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ABSTRACT

Diverse effects of lattice strain on the optical properties in the near-infrared to vacuum ultraviolet spectral range are experimentally revealed
in cube-on-cube-type epitaxial perovskite SrTiO3 films grown on compressive substrate. Compared to the reference crystal, the tetragonal
antiferrodistortive film exhibits spectral blueshifts, which are consistent with the theoretically predicted bandgap widening. In addition to
this strain-induced interband effect, the peculiar near-edge absorption and smearing of interband transitions are found. It is shown that
Fr€ohlich-type electron–phonon coupling can be enhanced by strain and lead to this behavior. It is suggested that electron–phonon interac-
tions can play an important role in optical properties of ferroelectric films and deserve further studies.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021461

Strontium titanate (SrTiO3, STO) is a representative of perovskite
oxide ferroelectrics (FEs). These materials are wide bandgap insulators
and transparent in the spectral range from the mid-infrared to the
ultraviolet, where their index of refraction can be tuned by electric
field, stress, or light. These optical properties enable diverse optoelec-
tronic and photonic devices, most advanced of which employ single-
crystal-type epitaxial films.1–5 In such films, film-substrate mismatches
in crystal symmetries, lattice parameters, and thermal expansion coef-
ficients can lead to lattice stains and strain-induced phases, which
have no analogs in prototype crystals.6–9 First-principles modeling
suggests that epitaxial strain can also affect bandgap energy, elasto-
optic coefficients, and electrooptic coefficients.10–16 However, the
experimentally observed optical properties of epitaxial films do
not always agree with modeling and are scattered and often poorly
understood.2–5,17,18 Apart from unintentional technological issues, this
disparity indicates insufficient knowledge of optical phenomena in epi-
taxial films and creates a bottleneck for potential applications. Here,
we aim to better clarify these phenomena in epitaxial strained films of
representative STO.

Because epitaxial STO films can be grown on commercial sili-
con substrates, they are of great practical importance for integrated
photonics and electronics.19 Substrate-induced biaxial in-plane
misfit strain is compressive in thin STO films on Si, where the
substrate-ensured in-plane lattice parameter is �3.840 Å. In this
work, we use (001)(La0.3Sr0.7)(Al0.65Ta0.35)O3 (LSAT) substrates to
enable the in-plane lattice parameter of 3.868 Å and cube-on-cube

epitaxial growth of in-plane compressed STO films, resembling
those on Si.

Our experimental studies reveal that in addition to theoretically
predicted strain-induced changes of band structure, also less recog-
nized strain-enhanced electron–phonon coupling can play an essential
role in optical behavior of epitaxial STO films.

The theoretical STO/LSAT misfit strain is sa¼ (aLSAT/aSTO � 1)
� �0.95% where aLSAT¼ 3.868 Å and aSTO¼ 3.905 Å are the lattice
parameters of LSAT and STO, respectively. For the coherent strained
(001) STO film on (001) LSAT, the in-plane lattice parameters are
similar and equal to a¼ aLSAT and the out-of-plane lattice parameter c
is elongated: c¼ aSTO�[1 � (2c12/c11)�sa] � 3.927 Å, where c11¼ 3.48
� 1011 N/m2 and c12¼ 1.03� 1011 N/m2 are the elastic constants of
STO.20 As found recently,9 such tetragonal fully strained STO/LSAT
films can grow to thickness of �100nm, above which the misfit relax-
ation occurs.

STO films with a thickness of �80nm were grown by pulsed
lased deposition using an excimer KrF laser (Compex 205 F, wave-
length 248nm, energy density 2 J/cm2, pulse repetition rate 5Hz) on
as-received 10� 10mm2 single-crystal epitaxially polished (001)
LSAT substrates (MTI Corp.). A dense ceramic pellet of STO (synthe-
sized in the Institute of Solid State Physics, University of Latvia) was
used as a target. A substrate temperature, monitored by a pyrometer,
was 973K during deposition and lowered at a rate of 5Kmin�1 during
post-deposition cooling. Pressure of oxygen ambience was 20 Pa and
800 Pa during deposition and cooling, respectively. High-resolution
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x-ray diffraction (HRXRD) and reflectometry studies were performed
on a D8 Discover diffractometer (Bruker corporation) using Cu Ka
radiation. The diffraction and reflectometry data were fitted using
LEPTOS software.

XRD analysis evidenced a cube-on-cube-type epitaxy
(supplementary material Fig. S1). The STO films are coherent to STO
and tetragonal. The lattice parameters are nearly equal to the theoreti-
cally estimated ones, although indications of partial relaxation of misfit
strain can be seen [supplementary material Fig. S1(c)]. According to
the state-of-the-art strain-temperature phase diagram,9 our tetragonal
films are expected to adopt a room-temperature non-polar antiferro-
distortive (AFD) phase. Unstressed bulk STO is cubic paraelectric at
room temperature and undergoes the low-temperature paraelectric-
to-AFD phase transition, which can produce changes in the electronic
band structure and, consequently, optical properties.10,21,22 However,
as found experimentally, these changes are negligible in bulk.23,24 We
note that the properties of the misfit-induced AFD phase in epitaxial
films differ from those in bulk AFD STO because of anisotropic lattice
strain, which is imposed by the substrate in epitaxial films.10

The STO/LSAT films experience in-plane compressive and
out-of-plane tensile strains. To elucidate optical effects of epitaxial
strain, we investigated the optical absorption coefficient a and dielec-
tric function (e�¼ e1þ ie2) in the tetragonal AFD film and a reference
epitaxially polished (001) STO crystal (MTI Corp.). The optical con-
stants and dielectric functions were determined by variable angle spec-
troscopic ellipsometry on a J. A. Woollam VUV ellipsometer at room
temperature and photon energies E¼ 0.7–8.8 eV. The ellipsometric
spectra were acquired in an atmosphere of dry nitrogen at five angles
of incidence (55�–80� with 5� step) with an energy step of 0.02 eV
using averaging over 200–400 optical cycles. The optical constants of
the film, crystal, and LSAT substrate were extracted from the spectra
of ellipsometric angles using a commercial WVASE32 software pack-
age (supplementary material Fig. S2). More details can be found
elsewhere.17

Absorption spectra [Fig. 1(a)] show that the AFD film is highly
transparent at the energies E< 3.5 eV, in contrast to substantial
absorption for this spectral range in non-stoichiometric STO films.18,25

The film’s spectrum is clearly shifted to higher photon energies
compared to that of the crystal, and the blueshift is accompanied by a
relative suppression or smearing of the spectral features. This behavior
indicates an uplift of the conduction band and changes of the inter-
band transitions in the film.

First, we analyzed the absorption edge using the commonly
applied Tauc-type plots for direct (1) and indirect (2) gaps, and the
Urbach rule for the absorption tail (3)26–29

aEð Þ2 / E � Edð Þ; (1)

aEð Þ1=2 / E � Eið Þ; (2)

a ¼ a0exp
r E � E0ð Þ

kBT

� �
: (3)

Here, Ed and Ei are the gap energies, kB is the Boltzmann constant,
and the parameters a0, r, and E0 describe the absorption tail. A good
indirect-gap fit with Ei �3.22 eV is obtained for the crystal [Fig. 1(b)],
in agreement with the well-established behavior.23,24,30,31 Although
indirect-gap fitting with Ei �3.45 eV can be performed for the film as
well [Fig. 1(b)], the fit is rather inaccurate because of a steep Urbach

tail therein [Fig. 1(c)]. The tail parameter r � 0.3 in the film is signifi-
cantly enhanced compared to r � 0.06 in bulk.31 This observation
may indicate an enhancement of the electron–phonon interactions in
the film.32 Good direct-gap fits are obtained for E>4 eV, far from the
edge [Figs. 1(d) and 1(e)]. It is therefore likely that the bandgap is indi-
rect in the AFD film, similarly to the low-temperature AFD and high-
temperature paraelectric phases of bulk STO. The fitted energies
Ed � 3.85 eV in the crystal and Ed�3.97 eV in the film suggest at least
�0.1 eV blueshift, which is consistent with the theoretically predicted
widening of the optical gaps in misfit-strained epitaxial AFD phase.10

Next, we examined critical points (CPs) to unveil the changes of
the interband transitions in more detail.33–36 For a two-dimensional
CP, the second derivative of the dielectric function takes the form (4),

d2e
dE2
¼ Aexp i/ð Þ

E � ECP þ iCð Þ2
: (4)

Here A, ECP, C, and u are the amplitude, energy, width, and phase
angle of the CP line, respectively. For simplicity, the phase angles are

FIG. 1. (a) Absorption coefficient a as a function of photon energy in the film (thick
curve) and reference crystal (thin curve). (b) Tauc plots for indirect bandgap. Solid
lines show fits. (c) Urbach tail in the film. Note logarithmic scale for a. The dashed
line shows fit. (d) and (e) Plots for direct gaps. Dashed lines show fits.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 117, 082901 (2020); doi: 10.1063/5.0021461 117, 082901-2

Published under license by AIP Publishing

https://doi.org/10.1063/5.0021461#suppl
https://doi.org/10.1063/5.0021461#suppl
https://doi.org/10.1063/5.0021461#suppl
https://scitation.org/journal/apl


assumed to be u¼ 0, 0.5p, p, and 1.5p. The derivatives d2e1/dE
2 and

d2e2/dE
2 were extracted from the dielectric functions (Fig. 2). In the

film, the CP lines are mainly similar to those in the crystal but clearly
blueshifted, in agreement with the predicted bandgap behavior.10

Notably, compared to the main broad asymmetric CP line
(�3.8 eV), which was recently reported for bulk STO,32 our measure-
ments resolved two narrower symmetric CP lines (a strong one at
�3.8 eV and a weaker one at �4.2 eV) in the crystal [Figs. 3(a)
and 3(b)]. Our observations agree well with those in Ref. 36. The
strong CP (�3.8 eV) of the crystal shifts (to �4.0 eV) in the film, in
accordance with the theoretical expectation.10 Unexpectedly, this line
significantly weakens and broadens in the film [Figs. 3(a) and 3(b)].
The blueshift and smearing are also well seen for other CPs (see, for
instance, CPs �6.35 eV in the crystal and �6.50 eV in the film).
Because such a smearing was not observed in the low-temperature
AFD phase of the crystals, it may be related to the presence of strain in
the AFD film.

We suggest that the smearing may result from strain-enhanced
electron–phonon coupling. As shown experimentally, the frequencies
x of the lowest polar phonon mode (soft mode) are higher in the com-
pressively strained tetragonal STO films than in bulk STO for all tem-
peratures.37–40 Whereas the frequency increases (soft mode hardens)
with temperature as (x2/T) to 130 cm�1 at T¼ 700K in bulk STO,

frequencies as high as 125–135 cm�1 were found at a lower tempera-
ture of 300K in the strained films. We note that strain-induced soft-
mode hardening was not captured by theoretical calculations.

Taking into account that Fr€ohlich-type electron–phonon interac-
tions are generally strong in ionic crystals, such interactions may be
substantial in STO as well. The electron–phonon coupling constant
Fep is known to increase with frequency: [Fep / (x)1/2].35 Thus,
the strain-induced soft-mode hardening can lead to an enhanced
electron–phonon coupling in the AFD films. This enhancement may
be responsible for the observed CP smearing, steep Urbach tail, and
progressive smearing with increasing temperature (supplementary
material Fig. S3) in the film. We note that the Fr€ohlich electron–
phonon interaction can also cause the spectral blueshifts, but their
magnitude is very small, only 0.01–0.02 eV for the phonon harden-
ing from 100 to 120 cm�1. The phonon-frequency enlargement
from 100 cm�1 in bulk to 125 cm�1 in the film therefore cannot
explain the large observed blueshifts. Distinct interband effects are
obviously present in the film.

The suggested strain-enhanced electron–phonon coupling may
have implications for optical properties of not only epitaxial, but also
polycrystalline STO films, where the substrate and crystal grains (grain
boundaries) are sources of lattice strains. In particular, the discussed
CP smearing is consistent with the experimental observations in such
films.36 Because electron–phonon coupling can be strong in all perov-
skite oxide ferroelectrics, strain-induced enhancement of this coupling
may play an important role in optical behavior of ferroelectric films.
We also emphasize that electron–phonon interactions may signifi-
cantly contribute to elasto- and electro-optic coefficients above their
interband levels,41,42 which is of high interest for applications.
Therefore, electron–phonon coupling in ferroelectric films requires
more detailed experimental investigations and comprehensive theoret-
ical modeling.

FIG. 3. Second derivatives of the (a) and (c) real and (b) and (d) imaginary parts of
the dielectric function in the (a) and (b) crystal and (c) and (d) film. Experimental
data are shown by solid circles. Thin curves show CP lines.

FIG. 2. The (a) real and (b) imaginary parts of the dielectric function and their sec-
ond derivatives (c) and (d) in the film (solid curves) and crystal (dashed curves).
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In conclusion, the optical absorption and dielectric functions
were experimentally investigated in the spectral range of
0.7–8.8 eV in epitaxially strained tetragonal AFD STO film.
Compared to the reference unstressed crystal, the spectral blue-
shifts of �0.2 eV are detected in the film and ascribed to the theo-
retically predicted strain-induced bandgap widening. Additionally,
the peculiar near-edge absorption tail and smearing of interband
transitions are observed and suggested to originate from strain-
enhanced electron–phonon coupling. It is proposed that electron–
phonon coupling can have significant effects on optical behavior of
ferroelectric films and deserves further investigations.

See the supplementary material for XRD scans and details of
ellipsometric analyses.
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