: confirmatory, disconfirmatory, and both, that
represents the test suite completeness perspective. The cate-
gories: test execution feedback and perspective change, and the
antecedents: no time pressure and past experience are discon-
firmatory. The antecedents: medium or low priority, incomplete
requirements, external party review, automated test suite review
and automated testing are confirmatory antecedents. Ambigu-
ous requirements can also be classified as a confirmatory ante-
cedent. The rest of the antecedents, in addition to providing
the evidence for confirmatory or disconfirmatory behaviour,
also provide evidence for the manifestation of both behav-
iours. It is important to note that both may not suggest a
complete test suite, albeit an improved suite. For example,

the antecedents: change request and clarifying requirements
mainly lead to improved completeness of a test suite. Pro-
duction bug fix leads to an increased execution of the test
suite because it is in the context of retesting, as indicated by
the antecedent’s category. For the two antecedents, high pri-
ority and time pressure, both does not suggest completeness
of the test suite in terms of design, and also a complete exe-
cution of a test suite. It is detailed later in this section. The
antecedents: project experience and internal party review, in
addition to the promotion of disconfirmatory behaviour,
also improve the completeness of the suite. Change/fix size is
a special case because, for major change/fix, it is both the
behaviours, otherwise it is confirmatory.

Despite the proposed classification of the identified ante-
cedents, our data suggest that exclusive classification of
these may not be practical. If an antecedent leads to confir-
matory behaviour for some testers, it may also lead to dis-
confirmatory behaviour for other testers, which could be
pertained to certain factors, e.g., personality elements. This
issue and other particular aspects related to the identified
antecedents are detailed further.

General and Specific Behaviours: The data informs that
the general behaviour of testers is to first manifest a confir-
matory behaviour, i.e., designing of consistent test cases and
then a disconfirmatory behaviour, which is designing of
inconsistent test cases. It happens because they identify
inconsistent test cases based on consistent test cases. The
automation engineers reported the same behaviour sequence
when they automate the manual suites, though they only
simulate the manual flow. In addition to designing the test
suites, test execution also follows the same course, i.e., first
confirmatory and then disconfirmatory.

A few participants manifest the opposite sequence of
behaviours - specific behaviour. They manifest disconfirma-
tory attitude prior to confirmatory attitude, which is per-
tained either to their experience, particular nature or
assumptions (developers must have rightly implemented
the consistent scenarios). For example, in Table 3, the evi-
dence of specific behaviour can be seen for ambiguous require-
ments and time pressure, though they are confirmatory
antecedents. P1 associated this with their experience. Also,
this pertains to tester’s nature; in the context of ambiguous
requirements, they stated: “It makes me check risky scenarios...
Because I think like this, if it is difficult it might be more risky... so I
need to see them first” - P1.

If a test suite designing or execution is complete in terms
of consistent and inconsistent test cases, then manifesting
one behaviour before the other is not an apprehension.
However, if completion of one type of test cases is compro-
mised (due to the antecedents), then the behaviours may
lead to adverse effects on software quality, as already
explained in Section 2.

Functionality Retesting: For testing change requests or
production bug fix, the same sequence of general and spe-
cific behaviours occurs. Project experience also influences the
preferred behaviour manifestation by the participants, i.e.,
confirmatory or disconfirmatory.

High Priority Testing: The testing with inconsistent test
cases along the testing with consistent test cases (manifesta-
tion of disconfirmatory behaviour leading to Both in Table 3),
for higher priority functionalities or scenarios, does not

SALMAN ETAL.: WHAT LEADS TO A CONFIRMATORYOR DISCONFIRMATORY BEHAVIOR OF SOFTWARE TESTERS? 1361



imply improved completeness of a suite design/execution.
Since, the testing is still limited to the higher priority items.

Requirements and Agile Software Development: The par-
ticipants of this study belonged to projects that apply agile
software development method Scrum. Hence, the antece-
dents of the requirements category (ambiguous, incomplete
requirements) may be confined to this software development
method. In other words, the emergence of this category sug-
gests a high dependency on Scrum. P2 stated: “The actual rea-
son, why in this project agile scrum is used, customer sometimes
might give you less details, less detailed requirements. So, this
causes some issues. Also, you might forget to get [obtain] enough
detailed requirements. So, this is a very normal situation. It hap-
pens in all projects. That’s why agile scrum is used in this project”.
Paetsch et al. stated that agile software development is more
adaptive to frequent changes, and is more reliant on direct
collaboration instead of documentation oriented processes
[36]. As a result, agile is more “code-oriented” and less
“document-centric” [36]. Therefore, the requirements to be
implemented in the following sprint might not be compre-
hensive for testers to design complete test suites.

Clarifying Requirements: This antecedent of Requirements
category promotes Both behaviours but it may not always
be possible to clarify requirements, e.g., in case of time
pressure.

Detection of Errors and Automated Testing: Detection of
errors does not promote any kind of behaviour among test
automation engineers. The reason for this could be that auto-
mated testing, compared to manual testing, do not require an
active involvement of a tester during the test suite execution.
Once the complete script is run, the results are generated,
which are then investigated by the automation tester. The
dependency of automated suites on the manual suites may
also be a reason for this observation, i.e., the automation testers
may find/receive a complete manual test suite to automate.

We could not observe the level of automation as an ante-
cedent to the behaviours of testers performing automated-
testing. According to the results, automated suites are
developed based on manual suites. Therefore, the modules
that are not fully automated, are possibly manually tested.
Nonetheless, a possible effect of (the level of) automation is
mentioned in Section 4.6, i.e., the fast execution time of auto-
mated testing creates time for the (manual) execution of dif-
ficult-to-automate inconsistent test cases and other modules
that could not be automated. This may promote disconfir-
matory behaviour among manual testers.

The analysis also could not support the effect of testing-
tools on the behaviour of testers. The participants reported
using the tools for maintaining test suites, designing and
execution of test suites, test cases statuses, assignments of
test cases to others (e.g., to developers for fixing), progress
tracking, generating test reports and having a shared plat-
form. These support the testing process, either manual or
automated. This may not affect a tester’s (dis)confirmatory
behaviour except, for example, the stage of testing (design-
ing or execution) or other reported antecedents (Section 4)
inclusive of the general and specific behaviours. For exam-
ple, P1 reported that the tool they use does not affect their
(dis)confirmatory behaviour.

Time Pressure: The data analysis also suggests that time
pressure leads to high priority testing, whether a manual or

automated testing. It is also found to affect the practice of
exploratory testing that some testers perform, e.g., in the
case of detection of errors. Moreover, the participants have
reported applying experience under time pressure for per-
forming effective testing. Based on the experience, they
choose the execution of test scenarios that can be either con-
sistent, inconsistent or both. As P2 explained: “when time is
pushing and both of things [time and previous experience]... You
can choose which parts to test. This is like an instinct from your
previous experiences and history of the project. You know things
[functionalities] and then you find the best approach...”. Further-
more, the participants attributed limited time availability to
Agile practices. A study by Linß et al. found ten antecedents
to, and five consequences of time pressure, by analysing
time pressure in software projects that apply Scrum [37]. It
is evidence that time pressure is intrinsic to the agile devel-
opment method - scrum.

Fig. 2 presents the integrative diagram of the formed cat-
egories based on the identified antecedents. The antecedents
are separated with a semicolon (;) inside a category box, fol-
lowed with their classification, e.g., ’D: Detection of Errors’.
The arrows depict relations among the categories, i.e., how
one category is influencing the other, e.g., customers define
priorities for platform or functionalities (priority) when they
perform reviews (external party reviews). This is indicated by
an arrow sign from the Test Suite Reviews category to the Pri-
ority category. The relations between the categories are
based on the relations between the antecedents of those cat-
egories. These relations are a figurative depiction of the nar-
rative in the results and discussion section. In the figure, the
time pressure can be seen as impacting other categories by
promoting confirmation bias and limiting the completeness
of test suite design or execution. The time pressure is also
diminishing the possibility of exploratory testing, thus
decreasing the disconfirmatory effects of the antecedents of
test execution feedback. In the holistic perspective, the experi-
ence has emerged as a decisive category for the specific or
general behaviour manifestation for other categories, and a
contributor to the priority category.

Conclusively, confirmation bias is manifested due to the
confirmatory antecedents because consistent test cases are
designed/executed relatively more than the inconsistent
test cases. The antecedents that lead to the disconfirmatory
behaviour, and also to a complete test suite (design or exe-
cution), suggest the possible mitigation of confirmation
bias. Fischoff mentions five levels of debiasing7 interven-
tions: a) warning about the possible bias, b) describing the
direction of the typically observed bias, c) personalised
feedback, d) training for cognitive mastery and e) debias the
task instead of the person [10], [39]. a, b and c are seldom
effective, and d is expensive, hence, Fischoff proposed e
[10], [39]. In this perspective, a few of our disconfirmatory
antecedents are task/practice-oriented, e.g., complement test-
ing that may debias confirmation bias. The antecedents that
mostly promote both behaviours for testers, e.g., change
request, lead to improved completeness of a test suite, if not
interrupted by time pressure. When time pressure occurs, it
affects the completeness of either consistent test scenarios

7. It refers to preventing or alleviating the effects of cognitive biases
[10], [38].

1362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022



or inconsistent test scenarios, which is respective to the gen-
eral or specific behaviour of a tester. The specific behaviour
(first disconfirmatory) in such a situation although could
mitigate confirmation bias but may not assure a defect-free
SUT. Since, the consistent test cases are not executed by the
tester, that may fail.

5.2 Comparison With Existing Literature

Table 4 presents a comparison of the identified antecedents
to the antecedents found in the existing literature. Five out
of 12 antecedents of the existing literature are comparable to
seven of the antecedents of our study. However, the existing
literature does not empirically support the effect of two of
the five antecedents on confirmation bias. Our study identi-
fied 13 new antecedents compared to the existing literature.
There are seven antecedents that the existing literature
investigated, but our study could not identify them. How-
ever, the existing literature does not empirically support the
effect of four of these 7 antecedents on confirmation bias.
Table 4 uses different symbols (‘E’, #) for presenting the
effect of antecedents because the existing literature uses dif-
ferent assessment methods for measuring confirmation
bias. Additionally, our study is a qualitative study and the
existing literature are quantitative studies. No effect symbol
(‘E’, #) before the antecedent indicates that the existing liter-
ature could not experimentally observe it to affect confirma-
tion bias.

The category experience and the related antecedents of the
existing literature are similar because they all point towards
the possible mitigation of confirmation bias due to experi-
ence of the testers. The antecedent, completeness of specifica-
tions, which led to the lower levels of confirmation bias in the
studies of Leventhal et al. and Teasley et al., is relatable to A6
of our study [6], [7]. Since, the results of A6 may lead to the
complete elaboration of all the required and non-required
functional behaviour of the SUT. Leventhal et al. and Teasley
et al. defined three levels of specifications [6], [7]. The first
and second levels, minimal and positive only specifications
are similar to A7 because they all suggest a manifestation of
confirmation bias. The effect of the antecedent, error feedback
was investigated in the context of the presence of errors ver-
sus absence of errors by Leventhal et al., which remained
inconclusive [6]. Contrary to the hypothesised effect of error
feedback by Leventhal et al. that absence of errors may not
decrease confirmation bias levels [6], our study suggests that
not finding any error (absence of errors) also promote the dis-
confirmatory or code-breaking behaviour among testers. The
disconfirmatory behaviour manifestation in our study may
be attributed to the extensive industrial testing experience of
the participants. Whereas, Leventhal et al. employed gradu-
ate students to represent advanced testers, whose maximum
professional experience did not exceed over a year as an
intern-programmer [6]. Our study showed that time pressure
is a confirmatory antecedent as well as an antecedent that is

Fig. 2. Integrative diagram depicting the relationships of the identified categories and antecedents to (dis)confirmatory behaviour.

SALMAN ETAL.: WHAT LEADS TO A CONFIRMATORYOR DISCONFIRMATORY BEHAVIOR OF SOFTWARE TESTERS? 1363



ineffective for testing from the test completeness perspective.
However, Salman et al. could not find it as a promoting factor
for confirmation bias in their experimental study [3].

The participants of our study did not refer to their logical
reasoning skills (acquired through their education) or educa-
tional background and levels for their (dis)confirmatory behav-
iours, in contrast to the evidence shown by Calikli and Bener
[5], [8]. The antecedent, job title cannot be compared with any
antecedent of our study because we did not segregate based
on roles. We considered all roles performing core testing ori-
ented activities, e.g., test suite designing and test suite execu-
tions, as testers. Additionally, all the participants were
practitioners, therefore comparison with researcher aspect is
impossible. Company culture, company size and development
methods are also not directly comparable with any of our

antecedents because our data collection was limited to one
company only and none of our participants was solely a
developer. It is important to mention that the antecedents
with no effect on confirmation bias levels, in the existing litera-
ture, are due to not statistically significant results. The discus-
sion on the observed effect sizes of those antecedents, which
may imply a possible effect, is beyond the scope of this study.

5.3 Implications for Research and Practice

For research, we propose a multi-case study to explore,
whether the antecedents found in this study also hold in other
settings because the results of our study are confined to the
testers of one company only. A cross-case analysis would also
aid towards finding the influence of the antecedents that are
particular to the companies, e.g., organisational culture,

TABLE 4
Comparison With Existing Literature

No. Our Study Existing Literature

Experience # Expertise level [6], [7]; # Experience and activeness in testing
and development [5], [8]

A1 D: Past Experience
A2 D+B: Project Experience

Priority
A3 C+lB: High Priority -
A4 C: Medium or Low Priority -

Requirements
A5 C: Ambiguous Requirements -
A6 B: Clarifying Requirements # Completeness of Specifications [6], [7]
A7 C: Incomplete Requirements

Functionality Retesting
A8 B: Production Bug Fix -
A9 B: Change Request -
A10 C+B: Change/Fix Size -

Test Suite Reviews
A11 D+B: Internal Party Review -
A12 C: External Party Review -
A13 C: Automated Test Suite Review -

Testing Mode
A14 C: Automated Testing -

Test Execution Feedback Error Feedback [6]
A15 D: Detection of Errors
A16 D: Absence of Errors

Time
A17 C+lB: Time Pressure Time Pressure [3]
A18 D: No Time Pressure -

Perspective Change
A19 D: Developer & Tester -
A20 D: Complement Testing -

- E: Company Culture (of different geographic regions) [23]

- # Logical Reasoning Skills [5], [8]

- # Job Titles (researchers versus tester, developer, analyst) [5], [8]

- Development Methods (e.g., incremental, agile and TDD) [5], [8];
TDD versus TLD [9]

- Company size (large, small and medium enterprises) [5], [8]

- Educational Background (undergraduate) [5], [8]

- Educational Level (bachelor’s versus master’s) [5], [8]

Key: E = effect on confirmation bias; # = decrease level of confirmation bias

1364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022



development methods, company size, as per quantitatively
investigated by Calikli and Bener [5], [8]. More studies
applying grounded theory using multiple data collection
methods, for exploring the same phenomenon, may reveal
new antecedents with more intense evidence. According to
our results, ambiguous and incomplete requirements pro-
mote a disconfirmatory behaviour, however, under time
pressure this leads to a confirmatory behaviour manifesta-
tion. More studies are needed on how to improve the
requirement specifications that may deteriorate software
quality especially in the context of Agile that also constraints
time [37]. Yet, the manifestation of confirmation bias in the
case of complete requirements is not detrimental for soft-
ware quality because a tester is then validating all the speci-
fied required and not required behaviours of the SUT [3]. In
the context of Agile, whether to improve the requirements or
to devise solutions to manoeuvre the possibly limited time,
is a question that needs scientific attention.

Experimental studies and experimental replicationswould
help strengthen the evidence quantitatively of the identified
antecedents. Experimental studiesmay also help find the rela-
tive importance of the identified disconfirmatory antecedents
for effective testing, e.g., presence of errors versus absence of
errors, and how influential is the role of experience (general
experience in testing versus project/domain experience) in
this comparison.

We recommend the following to practitioners:
Test Suite Reviews: It is important to implement internal

test suite review practices if they are not already in place. It is
critical thatmanual test suites are reviewed by the teammem-
bers of the same project. The same project members are better
able to promote disconfirmatory behaviour and also enhance
the test suite completeness because they are knowledgeable
on the project or domain of the SUT. Despite the review by
customers, of the manual suites, internal reviews should still
be conducted because customers may focus only on defining
the priorities of the functionality rather than promoting a dis-
confirmatory behaviour. Once the quality of manual suites is
assured - a suite that is disconfirmatory and improved in com-
pleteness, the dependence of automated suites on manual
suitesmay not be deteriorating for the quality of testing.How-
ever, expert test automation engineers should review the
automated suites to help less-experienced automation engi-
neers to develop complex test cases especially the inconsistent
ones. This could improve the coverage of inconsistent test
cases alongside the learning and manifestation of disconfir-
matory behaviour by test automation engineers.

The recommended practice of test suite reviews may also
be interrupted by time pressure. In such a case, testers with
project (specific) experience or practice of complement testing
may cover for skipping test suite reviews. Project experi-
enced testers could be able to achieve possible completeness
in designing/executing a test suite(s). The practice of com-
plement testing, i.e., test case designing and execution by
two different testers may accommodate more/missing
inconsistent test cases to the suite. Thus, ensuring improved
completeness for test suite execution.

Experience and Test Execution Feedback: Modules
developed by experienced testers may appear less defective
or defect-free to inexperienced testers. These modules
should be tested by experienced testers because the apparent

absence of errors may prompt more code-breaking (disconfir-
matory) behaviour among them compared to inexperienced
testers. This may lead to enhanced coverage of inconsistent
test cases for themodule, whichmay also reveal errors.

Time and Complete Test Execution: In order to increase
test suite execution in terms of (in)consistent test cases,
under time pressure, manual test engineers should work in
collaboration with automation test engineers. For example,
automation engineers run the automated test cases and
manual testers run the cases that could not be automated
for the SUT. This collaboration may make efficient use of
the limited available time with an improved test suite exe-
cution. The collaboration may also support other situations
that may suffer due to time pressure, e.g., complete execu-
tion of inconsistent (manifestation of disconfirmatory
behaviour) and not high priority test cases. Automation can
be run for not high priority test cases, and manual testers
can validate the rest of the functionalities and test cases.
Functionality retesting may also benefit from the collabora-
tion in the same manner for time-pressured situations.

5.4 Evaluating the Grounded Theory

We evaluate our grounded theory presented in Fig. 2
according to the Glaserian evaluation criteria [32], [40].

One aspect to evaluate fit of the theory is its ability to
explain the realities of the studied phenomenon as per viewed
by the participants [40]. We shared the generated theory with
the participants of our study. The participants found that the
identified antecedents and their relationships represent their
testing experience, as per said by P6: “factors [antecedents] are
covering my testing experience”. The respondents also men-
tioned that the theory also explains the effects of the antece-
dents on their testing behaviour, especially regarding the
disconfirmatory antecedents. This relates to thework criterion
of the evaluation [32]. In our case, relevance relates to the the-
ory’s appeal for practitioners [41]. We achieved it based on
the feedback of the participants, as they agreed with the iden-
tified antecedents and their inter-relationships in comparison
with their testing experience. The last criterion is modifiabil-
ity, which suggests that the theory is flexible to accommodate
variations proposed by new data [32], [40]. We were able to
modify our theory as we progressed with the analyses of
data. Modifiability continued to appear at two points, first,
during the classification of the antecedent as (dis)confirma-
tory and both. Second, during the analyses of the relationships
among the emerging categories and concepts (antecedents)
because of our additional,why& how focus of the analyses.

5.5 Threats to Validity

This section elaborates on the threats to validity of our study.
Transcription of the interviewswas affected by the accent of

the interviewees because they were non-native English speak-
ers. Therefore, we sent summaries of the transcribed content to
the respective interviewees for a confirmation on the collected
data. However, we received only one response that confirmed
the content, other participants did not respond. The interviews
conductedwithout videomay not have provided lower quality
data because there is not enough empirical evidence to support
this possible threat to the data quality [42]. The pilot interview
ensured that we collect the right data during the actual

SALMAN ETAL.: WHAT LEADS TO A CONFIRMATORYOR DISCONFIRMATORY BEHAVIOR OF SOFTWARE TESTERS? 1365



interviews. The percentage of disregarded data (Section 3.3) is
minor, we do not believe that it could have caused major
threats to our results. We achieved code saturation while cod-
ing our data. Code saturation is achieved when code book sta-
bilises, i.e., the data do not suggest any further issues (codes),
which in our case are the antecedents [43]. According to Hen-
nink et al., it is possible to achieve code saturation by as few as
nine interviews [43]. Our participants were chosen based on a
common criterion of experience of software testing; this intro-
duces homogeneity in our sample [44]. Therefore, twelve inter-
views have been sufficient to achieve (code) saturation when
the study’s objective is to describe the behaviour of a compara-
tively homogeneous group [44].

In order to mitigate the potential threat of researcher bias
while forming an initial list of the terms that indicated dis
(confirmatory) behaviour on the tester’s (participant’s) end,
we also coded the evidence that explained participants’
understanding of the terms. The initial list of the terms could
be a source of bias for the other coders while performing the
pilot coding - Section 3.3. However, the low agreement levels
between the coders of the pilot coding, do not suggest such a
possibility. According to Urquhart, a researcher applying
GT should not have “preconceived theoretical ideas before start-
ing the research” [31, p. 16]. In our opinion, familiarity with
the relevant literature beforehand has not compromised this
characteristic of GT because only limited literature is avail-
able. Our study is the first that has explored the why and how
aspect of confirmation bias in software testing. Additionally,
the identification of 13 new antecedents and absence of seven
existing antecedents from our generated theory (Section 5.2)
suggest less influence of any preconceived ideas. We
acknowledge possible threats to our theory for not perform-
ing theoretical sampling because it was not practically possi-
ble. Theoretical sampling enables to address the gaps in the
emerging theory [31], [32]. It also helps to increase the scope
of the theory by sampling other substantive areas [31].
According to Eisenhardt and Graebner, theoretical sampling
refers to the selection of cases that are specifically appropri-
ate for “illuminating and extending relationships and logic
among constructs [45, p. 27]”. From this aspect, theoretical
sampling was implicitly applied from the beginning when
our contact person sampled the professionals based on their
characteristic, i.e., experience in software testing. However,
these software testers belong to a single context.

Our theory is generated from the data of a single company
only, i.e., the testers of the Company-ICT, which limits the
applicability of the theory to dissimilar contexts. However, a
properly performed grounded theory approach produces a
theory that is flexible and modifiable (GT evaluation criterion)
[32], [40]. It can be modified using CCM (a key component of
GT) based on the data from other studied contexts [31], [32],
[40]. With reference to the concept of biasplexes (Section 2), con-
firmation bias belongs to the inertia biasplex [17]. The other cog-
nitive biases of this biasplex are, e.g., the bandwagon effect and
anchoring bias [17], [38]. These other biases may also reinforce
or overlap with confirmation bias among software testers to
form their (dis)confirmatory behaviour. Our study is limited to
exploring the phenomenon of confirmation bias without con-
sidering its biasplex. Furthermore, our study does not employ
data triangulation to improve the strength of evidence, instead
is limited to a single data collection method, i.e., interviews.

However, this study can be considered a post-hoc approach to
explore further the phenomenon of confirmation bias among
testers because we observed its manifestation in our previous
experimental studywith student-participants as testers [3].

6 CONCLUSION AND FUTURE WORK

We applied grounded theory to explore the antecedents to
confirmatory and disconfirmatory behaviours and to under-
stand how they occur among software testers. We identified
twenty antecedents to (dis)confirmatory behaviour, classi-
fied in nine categories; experience, priority, requirements,
functionality retesting, test suite reviews, test execution
feedback, time, testing mode and perspective change.

The antecedents that promote confirmatory behaviour,
leading to confirmation bias are; ambiguous requirements,
incomplete requirements, high priority testing, medium or
low priority testing, automated testing, automated test suite
reviews, external party reviews, (minor) change/fix size
and time pressure. Time pressure plays an important role in
the occurrence of confirmatory behaviour among testers,
e.g., when they are dealing with ambiguous requirements
or performing only a high priority testing.

The antecedents that promote disconfirmatory behaviour
and also improve the completeness of a test suite from design
and execution perspective are; project experience, past experi-
ence, developer and tester perspective, complement testing,
detection of errors, absence of errors, no time pressure and
internal party reviews. These antecedents may help circum-
vent confirmation bias and improve the quality of testing.
Practitioners are recommended to implement internal party
reviews because it may increase the completeness of inconsis-
tent test cases. Similarly, a practice of complement testing,
among the testers,may also help in the completeness of incon-
sistent test cases and increase defect detection. Defect detec-
tion (detection of errors), in turn, promotes disconfirmatory
behaviour, as propositioned by our grounded theory.

The future work of this study includes the extension and
modification of our theory with the data from testers of other
companies. In other words, to increase the generality of the
theory by sampling other substantive areas. Data triangula-
tion through multiple data collection methods would also
increase the validity of findings. For example, conducting an
observational study that observes testers over a longer span
in addition to interviews would help validate the findings
from different sources. This would enable an in-depth analy-
sis of confirmation bias phenomenon, also considering its
interactions with other cognitive biases, and thus the behav-
iour of software testers. Another possible extension of this
work is to quantitatively investigate the relative importance
of the identified antecedents, in a software testing context.

ACKNOWLEDGMENTS

The authors would like to thank the participants of the
Company-ICT for this study; Alper Corlan, Basak Kahraman,
Berkay Sertoglu, Cagatay Ince, Elif Deniz, Emin Vilgenoglu,
Gulden Karakoyun, Ozgul Ozcan, Selda Aydin, Sezen Kaya,
Sinan Verdi, and Ugur Ozcan. This study was supported in
part by the Infotech Oulu Doctoral Grant at the University of
Oulu to Iflaah Salman.

1366 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022



REFERENCES

[1] D. Arnott, “Cognitive biases and decision support systems devel-
opment: A design science approach,” Inf. Syst. J., vol. 16, no. 1,
pp. 55–78, 2006.

[2] L.M. Leventhal, B. Teasley, D. S. Rohlman, and K. Instone, “Positive
test bias in software testing among professionals: A review,” in Proc.
Int. Conf. Hum.-Comput. Interaction, 1993, pp. 210–218.

[3] I. Salman, B. Turhan, and S. Vegas, “A controlled experiment on
time pressure and confirmation bias in functional software
testing,” Empir. Softw. Eng., vol. 24, no. 4, pp. 1727–1761, Dec.
2018. [Online]. Available: http://link.springer.com/10.1007/
s10664–018-9668-8

[4] G. Calikli and A. B. Bener, “Influence of confirmation biases of
developers on software quality: An empirical study,” Softw. Qual.
J., vol. 21, no. 2, pp. 377–416, 2013. [Online]. Available: http://
link.springer.com/10.1007/s11219–012-9180-0

[5] G. Calikli and A. Bener, “Empirical analysis of factors affecting
confirmation bias levels of software engineers,” Softw. Qual. J.,
vol. 23, pp. 695–722, 2015. [Online]. Available: http://link.
springer.com/10.1007/s11219–014-9250-6

[6] L. M. Leventhal, B. E. Teasley, and D. S. Rohlman, “Analyses of
factors related to positive test bias in Software Testing,” Int. J.
Hum.-Comput. Stud., vol. 41, pp. 717–749, 1994.

[7] B. E. Teasley, L. M. Leventhal, C. R. Mynatt, and D. S. Rohlman,
“Why software testing is sometimes ineffective: Two applied stud-
ies of positive test strategy,” J. Appl. Psychol., vol. 79, no. I, 1994,
Art. no. 142.

[8] G. Calikli and A. Bener, “Empirical analyses of the factors affect-
ing confirmation bias and the effects of confirmation bias on soft-
ware developer/tester performance,” in Proc. 6th Int. Conf.
Predictive Models Softw. Eng., 2010, Art. no. 10. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1868328.1868344

[9] A. Causevic, R. Shukla, S. Punnekkat, and D. Sundmark, “Effects
of negative testing on TDD: An industrial experiment,” in
Proc. Int. Conf. Agile Softw. Develop., 2013, pp. 91–105. [Online].
Available: http://link.springer.com/chapter/10.1007/978–3-642-
38314-4_7

[10] R. Mohanani, I. Salman, B. Turhan, P. Rodriguez, and P. Ralph,
“Cognitive biases in software engineering: A systematic mapping
study,” IEEE Trans. Softw. Eng., 2018. [Online]. Available: https://
ieeexplore.ieee.org/document/8506423

[11] T. Gilovich, D. Griffin, and D. Kahneman,Heuristics and Biases, 8th
ed. Cambridge, U.K.: Cambridge Univ. Press, 2002.

[12] A. Tversky and D. Kahneman, “Judgement under uncertainty: Heu-
ristics and biases,” Oregon Res. Inst. Res. Bull., vol. 13, no. 1, 1973.
[Online]. Available: https://doi.org/10.1126/science.185.4157.1124

[13] D. Arnott, “A taxonomy of decision biases,” Monash University,
Australia, 1998. [Online]. Available: http://www.sims.monash.
edu.au/staff/darnott/biastax.pdf

[14] D. Arnott and S. Gao, “Behavioral economics for decision support
systems researchers,”Decis. Support Syst., vol. 122, no. Feb., 2019, Art.
no. 113063. [Online]. Available: https://doi.org/10.1016/j.
dss.2019.05.003

[15] D. Kahneman, D. Lovallo, and O. Sibony, “Before youmake that big
decision...,” Harvard Bus. Rev., vol. 89, no. 6, pp. 50–60, 2011.
[Online]. Available: http://website.aub.edu.lb/units/ehmu/
Documents/before-you-make-that-big-decision.pdf

[16] I. Salman, “The effects of confirmation bias and time pressure in
software testing,” Ph.D. dissertation, Fac. Inf. Technol. Elect. Eng.,
Univ. Oulu, Oulu, Finland, 2019.

[17] P. Ralph, “Possible core theories for software engineering,” in
Proc. 2nd SEMAT Workshop General Theory Softw. Eng., 2013,
pp. 35–38.

[18] K. A. de Graaf, P. Liang, A. Tang, and H. van Vliet, “The impact of
prior knowledge on searching in software documentation,” in
Proc. ACM Symp. Document Eng., 2014, pp. 189–198.

[19] E. D. Smith, Y. J. Son, M. Piattelli-Palmarini , and A. Terry Bahill ,
“Ameliorating mental mistakes in tradeoff studies,” Syst. Eng.,
vol. 10, no. 3, pp. 222–240, 2007. [Online]. Available: http://doi.
wiley.com/10.1002/sys.20072

[20] G. Calikli, A. Bener, T. Aytac, and O. Bozcan, “Towards a metric
suite proposal to quantify confirmation biases of developers,” in
Proc. Int. Symp. Empir. Softw. Eng. Meas., 2013, pp. 363–372.

[21] R. S. Nickerson, “Confirmation bias: A ubiquitous phenomenon in
many guises,” Rev. General Psychol., vol. 2, no. 2, pp. 175–220,
1998.

[22] G. Calikli, B. Arslan, and A. Bener, “Confirmation bias in software
development and testing : An analysis of the effects of company
size, experience and reasoning skills,” in Proc. 22nd Annu. Psychol.
Program. Interest Group Workshop, 2010. [Online]. Available:
https://ppig.org/files/2010-PPIG-22nd-Calikli.pdf

[23] G. Calikli, A. Bener, and B. Arslan, “An analysis of the effects of
company culture, education and experience on confirmation bias
levels of software developers and testers,” in Proc. ACM/IEEE
32nd Int. Conf. Softw. Eng., 2010, vol. 2, pp. 187–190.

[24] S. Eldh, “On test design,” Ph.D. dissertation, School Innov., Des.
Eng., M€alardalen University, V€astera

�
s, Sweden, 2011.

[25] A. A. Jorgensen and J. A.Whittaker, “How to break software,” 2000.
[Online]. Available: https://www.researchgate.net/publication/
315700027_How_to_Break_Software_with_examples

[26] J. A. O. G. Da Cunha and H. P. De Moura, “Towards a substantive
theory of project decisions in software development project-based
organizations: A cross-case analysis of IT organizations from Brazil
and Portugal,” in Proc. 10th Iberian Conf. Inf. Syst. Technol., 2015,
pp. 1–6.

[27] J. A. O. Cunha, H. P. Moura, and F. J. Vasconcellos, “Decision-
making in software project management: A qualitative case study
of a private organization,” in Proc. 9th Int. Workshop Cooperative
Hum. Aspects Softw. Eng., 2016, pp. 26–32.

[28] S. Chakraborty, S. S. Sarker, and S. S. Sarker, “An exploration into
the process of requirements elicitation : A grounded approach,” J.
Assoc. Inf. Syst., vol. 11, no. 4, pp. 212–249, 2010.

[29] I. Hadar, “When intuition and logic clash: The case of the
object-oriented paradigm,” Sci. Comput. Program., vol. 78, no. 9,
pp. 1407–1426, 2013.

[30] P. Conroy and P. Kruchten, “Performance norms: An approach to
rework reduction in software development,” in Proc. 25th IEEE
Can. Conf. Electr. Comput. Eng., 2012, pp. 1–6.

[31] C. Urquhart, Grounded Theory For Qualitative Research: A Practical
Guide. Thousand Oaks, CA, USA: SAGE, 2012.

[32] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in soft-
ware engineering research,” in Proc. IEEE/ACM 38th Int. Conf.
Softw. Eng., 2016, pp. 120–131.

[33] S. Baltes and P. Ralph, “Sampling in software engineering
research: A critical review and guidelines,” ACM Trans. Softw.
Eng. Methodol., vol. 21, 2020. [Online] Available: https://arxiv.
org/pdf/2002.07764.pdf

[34] H. R. Boeije, “A purposeful approach to the constant comparative
method in the analysis of qualitative interviews,” Qual. Quant.,
vol. 36, pp. 391–409, 2002.

[35] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen,
“Coding in-depth semistructured interviews: Problems of unitiza-
tion and intercoder reliability and agreement,” Sociol. Methods
Res., vol. 42, no. 3, pp. 294–320, 2013.

[36] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements engineering
and agile software development,” in Proc. 12th IEEE Int. Workshops
Enabling Technol. Infrastructure Collaborative Enterprises, 2003, pp. 1–6.

[37] S. Linßen, D. Basten, and J. Richter, “Antecedents and consequences
of time pressure in scrum projects : Insights from a qualitative
study,” in Proc. 51st Hawaii Int. Conf. Syst. Sci., 2018, pp. 4835–4844.

[38] P. Ralph, “Toward a theory of debiasing software development,”
Lecture Notes Bus. Inf. Process., vol. 93, pp. 92–105, 2011. [Online].
Available: http://link.springer.com/10.1007/978–3-642-25676-9

[39] B. Fischoff, “Debiasing,” in Judgment Under Uncertainty: Heuristics
and Biases, D. Kahneman, P. Slovic, and A. Tversky, Eds. Cam-
bridge, MA, USA: Cambridge Univ. Press, 1982.

[40] R. Hoda, J. Noble, and S. Marshall, “Self-organizing roles on agile
software development teams,” IEEE Trans. Softw. Eng., vol. 39, no. 3,
pp. 422–444,Mar. 2013.

[41] B. Chametzky and J. College, “Generalizability and the theory of
offsetting the affective filter,” Grounded Theory Rev., vol. 12, no. 2,
pp. 35–43, 2013.

[42] G. Novick, “Is there a bias against telephone interviews in qualita-
tive research?”Res. NursingHealth, vol. 31, no. 4, pp. 391–398, 2008.

[43] M. M. Hennink, B. N. Kaiser, and V. C. Marconi, “Code saturation
versus meaning saturation: How many interviews are enough?”
Qualitative Health Res., vol. 27, no. 4, pp. 591–608, 2017.

[44] G. Guest, A. Bunce, and L. Johnson, “How many interviews are
enough?: An experiment with data saturation and variability,” Field
Methods, vol. 18, no. 1, pp. 59–82, 2006.

[45] K. M. Eisenhardt and M. E. Graebner, “Theory building from
cases: Opportunities and challenges,” Acad. Manage. J., vol. 50,
no. 1, pp. 25–32, 2007.

SALMAN ETAL.: WHAT LEADS TO A CONFIRMATORYOR DISCONFIRMATORY BEHAVIOR OF SOFTWARE TESTERS? 1367

http://link.springer.com/10.1007/s10664--018-9668-8
http://link.springer.com/10.1007/s10664--018-9668-8
http://link.springer.com/10.1007/s11219--012-9180-0
http://link.springer.com/10.1007/s11219--012-9180-0
http://link.springer.com/10.1007/s11219--014-9250-6
http://link.springer.com/10.1007/s11219--014-9250-6
http://portal.acm.org/citation.cfm?doid=1868328.1868344
http://link.springer.com/chapter/10.1007/978--3-642-38314-4_7
http://link.springer.com/chapter/10.1007/978--3-642-38314-4_7
https://ieeexplore.ieee.org/document/8506423
https://ieeexplore.ieee.org/document/8506423
https://doi.org/10.1126/science.185.4157.1124
http://www.sims.monash.edu.au/staff/darnott/biastax.pdf
http://www.sims.monash.edu.au/staff/darnott/biastax.pdf
https://doi.org/10.1016/j.dss.2019.05.003
https://doi.org/10.1016/j.dss.2019.05.003
http://website.aub.edu.lb/units/ehmu/Documents/before-you-make-that-big-decision.pdf
http://website.aub.edu.lb/units/ehmu/Documents/before-you-make-that-big-decision.pdf
http://doi.wiley.com/10.1002/sys.20072
http://doi.wiley.com/10.1002/sys.20072
https://ppig.org/files/2010-PPIG-22nd-Calikli.pdf
https://www.researchgate.net/publication/315700027_How_to_Break_Software_with_examples
https://www.researchgate.net/publication/315700027_How_to_Break_Software_with_examples
https://arxiv.org/pdf/2002.07764.pdf
https://arxiv.org/pdf/2002.07764.pdf
http://link.springer.com/10.1007/978--3-642-25676-9


Iflaah Salman received the MSc and PhD
degrees in information processing science from
the University of Oulu, Oulu, Finland, in 2014
and 2019, respectively. She is a postdoctoral
research fellow at Empirical Software Engineer-
ing in Software, Systems and Services (M3S)
research unit at the University of Oulu, Oulu,
Finland. Her research interests include empirical
software engineering, cognitive aspects, and soft-
ware testing. Previously, she worked as a soft-
ware quality assurance engineer (2010 to 2012)

at i2c inc., Lahore, Pakistan. For more information please visit https://
www.linkedin.com/in/iflaahsalman/and follow on https://www.
researchgate.net.

Pilar Rodr�ıguez received the BSc, MSc, and PhD
degrees in computer science, in 2006, 2008, and
2013, respectively. She is currently an assistant
professor at Universidad Polit�ecnica de Madrid,
Spain and docent at the University of Oulu, Fin-
land. Her research centers on empirical software
engineering, software processes with a particular
focus on agile software development, value-based
software engineering, human factors in software
engineering, and software quality. She has pub-
lished in premier software engineering journals

and conferences. She has served on the program committee for confer-
ences such as ESEM, EASE, and XP, on the review boards of journals
such as the IEEETransaction on Software Engineering, and theEmpirical
Software Engineering, and as an organization committee member for
conferences such as ICSE and ESEM.

Burak Turhan (Member, IEEE) received the PhD
degree from Bog̃aziçi University, Turkey. He is an
associate professor with the Faculty of Informa-
tion Technology, Monash University, Australia,
and an adjunct professor with the Univerity of
Oulu, Finland. His research focuses on empirical
software engineering, software analytics, quality
assurance and testing, human factors, and (agile)
development processes. He has published more
than 110 articles in international journals and
conferences, received several best paper

awards, and secured funding for several large scale research projects.
He has served on the program committees of more than 30 academic
conferences, on the editorial/review boards of several journals including
the IEEE Transactions on Software Engineering, Empirical Software
Engineering, Journal of Systems and Software, Information and Soft-
ware Technology, and Software Quality Journal, as (co-)chair for
PROMISE’13, ESEM’17, and PROFES’17, and as a steering/organiza-
tion committee member for PROMISE, ESEM, and ICSE. He is a mem-
ber of the ACM, ACM SIGSOFT, and IEEE Computer Society. For more
information please visit https://turhanb.net.

Ayşe Tosun (Member, IEEE) received the MSc
and PhD degrees from the Department of Com-
puter Engineering, Bogazici University, Turkey, in
2008 and 2012, respectively. She is an assistant
professor at the Faculty of Computer and Infor-
matics Engineering, and executive board member
at Artificial Intelligence and Data Science Applied
Research Center at Istanbul Technical University
(ITU), Istanbul, Turkey. Prior to joining ITU, she
worked as a postdoctoral research fellow with the
Department of Information Processing Science,

University of Oulu, Finland. During her PhD, she worked as a research
intern at Software Reliability Lab, Microsoft Research, in Cambridge.
Her research interests are empirical software engineering, more specifi-
cally mining software data repositories, software measurement, software
process improvement, software quality prediction models, and applica-
tions of AI on building recommendation systems for software
engineering.

Arda G€ureller received the BSc degree in math-
ematical engineering from Yıldız Technical Uni-
versity, Turkey, in 2000, and the MSc degree in
business information systems from Bogazici Uni-
versity, Turkey, in 2017. He is a senior researcher
at Ericsson Research NAP Turkey, working as
Research Project Coordinator. He focused on set-
ting up and management of national and interna-
tional R&D projects in the ICT sector. He started
to work for Ericsson, in 2010, where he special-
ized in managing industry and university collabo-

rations for R&D innovation projects. He currently focuses on the
coordination and reporting of collaborations with customers, universities,
EU, etc. as well as handling of the intellectual property rights arising
from those collaborations.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1368 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

https://www.linkedin.com/in/iflaahsalman/
https://www.linkedin.com/in/iflaahsalman/
https://www.researchgate.net
https://www.researchgate.net
https://turhanb.net


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


