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Abstract Auroral forms are like fingerprints linking optical features to physical phenomena in the
near-Earth space. While discovering new forms is rare, recently, scientists reported of citizens' observations
of STEVE, a pinkish optical manifestation of subauroral ionospheric drifts that were not thought to be
visible to the naked eye. Here, we present a new auroral form named “the dunes”. On 7 October 2018,
citizen observers took multiple digital photographs of the same dunes simultaneously from different
locations in Finland and Sweden. We develop a triangulation method to analyze the photographs and
conclude that the dunes are a monochromatic wave field with a wavelength of about 45 km within a thin
layer at 100 km altitude. Supporting data suggest that the dunes manifest atmospheric waves, possibly
mesospheric bores, which are rarely detected, and have not previously been observed via diffuse aurora nor
at auroral latitudes and altitudes. The dunes present a new opportunity to investigate the coupling of the
lower/middle atmosphere to the thermosphere and ionosphere. Our paper adds to the growing body of
work that illustrates the value of citizen scientist images in carrying out quantitative analysis of optical
phenomena, especially at small scales at subauroral latitudes. Further, the dune project presents means to
create general interest toward physics, emphasizing that citizens can take part in scientific work by helping
to uncover new phenomena.

Plain Language Summary Above Earth's atmosphere at about 80–120 km altitude, lies a
region that is often dubbed as the “ignorosphere,” one of the least explored regions at our planet. We
present a new auroral form spotted by citizen scientists and show how it can be used to investigate the
ignorosphere. We name the new form as “the dunes” and develop a method to analyze the citizen scientist
pictures using the stars on the skies as reference points. The new method and other supporting data
indicate that the dunes are a monochromatic wave field with a wavelength of about 45 km within a thin
layer at 100 km altitude, right in the ignorosphere, where atmosphere meets the electromagnetic forcing
from space. The analysis suggests that the dunes manifest atmospheric waves, possibly a rare phenomenon
called mesospheric bores, which are large wave fields propagating in the ignorosphere. They have not
previously been observed via aurora, nor at auroral latitudes and altitudes. The dunes present a new
opportunity to investigate the ignorosphere and its driving from above. Further, the dune project presents
means to create general interest toward physics, emphasizing that citizens can take part in scientific
work by helping to uncover new phenomena.

1. Introduction
The auroral mesosphere-lower thermosphere-ionosphere (MLTI) region, often dubbed as the “ignoro-
sphere” at about 65–80◦ in geographic latitude and at 80–120 km altitude is one of the most intriguing
regions within the near-Earth space. This is because the conditions at auroral latitudes are controlled by a
multitude of drivers making the environment highly variable. The atmospheric conditions are character-
ized by diurnal and seasonal variability due to changes in the solar heating. In addition, the atmospheric
conditions are driven by electromagnetic forcing from ionosphere and magnetosphere (Andersson et al.,
2014; Arnold & Robinson, 2001). The high-latitude ionospheric conditions are controlled by the solar wind
energy, which is extracted by various processes within the Earth's magnetosphere and deposited into the
ionosphere through Joule heating and particle precipitation (Palmroth et al., 2005, 2006). This ionospheric
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Figure 1. (a) Auroral dunes captured on 7 October 2018, at 17:40.59 UT in Laitila (see location in Figure 4b). The stars
in the background indicate that the field of view is toward the northwest. The dunes (marked by magenta circles and
numbers, which refer to section 2) extend equatorward from the discrete bright arc in the north. The local magnetic
field direction is shown by the auroral pillars, the almost vertical purple structures. (b) Simultaneous picture of the
dunes in Ruovesi, 172 km northeast from Laitila. The background star positions indicate that the field of view is
roughly toward the west.

energy deposition leads to highly variable plasma flows and conductivity distributions (Lu, 2017) and vivid
auroral displays. Further, the neutral atmospheric conditions affect the ionospheric electrodynamics at least
through ion chemistry and coupling the neutral winds with the Joule heating process (Aikio et al., 2012;
Marchaudon et al., 2018). Hence, the auroral MLTI region is characterized by complex dynamics between
the neutral atmosphere and the electromagnetic ionosphere.

The auroral MLTI region is notoriously difficult to measure, hence the term ignorosphere. Spacecraft would
need to make significant use of thrust to maintain their orbit due to the large neutral densities, and different
ground-based instruments are either not located suitably underneath the phenomena of interest or do not
reach the altitudes of interest. For example, the neutral atmospheric waves, which couple to the electrody-
namics, are observed using airglow instruments, lidars, and riometers up to about 90 km (Ehard et al., 2014;
Jarvis et al., 2003; Smith et al., 2000). Higher than this, one can use radars and optical imagers (Shiokawa
et al., 2012; Röttger, 1994) but these are often located at the typical auroral latitudes, excluding subauro-
ral regions. The atmospheric waves are generally not investigated using auroral emission in the previous
literature.

Improving digital camera technology has inspired amateur photographers to capture artistic shots featur-
ing aurora and other night-sky optical phenomena. Citizen photographs have led to surprising scientific
advances and received worldwide attention. Though technically not an aurora, the Strong Thermal Emis-
sion Velocity Enhancement (STEVE) project (Gallardo-Lacourt et al., 2018; MacDonald et al., 2018) has
linked subauroral ion drifts (Anderson et al., 1991) to mauve-colored optical features on the night skies.
As a result, a growing body of new information has been gathered of the STEVE phenomenon, and it has
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Figure 2. (a) Dunes on 7 October 2018, at 17:34 UT in Siilinjärvi (about 250 km northeast from Ruovesi). The stars in
the background indicate that the field of view is toward the west. The photograph includes the same bright arc toward
the north, seen in Figure 1. The local magnetic field direction is shown by the auroral pillars. (b) All-sky-camera image
from 17:28 UT in Hankasalmi, showing the dunes with a white arrow. Geographic directions (with east and west
flipped) are given with a black mark at the edge of the image, and the brightest stars are marked with red.

recently been suggested that the emission could also be associated with ionospheric heating by heat flux,
ion-neutral friction, or low-energy precipitation (Nishimura et al., 2019).

Following a popular guidebook project to explain auroral forms to citizen observers (Palmroth et al., 2018), a
group of Finnish auroral enthusiasts reported of several events with an unexplained auroral form presenting
a monochromatic wave field in the auroral emission. They named the waves as the dunes. On 7 October 2018,
the auroral watchers spotted the dunes again, this time marking the start of a detective story uncovering
the physics the dunes represent. We organized an ad hoc campaign in the evening of 7 October 2018, where
the scientists and the citizen observers from different parts of Finland were in real-time connection. As a
result, we gained several consecutive and simultaneous pictures with calibrated camera clocks throughout
Finland. These pictures, presented in this paper, formed the backbone of this study.

Figure 1a shows a result of the 7 October 2018 campaign, a picture of the aurora on the night sky, with
background stars indicating a field of view toward the northwest. Figure 1a shows that the main bright arc
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Figure 3. Geometry of the dune mapping procedure using two simultaneous pictures taken from Laitila and Ruovesi
(Figure 1), see text for details.

is located in the north, and additionally there are finger-like rays of green emission extending equatorward
from the bright arc. These finger-like rays are called the dunes, pictured in Laitila in south-western Finland
at 17:41 UT, where they were visible during 17:39–17:59 UT. Figure 1b shows the dunes simultaneously in
Ruovesi, 172 km northeast from Laitila. Figure 2a shows the dunes in Siilinjärvi, about 250 km northeast
from Ruovesi, taken at 17:34 UT. Figure 2b illustrates how the dunes are presented with an all-sky-camera,
featuring the dunes in Hankasalmi at 17:28 UT. The dunes were visible at Siilinjärvi around 17:34–17:58 UT,
while most of the Hankasalmi images during the time of dune observations at other locations were covered
with clouds. Supporting information Movie S1 shows the dunes in Savojärvi, located about 40 km southeast
from Laitila, where they were visible during 17:33–17:51 UT.

This article presents the auroral dunes as a phenomenon and ties them to atmospheric waves. Before we can
fully characterize the dunes, we first introduce the method we developed to analyze the digital photographs,
in section 2. Section 3 presents other supporting data characterizing the dunes and their environmental
conditions. We conclude in section 4 by suggesting that the dunes present a new opportunity to observe the
ignorosphere and that they offer a possibility to investigate coupling of the lower/middle atmosphere to the
thermosphere and ionosphere.

2. Methods
Using simultaneous pictures it is possible to estimate the altitude of the dunes using the background stars
as reference points for trigonometric calculations. This triangulation method is based on identifying same
dunes within two simultaneous images, after which the azimuth and elevation of each dune fingertip can
be determined by finding which stars can be seen behind them (see Figure 3). The star positions can be
accurately determined by using the open source Stellarium software (Chereau, 2019) and by setting the
observation time and locations to be exactly those of the two pictures. The established dune altitude can be
used as a reference to determine their mapping to the ground to infer the wavelength of the dune field.

2.1. Altitude Determination
The altitude of the dunes was estimated using simultaneous pictures of the same dune field, presented in
Figure 1, taken at 17:41 UT from two locations in Finland (Laitila and Ruovesi), which are separated by 172
km. A great property of the night sky is that there is a known star behind each dune fingertip. In each pic-
ture, the equatorward tips of six dunes were identified unambiguously thanks to the presence of a shorter
dune in the dune field, visible in both Figures 1a and 1b. The six dune fingertips are indicated with num-
bers 1–6 starting from the shorter dune in the pictures. For each visually identified dune tip, we searched for
a corresponding object cataloged in the Stellarium software (Chereau, 2019), which calculates the angular
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Table 1
Mapping of the Equatorward Tips of Dunes Observed From Laitila and Ruovesi at 17:41 UT

Dune number 1 2 3 4 5 6
Laitila 𝜓 iL (◦) 302.53 293.97 291.65 287.73 286.92 286.78
(60.87 N, 21.60 E) 𝜆iL (◦) 22.12 19.80 17.03 14.92 12.47 10.47
Ruovesi 𝜓 iR (◦) 275.45 272.45 271.88 272.10 272.82 274.27
(61.82 N, 24.15 E) 𝜆iR (◦) 15.88 13.23 11.73 9.57 8.53 7.47

position of a great amount of known celestial objects at a given time and location on Earth. The dune equa-
torward tips were hence mapped to the local night sky with about 0.5◦ accuracy in azimuth 𝜓 and elevation
𝜆. The corresponding values are given in Table 1. The uncertainty to this method comes from two differ-
ent aspects. First, the amount of stars visible in the pictures is limited, and hence some visual interpolation
between some known stars had to be employed. Second, the dunes farther away at lower elevation angles
are somewhat blurred because there are more emission targets between the observer and the dune location.
However, those integrated effects do not prevent the unambiguous identification of each dune tip.

Let us consider the geocentric frame, in which O denotes the origin at the center of mass of the Earth. Let L
represent Laitila and R represent Ruovesi, as denoted in Figure 3. Let (𝜃L, 𝜑L) and (𝜃R, 𝜑R) be the geographic
latitude and longitude of Laitila and Ruovesi, respectively. For a given dune i, let Pi denote its equatorward
tip, and let (𝜆iL, 𝜓 iL) and (𝜆iR, 𝜓 iR) be the elevation and azimuth of the dune tip when observed from Laitila
and Ruovesi, respectively. Finally, let diL and diR be the distance between dune tip i and Laitila and dune tip
i and Ruovesi, respectively.

We can write
−−→
OPi =

−→
OL + −−→LPi =

−−→
OR + −−→RPi. This can be written as a system of linear equations as follows:

⎧⎪⎨⎪⎩

Ax,iL diL − Ax,iR diR = RE
(
cos 𝜃R cos𝜑R − cos 𝜃L cos𝜑L

)
A𝑦,iL diL − A𝑦,iR diR = RE

(
cos 𝜃R sin𝜑R − cos 𝜃L sin𝜑L

)
Az,iL diL − Az,iR diR = RE

(
sin 𝜃R − sin 𝜃L

)
,

(1)

with RE the Earth radius and, bearing in mind that the azimuth is defined as positive eastward from the axis
pointing toward the local north,

Ax,iL = − cos 𝜆iL cos𝜓iL sin 𝜃L cos𝜑L − cos 𝜆iL sin𝜓iL sin𝜑L + sin 𝜆iL cos 𝜃L cos𝜑L

A𝑦,iL = − cos 𝜆iL cos𝜓iL sin 𝜃L sin𝜑L + cos 𝜆iL sin𝜓iL cos𝜑L + sin 𝜆iL cos 𝜃L sin𝜑L

Az,iL = cos 𝜆iL cos𝜓iL cos 𝜃L + sin 𝜆iL sin 𝜃L

Figure 4. (a) Altitude of dunes numbered 1–6 (error bars from standard deviation). (b) Mapping of the dunes seen
from Laitila and Ruovesi (red bars, taken simultaneously at 17:41 UT, see Figure 1). The Siilinjärvi dunes (see
Figure 2a) are observed at 17:34 UT (purple). The Hankasalmi Observatory all-sky-camera field of view projected at 100
km altitude is given in blue.
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and, similarly,

Ax,iR = − cos 𝜆iR cos𝜓iR sin 𝜃R cos𝜑R − cos 𝜆iR sin𝜓iR sin𝜑R + sin 𝜆iR cos 𝜃R cos𝜑R

A𝑦,iR = − cos 𝜆iR cos𝜓iR sin 𝜃R sin𝜑R + cos 𝜆iR sin𝜓iR cos𝜑R + sin 𝜆iR cos 𝜃R sin𝜑R

Az,iR = cos 𝜆iR cos𝜓iR cos 𝜃R + sin 𝜆iR sin 𝜃R.

For each dune i, the least squares solution of this system can be found for diL and diR, which yields two
estimated positions for the dune tip Pi in the geocentric frame,

−−−→
OPiL and

−−−→
OPiR. By calculating the norm of

−−−→
OPiL and

−−−→
OPiR and subtracting the local value of the Earth radius (RE ≈ 6, 359.5 km at 61◦ latitude), we

obtain two estimations of the altitude of Pi, hiL, and hiR, which are the values shown in Figure 4a in red and
blue, respectively. The error bars given in Figure 4a correspond to the standard deviation of the two sets of
six altitude estimates derived with this method.

2.2. Mapping to Ground and Wavelength Estimation
The solution to equation system (1) also gives the ground projection of the equatorward tips of the dunes.
Since it proves more difficult to unambiguously identify the poleward ends of the dunes in both the Laitila
and the Ruovesi pictures, their mapping to the ground is achieved using only one picture and assuming the
altitude to be h = 100 km, that is, the altitude of the dunes as shown in Figure 4a. We used the Laitila picture
for this purpose and the coordinates of vector

−−−→
OPi′ =

−→
OL + −−→LPi′ in the geocentric frame, for each i′ between

1 and 6, write

⎧⎪⎨⎪⎩

OPi′ ,x = RE cos 𝜃L cos𝜑L + 𝛼Ax,i′L

OPi′ ,𝑦 = RE cos 𝜃L sin𝜑L + 𝛼A𝑦,i′L

OPi′ ,z = RE sin 𝜃L + 𝛼Az,i′L,

(2)

where 𝛼 is the unknown parameter to determine and Ax,i′L, A𝑦,i′L, Az,i′L completely analogous to Ax,iL, Ay,iL,
Az,iL, respectively, but for the poleward tips of the dunes instead of the equatorward tips. Since the altitude
of the dunes is assumed, the equation to solve is

||−−−→OPi′ ||2 =
(

RE + h
)2
, (3)

which is a quadratic equation of unknown 𝛼:(
A2

x,i′L + A2
𝑦,i′L + A2

z,i′L

)
𝛼2 + 2RE

(
cos 𝜃L cos𝜑LAx,i′L + cos 𝜃L sin𝜑LA𝑦,i′L + sin 𝜃LAz,i′L

)
𝛼

− h
(
2RE + h

)
= 0

(4)

Once 𝛼 is determined, the latitude and longitude of the considered dune tip are easily obtained by transform-
ing the Cartesian coordinates of

−−−→
OPi′ to the spherical system. By applying a similar method for the poleward

and equatorward ends of selected dunes in the Siilinjärvi picture taken at 17:34 (Figure 2a), one can then
obtain the mapping of these dunes, as shown in Figure 4b. The wavelength of the dunes can then be esti-
mated by dividing the distance from the tip of dune 1 to that of dune 6 by 5, that is, the number of intervals
between dunes, which gives a value of 45 km. The error on this value can be evaluated by taking the stan-
dard deviation of the distances between two consecutive dunes, that is, 1–2, 2–3, … , 5–6, which gives 14 km.
Hence, based on those calculations, the dunes observed during this event have a wavelength of 45 ± 14 km.

3. Dune Characteristics
From the method described in section 2.1, we estimated the altitude of the dunes to be around 100 km,
as presented in Figure 4a, showing the dune fingertip altitudes in Laitila and Ruovesi with red and blue,
respectively. Figure 4a shows that the dune fingers numbered with 1–6 all appear within a similar altitude
range, indicating that the dunes appear within a layer of constant altitude of about 100 km. Since the trian-
gulation method is based on identifying the same feature in simultaneous images, we verified the correct
identification of the altitude by shifting the dune numbers in the Laitila image by +1 or −1 with respect to
the numbers on the Ruovesi photograph and performed the altitude calculation with the shifted numbers.
This test gives strong confidence in the altitude calculation, as it results in a slope in the altitude as a func-
tion of dune number, and the error bars are 4–6 times larger. This test essentially characterizes minimization
of the error and indicates that the same dunes were indeed examined from both locations.
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Figure 5. (a) Vertical total electron content (vTEC) using multiple simultaneous GPS satellite signals through the
ionosphere at 17:37–17:41 UT and (b) ionospheric vertical TEC integrated from a three-dimensional GPS satellite
tomography electron density reconstruction using data accumulated during 4 min. The dunes observed at 17:41 UT
from Figure 4b are shown as red bars in panel (b).

Section 2.2 shows how the dune altitude can be used as a reference to determine their mapping to the ground.
Based on section 2.2, the wavelength of the dune wave field is 45 ± 14 km. Figure 4b shows the mapping of
the Laitila dunes to the ground by red color. By applying the same method for the poleward and equatorward
ends of selected dunes in the Siilinjärvi picture taken at 17:34 (Figure 2a), one can then obtain the mapping of
these dunes, as also shown in Figure 4b. The mapping procedure indicates that the dune wave field extends
at least from 13◦E to 22◦E in geographic longitude, that is, from western Sweden to western Finland, and
remains monochromatic across its entire extent. The pictures of the dunes show that the furthest waves are
clearest, indicating stronger emission with a more slanted viewing angle, but no apparent wave structure
near the zenith. In particular, in Ruovesi the dunes are not seen directly above (Figure 1b), even though the
Ruovesi image zenith is near the mapped dune field from Siilinjärvi located further northeast. This suggests
that the green emission comes from a thin layer, which can be seen when there are more emission targets
along the line of sight.

The oscillation within the auroral emission is either due to the variation in the precipitating electron source
or by undulations of the underlying atmospheric Oxygen density. To investigate this, Figure 5a presents
ionospheric vertical total electron content (vTEC) at 17:37–17:41 UT at pierce points, at which the Global
Positioning Satellite (GPS) radio signals intersect with a thin layer ionospheric model assumed to be at 250
km altitude, while Figure 5b presents ionospheric vTEC integrated from a three-dimensional GPS satellite
tomography electron density reconstruction (Norberg et al., 2018). Essentially, Figure 5a is more directly
based on actual measurements, but makes a more drastic assumption on the ionosphere and its height,
which are more elaborately handled in Figure 5b. Figures 5a and 5b both show excess of electrons within
the locations where the dunes were observed with digital cameras. Despite the zonal variation present in
Figure 5, the zonal difference in the electron density is not significant within the tomographic accuracy
(Norberg et al., 2018), suggesting that the resolution is not good enough to discern any longitudinal struc-
tures in the 45 km scale. To conclude whether there is a variation within the precipitation source, one needs
spacecraft measurements above the dunes, which are not available during this event. However, the time
lapse from the event (Movie S1) indicates that the dune rays seem rather stationary and appear and disap-
pear as dictated by the stronger and weaker auroral emission. This gives the impression that the undulation
is within the atmosphere, and that it is only illuminated by the aurora.

Another available subauroral data source is ground-based magnetometers, which are used to infer iono-
spheric equivalent currents (Amm & Viljanen, 1999) at 17:41 UT in Figure 6a. The dunes appear well in
the center of the IMAGE magnetometer network, indicating that the estimated equivalent currents are rep-
resentative; that is, the shape of the vector field is not distorted by currents outside of the measurement
area. Figure 6a shows that the dunes are spatially colocated with a strong eastward horizontal electrojet. At
(65◦N, 23◦E), the equivalent currents rotate anticlockwise, which is a strong sign of an upward field-aligned
current (FAC), indicative of electron precipitation. The location is consistent with the discrete bright arc,
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Figure 6. (a) Equivalent currents within the ionosphere at 17:41 UT, 7 October 2018. The dunes observed at 17:41 UT
from Figure 4b are also shown as red bars. (b) Temporal evolution of the northward geomagnetic field component (X),
which indicates eastward horizontal electrojets above the stations. The offsets, given at the top right corner of the
panel, were defined such that the curves are ordered vertically according to the geomagnetic latitude of the
corresponding magnetometer station. The black arrows indicate that the enhanced eastward electrojet was observed
between stations MEK to NUR (see locations in panel b) roughly between 17:35 and 17:55 UT. The geomagnetic
latitude range of stations TAR to OUJ is about 54.5◦ to 61◦, respectively.

which is located just at the edge of the field of view of the all-sky-camera (Figures 2b and 4b). West from the
Tartu (TAR) station, the equivalent currents suggest a downward current, indicating upwelling electrons.
The location is consistent with the void of electrons within 58–60◦ latitude in Figures 5a and 5b. This cur-
rent and electron density pattern is consistent with Region 1 and Region 2 FACs, which is common in the
evening sector (Juusola et al., 2014). Figure 6b shows the temporal evolution of the northward component of
the ground-level geomagnetic field, indicating that the eastward current is also temporally concurrent with
the dunes.

The TEC and equivalent current observations can be used together to deduce the conditions for the dunes.
The TEC observations (Figure 5) respond to variations of the ionospheric F layer, while the equivalent
currents (Figure 6) in turn concern the electric currents in the E layer below. The enhancement of both
at the same latitude range where the dunes appear would imply a broad energy spectrum in the auroral
particle precipitation in that area, which would indicate auroral emission in a wide altitude range. As the
dunes appear in contrast in a thin layer, we can conclude that their appearance in altitude is controlled
rather by variations in the thermospheric oxygen content than by processes controlling auroral precipitation.
Although not conclusive, this further suggests that the dunes are due to atmospheric undulation.

Table 2
List of the Dune Events Caught by the Citizen Scientists Either Through the Open Taivaanvahti (https://www.
taivaanvahti.fi) Service or Through Social Media Searches

Day Time AE (nT) SYM-H (nT) Place
10 Oct 2018 17:36–17:45 UT ∼550* −42.5 Maaninka [63.2◦N, 27.2◦E]
7 Oct 2018 17:34–17:59 UT ∼650* −38.8 Several throughout Finland and Sweden
24 Oct 2017 ∼16:30 UT 756.5 −23.4 Sievi [63.9◦N, 24.5◦E]
13 Oct 2017 ∼17:00 UT 637.1 −49.5 Laitila
20 Jan 2016 17:00–17:30 UT 606.8 −86.1 Several places in Finland, Norway, Scotland
12 Oct 2015 ∼18:00–19:00 UT 687.2 −34.4 Several places throughout Southern Finland
7 Oct 2015 17:28–18:58 UT 1,166.9 −86.3 Several places throughout Southern Finland

Note. In the Taivaanvahti service the events can be accessed with this link (https://www.taivaanvahti.fi/observations/
browse/pics/3210756). For all events, the available geophysical data are consistent with the behavior described in this
paper. The AE and SYM-H columns give the average value of the AE and SYM-H indices, respectively, around the time
of the observation, illustrating the geomagnetic activity conditions. The numbers marked with (*) are visually averaged
from provisional data from the Kyoto Data Center for Geomagnetism (http://wdc.kugi.kyoto-u.ac.jp/index.html).

PALMROTH ET AL. 8 of 12

https://www.taivaanvahti.fi
https://www.taivaanvahti.fi
https://www.taivaanvahti.fi/observations/browse/pics/3210756
https://www.taivaanvahti.fi/observations/browse/pics/3210756
http://wdc.kugi.kyoto-u.ac.jp/index.html


AGU Advances 10.1029/2019AV000133

The solar wind data (not shown) during the event, retrieved from the OMNI data base (King & Papitashvili,
2005), indicate that the interplanetary magnetic field z component during the event is moderately nega-
tive around −3 nT, while the y and x components show an away-type Parker spiral conditions, indicating
duskward interplanetary magnetic field with negative x. The solar wind speed is moderately increased and
is slightly above 500 km/s. The solar wind conditions for the event are consistent with a high-speed stream
coming from a coronal hole.

While we have presented geophysical data for 7 October 2018 in this article, the thorough investigation of the
dune phenomenon yielded other events, shown in Table 2, which can be accessed in the open Taivaanvahti
observation service maintained by the Finnish Association for Amateur Astronomers (Ursa). Table 2 gives
the time and place of the dune observations as accurately as possible along with the geomagnetic conditions
during the events. Since this 7 October 2018, event is the only event with coordinated campaign observations
carried out in real-time guidance by scientists, the duration of the events is not known in all cases. The first
clear event discussed among the citizen scientists is 7 October 2015. The observers report that the dunes are
a rare phenomenon, faintly visible to the naked eye. Common to all reported events is the appearance of a
monochromatic and horizontal wave field in the diffuse green aurora equatorward of the discrete arc. All
events are recorded in the evening hours and are associated with a similar pair of upward and downward
FACs as in Figure 6. All occur during moderate magnetic activity with AE (Davis & Sugiura, 1966) and
SYM-H (Iyemori, 1990) indices ranging from 500 to 1,000 nT and −20 to −90 nT, respectively, during which
the eveningside auroral zone is broader compared to nonactive times (Newell et al., 2009). All but one event
are observed in October.

4. Interpretation and Conclusions
We have presented a new auroral form consisting of regular wave forms we call the dunes, which to our
knowledge have not been reported before in scientific literature. We also developed a novel method to ana-
lyze citizen scientist photographs with which we can place the dunes into a thin layer that has a constant
altitude of 100 km. The mapping of the dune field shows that the extent of the monochromatic waves spans
at least from Sweden to Finland, with a wavelength of 45 km. Based on the supporting information Movie S1
and other supporting data we associate the dunes to the oscillation of the oxygen density, giving a variability
to the auroral emission from the variability of the excitation targets within the atmosphere. While the evi-
dence is not sufficient for us to conclude beyond a doubt that the dunes are not a manifestation of variations
in the auroral precipitation, we argue they are more suggestive of them being a result of atmospheric waves.

The association of the dunes to the enhanced electron density and a pair of FACs may indicate at least
two scenarios: First, the current system and enhanced electron densities simply indicate where the auro-
ral zone is, suggesting that this is where the aurora acts like a torch illuminating the waves. Second, this
kind of electrodynamic system including FAC and enhanced electron densities is associated with strong
energy deposition from the magnetosphere, in the form of Joule heating (Palmroth et al., 2005) and electron
precipitation (Palmroth et al., 2006). This may contribute to the phenomenon as we discuss below.

The first idea coming to mind to interpret the oscillation is based on atmospheric gravity waves, which are
common at the dune altitudes (Rauthe et al., 2008). The north-south direction of the wave fronts would sug-
gest a source at the Scandinavian mountains. However, mountain waves can be disturbed several times while
propagating upward (Vadas, 2007; Xu et al., 2007), implying that the resulting wave field would not likely
be horizontal nor monochromatic and would not extend over large distances without observable changes
in the wave morphology. Further, as the diffuse aurora is rather common equatorward of the discrete arc
(Sotirelis & Newell, 2000), one should see the dunes more often if they were “only” the common gravity
waves illuminated by the common diffuse green emission. Therefore, we conclude that the dunes are not
explained by “just” gravity waves. Indeed, the rarity of the events suggests that multiple trigger conditions
may have to take place simultaneously to observe the dunes.

The monochromatic nature of the wave field suggests that spectral wave filtering may have occurred when
the wave has propagated toward the 100 km altitude. Gravity wave filtering depends on mean zonal wind
direction and speed in the stratosphere and mesosphere (Lukianova et al., 2015; Siskind et al., 2003; Xu et
al., 2007). During the transition period between strong westward (summer) and eastward (winter) winds,
for example, in October (Lukianova et al., 2018), the seasonally varying lower atmospheric winds could help
to create suitable spectral filtering conditions for the gravity waves propagating upward. Such a scenario
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has been suggested by Meriwether and Gerrard (2004). Even during wave filtering conditions, the spectrally
filtered gravity waves would have to be ducted so that they could be observed as a horizontal wave field.

A possible cause for the dunes is a reportedly rare phenomenon called “mesospheric bore” (Miller et al.,
2015) related to thin mesospheric inversion layers below the mesopause, associated to either increased tem-
peratures or strong wind shears. The mesospheric inversion layer acts as a waveguide ducting gravity waves
and allowing them to propagate horizontally and quasi-monochromatically over large distances without
attenuation (Meriwether & Gerrard, 2004). The mesospheric bores are mostly observed in the low and mid-
latitudes (Su et al., 2018), very rarely near the poles (Nielsen et al., 2006), and to our knowledge never at the
auroral zone using auroral emission for detecting them. This is because usually their detection is based on
airglow and nightglow observations, which can be contaminated by the auroral emission (Su et al., 2018),
leading to discard auroral latitudes in the majority of mesospheric bore studies. The morphology of the dune
wave field is in good agreement with the mesospheric bores: the dunes exist within a thin layer, and the wave
field has a large extent ranging from Sweden to Finland. The monochromatic wavelength of 45 km is con-
sistent with mesospheric bores. Further, the mesospheric bore occurrence rate is largest around equinoxes
(Su et al., 2018) and during evening hours (Hozumi et al., 2019).

Our results may open a new way of investigating the MLTI at subauroral latitudes, which are in general
difficult to measure. There are only a few direct in situ spacecraft measurements due to the large neutral
drag. Many instruments are either located further poleward at auroral zones (Röttger, 1994; Shiokawa et al.,
2012), or the altitudes at which the instruments measure do not reach auroral altitudes. For example, gravity
wave measurements using airglow instruments, lidars, and riometers can only be made up to about 90 km
(Ehard et al., 2014; Jarvis et al., 2003; Shiokawa et al., 1999; Smith et al., 2000). Meteor radars can measure
at around 100 km altitude (Su et al., 2014), but there are a limited number of such instruments at the dune
latitudes. In general, gravity waves are not to our knowledge measured through auroral emission. The lack
of direct observations of the MLTI at subauroral latitudes could be complemented by the large number of
citizen observers there. Hence, the mesospheric bores could be observed more often if their detection is
extended to include auroral emission.

The dunes may provide new insights into the structure of the mesopause as a response to driving by iono-
spheric energy deposition. Since all dune events occur during moderate magnetic activity (see Table 2) and
are spatially and temporally associated with a FAC pattern that suggests energy deposition, it is intriguing to
contemplate that the extra ionospheric energy deposition could contribute to the conditions favoring meso-
spheric bores. As stated above, the mesospheric bores require a ducting layer that according to a hydraulic
jump theory (Dewan & Picard, 1998) can be formed either due to a layer of increased temperature below the
mesopause, or by a wind shear above the mesopause. The ionospheric energy deposition could then con-
tribute to the ducting layer by two mechanisms: First, if the mesopause is lifted to higher altitude than the
layer at which the energy deposition from electron precipitation occurs, the additional precipitation energy
might create or contribute to the mesospheric inversion layer by the additional energy through the heat-
ing of neutrals below the mesopause. This would be more likely with monoenergetic precipitation, during
which the precipitation energy increases atmospheric temperature within a thin layer. Second, Joule heating
deposits energy mainly at around 125 km altitude in the form of temperature that enhances neutral winds
(Lu et al., 2016). Additional Joule heating could therefore strengthen the wind shear, which together with
the mesopause below could act as a waveguide. To our knowledge neither mechanism has been suggested
before, possibly due to the simple reason that mesospheric bores have not observed at auroral zones before.
However, we emphasize that both the temperature enhancement and large wind shears required to create
the waveguide could rather simply be provided by magnetospheric and ionospheric energy input, and to
study this further one would need more dune observations at the auroral zones.

Finally, it is clear that the citizen scientist photographs are becoming accurate enough for scientific inves-
tigations (Archer et al., 2019). Due to the narrow field of view and good resolution, the new digital camera
pictures can capture small-scale auroral features that can be difficult to discern in the more typical instru-
mentation. Further, as the majority of the citizens with cameras populate subauroral latitudes, the pictures
are especially capturing subauroral physics, where ionospheric instrumentation placed at auroral latitudes
are of limited use. Hence, we speculate that there will be an increasing number of studies with citizen
scientists in the future, especially identifying new small-scale optical structures at subauroral latitudes.

PALMROTH ET AL. 10 of 12



AGU Advances 10.1029/2019AV000133

Data Availability Statement
GPS TEC data products and access through the Madrigal distributed data system are provided to the com-
munity (http://www.openmadrigal.org) by the Massachusetts Institute of Technology (MIT) under support
from US National Science Foundation Grant AGS-1242204. Data for TEC processing are provided from
the following organizations: UNAVCO, Scripps Orbit and Permanent Array Center, Institut Geographique
National, France, International GNSS Service, The Crustal Dynamics Data Information System (CDDIS),
National Geodetic Survey, Instituto Brasileiro de Geografia e Estatística, RAMSAC CORS of Instituto
Geográfico Nacional de la República Argentina, Arecibo Observatory, Low-Latitude Ionospheric Sensor
Network (LISN), Topcon Positioning Systems, Inc., Canadian High Arctic Ionospheric Network, Centro di
Ricerche Sismologiche, Système d'Observation du Niveau des Eaux Littorales (SONEL), RENAG: REseau
NAtional GPS permanent, GeoNet—The official source of geological hazard information for New Zealand,
GNSS Reference Networks, Finnish Meteorological Institute, and SWEPOS-Sweden. Access to these data
is provided by madrigal network via this site (http://cedar.openmadrigal.org/). The IMAGE data are avail-
able online (https://space.fmi.fi/image/). We thank the institutes who maintain the IMAGE Magnetometer
Array: Tromsø Geophysical Observatory of UiT the Arctic University of Norway (Norway), Finnish Mete-
orological Institute (Finland), Institute of Geophysics Polish Academy of Sciences (Poland), GFZ German
Research Centre for Geosciences (Germany), Geological Survey of Sweden (Sweden), Swedish Institute of
Space Physics (Sweden), Sodankylä Geophysical Observatory of the University of Oulu (Finland), and Polar
Geophysical Institute (Russia). The solar wind data and the geomagnetic indices were retrieved from OMNI-
web (https://omniweb.gsfc.nasa.gov), as well as World Data Center for Geomagnetism, Kyoto (http://wdc.
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