
Abstract
In this work, we propose a new deep imitation 

learning (DIL)-driven edge-cloud computation off-
loading framework for MEC networks. A key objec-
tive for the framework is to minimize the offloading 
cost in time-varying network environments through 
optimal behavioral cloning. Specifically, we first 
introduce our computation offloading model for 
MEC in detail. Then we make fine-grained offload-
ing decisions for a mobile device, and the problem 
is formulated as a multi-label classification prob-
lem, with local execution cost and remote network 
resource usage consideration. To minimize the off-
loading cost, we train our decision making engine 
by leveraging the deep imitation learning method, 
and further evaluate its performance through an 
extensive numerical study. Simulation results show 
that our proposal outperforms other benchmark 
policies in offloading accuracy and offloading cost 
reduction. At last, we discuss the directions and 
advantages of applying deep learning methods to 
multiple MEC research areas, including edge data 
analytics, dynamic resource allocation, security, 
and privacy, respectively.

Introduction
With the development of emerging mobile appli-
cations (e.g., augmented reality, 3D gaming, and 
various Internet of things [IoT] applications), more 
and more mobile applications become resource-
thirsty and delay-sensitive. To this end, the Europe-
an Telecommunications Standards Institute (ETSI) 
provided a concept of multi-access edge comput-
ing (MEC) in their 5G standard [1]. In the MEC 
architecture, distributed MEC servers are located 
at the network edge to provide cloud-computing 
capabilities and IT services with low latency, high 
bandwidth, and real-time processing. The edge 
servers can be connected to the remote cloud 
through backhaul links to leverage the resource-
ful computation capacities and IT services of 
the remote cloud. By the use of the collabora-
tive edge-cloud computation offloading between 
mobile users and servers, mobile users’ commu-
nication overhead and execution delay can be 
significantly reduced.

Nevertheless, mobile devices usually fail to 
make the most appropriate fine-grained offloading 
decisions in real time, especially in the time-varying 

and uncertain MEC environments. On one hand, 
the wireless and backhaul links between the mobile 
devices and edge-cloud servers are time-varying 
and uncertain. On the other hand, the MEC server 
offers only limited radio, storage, and computation-
al resources, especially in hotspot areas.

To this end, a new research area, called intelli-
gent edge learning, is emerging [2, 3], which refers 
to the deployment of machine learning algorithms 
at the network edge. One of the key motivations 
of pushing machine learning toward the edge is to 
allow rapid access to the enormous real-time data 
generated by mobile users for fast training and fast 
response to real-time offloading requirements.

Recently, deep imitation learning (DIL) [4], 
which is the problem of training robotic skills from 
human demonstration, has attracted the atten-
tion of researchers in the field of robotics (e.g., 
autonomous driving, gesturing, and manipulation). 
Compared to traditional machine-learning-based 
offloading methods, DIL carries four advantages:
•	 Better performance with large data scale
•	 Noteworthy accuracy in decision making
•	 Fast inference speed
•	 Easy and quick to deploy
Thus, it makes sense to deploy a novel DIL-based 
offloading schedule in MEC-empowered 5G net-
works.

In this article, we study the issue of making rapid 
offloading decisions for a single mobile device in 
MEC network environments. Our objective is to 
minimize the offloading cost in a time-varying net-
work environment, subject to network resource 
constraints. To this end, we propose an intelligent 
edge computation offloading framework to make 
fine-grained offloading decisions for the mobile 
device in the MEC network. The offloading deci-
sions made by the mobile device comprehensively 
consider both the execution cost on the mobile 
device side and time-varying network conditions 
(including available communication and computa-
tion resources, wired and wireless channel condi-
tions) on the MEC side.

In summary, the contributions of this article are 
summarized as follows. Based on behavioral clon-
ing [4], which performs supervised learning from 
the observation of demonstrations (i.e., the opti-
mal offloading decisions in this article), we design 
a DIL-based offloading model for the intelligent 
framework. Our model is first trained from learn-
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INTELLIGENT RADIO: WHEN ARTIFICIAL INTELLIGENCE MEETS THE RADIO NETWORK ing demonstrations in an offline manner. After a 
quick and easy deployment, our model can make 
near-optimal online offloading decisions at a very 
fast inference speed. We discuss potential direc-
tions and advantages for applying deep learning 
into multiple MEC research areas.

The rest of this article is organized as follows. 
We first introduce the related works in the follow-
ing. Then we present our computation offloading 
model. Next, we formulate the optimization prob-
lem and describe the DIL-based offloading model. 
Simulation results are then shown. We further dis-
cuss directions and advantages of deep learning 
for MEC. Finally, we conclude the article in the 
final section.

Related Work
In this section, we first survey the traditional com-
putation offloading strategies. Then we review the 
state-of-the-art machine-learning-based computa-
tion offloading strategies. Last but not least, we 
introduce DIL The related works are summarized 
in Table 1.

Traditional Computation Offloading Strategies
From the perspective of a mobile user in the MEC 
network, it needs to decide whether and where to 
offload its computational tasks to enhance its qual-
ity of service (QoS). However, in practical edge 
network environments, the decision making prob-
lem is sophisticated because the network environ-
ments are randomly uncertain and time varying. 
Traditional optimization approaches (e.g., game 
theory [5], Lyapunov optimization [6]) for making 
computation offloading decisions in edge com-
puting environments has been widely studied. For 
example, Chen et al. [5] study the computation 
offloading problem in multi-user MEC environ-
ments. They prove that it is NP-hard to obtain a 
centralized optimal solution, and propose a game 
theoretic approach to achieve optimal offloading 
decisions in a distributed manner. The authors of 
[6] investigate the computation offloading issue 
for energy harvesting (EH) devices in MEC envi-
ronments. They exploit Lyapunov optimization 
to jointly minimize the execution latency and 
task failure for EH devices. The main drawback 
of traditional computation offloading strategies is 
their high algorithm complexity, especially in the 
multi-user multi-server edge computing environ-
ments. Thus, it is hard to deploy the strategies to 
practical edge network environments.

Reinforcement-Learning-Based  
Computation Offloading Strategies

Reinforcement learning (RL) can solve the prob-
lem of how a decision engine chooses the optimal 
action through interacting with outside environ-
ments. The main objective of RL is to choose an 
action for each state of the system in order to 
maximize the long-term (delayed) cost. Thus, RL is 
suitable for the decision making problem of com-
putation offloading in a stochastic and dynamic 
edge computing network. For example, Dinh et 
al. [7] studied the computation offloading prob-
lem in time-varying MEC environments. They con-
sider a multi-user multi-MEC-server environment 
and propose a model-free reinforcement learn-
ing (RL) offloading scheme. The objective is to 
make mobile users learn their long-term offload-

ing decisions to minimize their long-term cost. 
The authors of [8] proposed a Markov decision 
process (MDP)-based dynamic offloading frame-
work in a single-user intermittently connected 
cloudlet network. Through a value iteration algo-
rithm, their decision engine can obtain an optimal 
policy to minimize the long-term offloading costs 
(i.e., computation and communication costs). The 
main advantage of RL is that it can learn with-
out a priori knowledge (i.e., the model-free fea-
ture). However, with the increase of the number 
of system and action states, the computational 
complexity of RL will grow rapidly (i.e., the curse 
of dimensionality problem). Besides, the perfor-
mance of such offloading framework heavily relies 
on hand-crafted features (e.g., the pre-calculated 
transition probability of MDP).

Recently, researchers’ attention has turned to 
deep reinforcement learning (DRL). DRL, which 
combines traditional reinforcement learning and 
deep learning, is an emerging area of machine 
learning research. DRL is based on representation 
learning to automatically extract features from mas-
sive raw data, and can be regarded as an ideal tool 
to predict computation offloading decisions. For 
example, the authors of [9] jointly optimize net-
working, caching, and computing resources for 
a vehicular network. Due to the high complexity 
of the joint optimization problem, they propose 
a DRL method to solve the problem. The main 
advantage of DRL for computation offloading 
relates to its online training manner, which is suit-
able in a dynamic network environment. However, 
the corresponding training time is very long.

Deep Imitation Learning
Deep imitation learning is an efficient approach 
to teach intelligent agents skills through learning 
demonstrations. The authors of [4] consider a vir-
tual reality (VR) scenario to teach a PR2 robot to 
learn policies from robotic manipulation demon-
strations. They show that high-quality robotic 
manipulation demonstrations play a key role in 
DIL. The advantages of DIL relate to its offline 
training and online decision making. Thus, a 
trained model can be deployed easily and quick-
ly. However, the main limitation is that the train-
ing phase of DIL heavily relies on a large number 
of demonstrations, and it is hard to collect the 
demonstrations.

In this work, we propose a DIL-based com-
putation offloading strategy for edge computing 
networks. We first generate high-quality demon-
strations (i.e., the optimal offloading actions) and 
train our model in an offline manner. Then, after a 

TABLE 1. Machine-learning-based computation offloading methods.

Methods
Related 
works

Advantages Disadvantages

Traditional [5, 6] Performance guarantee High complexity

Reinforcement 
learning 

[7, 8]  Model-free Curse of dimensionality

Deep reinforcement 
learning 

[9] 
Suitable for dynamic 
environments

Long online training time 

Deep imitation 
learning 

Our work
Quick and easy to deploy, 
fast online inference speed

Requires a large number of 
offline demonstrations



quick and easy deployment, our model can make 
near-optimal online offloading decisions with a very 
fast online inference speed.

Note that DIL is a traditional supervised learning 
approach, and its training and evaluation operate 
in the same domain. If we want to apply a trained 
model to a new domain, we can retrain the model, 
or take advantage of transfer learning (TL) [10]. 
Transfer learning is the ability of a system to rec-
ognize and apply knowledge and skills learned in 
previous domains/tasks to novel domains/tasks. 
TL allows us to deal with variational environments 
by leveraging the already existing labeled data of 
some related task or domain. In practical edge 
computing scenarios, we can combine DIL and TL 
to deal with more complex tasks (e.g., finding opti-
mal resource allocation schemes) that are based 
on already trained models.

Computation Offloading Model
We study the computation offloading for a single 
mobile device in a small cell-based MEC system. 
Note that the small cell-based MEC system con-
sists of: 
•	 Mobile devices
•	 MEC server, also called small cell cloud-en-

hanced e-Node B (SCceNB)
•	 Remote cloud
Thus, the mobile device can:
•	 Execute its computational tasks locally
•	 Offload its tasks to the SCceNB through a wire-

less link
•	 Offload its tasks to the remote cloud through 

wireless and backhaul links

Application Model
We model a mobile application A as a weighted 
directed graph A = (T, D), where T represents 
the sub-tasks, and D the data dependencies (i.e., 
input and output data) between the sub-tasks. 
Then we split the application into multiple sub-
tasks by fine-grained partitioning. Note that each 
sub-task of the application can be offloaded and 
executed independently.

We adopt a parameter tuple 〈t, xt, dt–1,t, dt,t+1〉 
to characterize the mobile application A for the 
mobile device, where t is the current sub-task, xt(t 
∈ T) represents the workload of sub-task t. dt–1,t 
and dt,t+1 denote the size of input and output data 
for sub-task t, respectively. Let rt (in CPU cycles 
per byte), denote the complexity of sub-task t. It 
denotes the required CPU cycles a CPU core will 
perform per byte for the input data processed by  
sub-task t. Thus, xt can be given as xt = rt · dt–1,t. 
Note that xt is decided by the nature (e.g., algo-
rithm complexity) of the sub-task t.

Execution Model
The mobile device can process the mobile appli-
cation A locally. According to the application 
parameter tuple, the task execution time for 
the mobile device to execute sub-task t locally 
is decided by the computation capacity of the 
mobile device (in million instructions per second).

For the edge execution, the mobile device can 
establish a cellular link with the SCceNB and off-
load its own sub-tasks to the SCceNB via the radio 
access network (RAN). Based on the assumptions 
above, the delay for sub-task input and output data 

transfer through cellular transmission is determined 
by the data size of data exchange between sub-
tasks and the cellular data rates. In addition, the 
edge execution time (i.e., for the SCceNB to exe-
cute sub-task t) is determined by the total comput-
ing resource of the available CPU cores.

For the remote cloud execution, the end-to-end 
(E2E) latency is decided by the RAN and core net-
work as well as the backhaul between them. In this 
article, we consider that the E2E delay consists of 
wireless and wired delays. Let W denote the wired 
delay between the SCceNB and the remote cloud. 
Note that the delay consists of:
•	 The backhaul delay between SCceNB and the 

core network
•	 The processing delay of the core network
•	 The communication delay for data transmission 

between the core network and remote cloud/
Internet

Problem Formulation 
Decision Making Procedure

When the mobile device receives the offloading 
requirement of application A, it first sends a mes-
sage on the data size D of the sub-tasks for the 
application. The report also includes the current 
wireless channel state (e.g., the channel quality 
between the mobile device and the SCceNB).

After receiving the message, the SCceNB allo-
cates m subcarriers (m ∈ M) and n CPU cores 
(n ∈ N) to each sub-task for the mobile device, 
according to the entire available computation and 
communication resources and the received mes-
sage. Thus, the current system state of computa-
tion offloading can be denoted by S = (T, D, N, M, 
W), which consists of the mobile device’s task pro-
files, network resource status, as well as the wired 
delay status.

According to the observed system state S, the 
mobile device calculates the immediate costs of 
local-edge-cloud executions for each sub-task, and 
makes action decisions of either processing the 
sub-task locally or offloading to the edge-cloud side 
for the current mobile application A.

Computation Offloading Optimization Problem
The system state of the MEC network is given as 
S. Assume that the action space for computation 
offloading optimization is I = {It ∈ 0, 1, 2}, t ∈ T, 
indicating that the mobile device can execute a 
sub-task t locally (It = 0) or offload the sub-task to 
SCceNB (It = 1) or to the remote cloud server (It 
= 2). Under current system state S, E(S, It) denotes 
the execution cost of sub-task t, which is:
•	 The immediate local execution cost if sub-task t 

is executed locally
•	 The immediate edge offloading costs if the sub-

task is executed at the SCceNB
•	 The immediate cloud offloading costs if the sub-

task is executed at the remote cloud server
Apparently, the edge offloading cost consists 

of radio and computation resource usage cost, 
the SCceNB computation cost (i.e., task execution 
time), and the data transmission cost (i.e., trans-
mission delay) for offloading. The cloud offloading 
cost consists of radio and wired resource usage 
cost, the remote cloud server computation cost 
(i.e., task execution time), and the data transmis-
sion cost (i.e., transmission delay) for offloading. 

TL allows us to deal 
with variational envi-
ronments by leveraging 
the already existing 
labeled data of some 
related task or domain. 
In practical edge 
computing scenarios, 
we can combine DIL 
and TL to deal with 
more complex tasks 
(e.g., finding optimal 
resource allocation 
schemes) that are based 
on already trained 
models.



Then the objective of the computation off loading 
optimization problem is to obtain a near-optimal 
off loading policy * that can minimize the off load-
ing cost given by t∈TE(S, It). Note that the off load-
ing cost is the sum of costs for the sub-tasks of 
mobile application A, which is not provided imme-
diately. We can obtain the long-term cost when all 
the sub-tasks have been processed.

deep ImItAtIon leArnIng for 
computAtIon offloAdIng

The optimization problem of minimizing the off -
loading cost is a combinatorial optimization prob-
lem. Thus, it is impossible to achieve the optimal 
solution in real time by using standard optimiza-
tion methods. Another possible approach is to 
utilize RL. Nevertheless, since the action space is 
defined over the combination of the execution 
selections for multiple sub-tasks, it suff ers from the 
curse of dimensionality and hence converges very 
slowly in practical implementation.

To address these challenges, we explore a 
novel scheme of autonomous computation off-
loading decision by leveraging DIL. Intuitively, we 
first obtain the demonstrations (i.e., the optimal 
decision samples) by solving the computation off -
loading optimization problem in an off line manner. 
Then, using these demonstrations, we train a DIL 
model for imitating the optimal decision patterns 
and generate effi  cient online computation off load-
ing decisions in real time.

deep multI-lAbel clAssIfIcAtIon model for 
computAtIon offloAdIng

As shown in Fig. 1, the optimization problem can 
be formulated as a multi-label classification [11] 
problem. Assume that mobile application A con-
sists of T sub-tasks. The input layer of our training 
model consists of the observation of the applica-
tion features and network states. Our off loading 

decision in the output layer is a T-dimensional vec-
tor for the application. If a sub-task is off loaded, 
its value is 2 (cloud) or 1 (edge); otherwise, it is 
local. We define the multi-label offloading accu-
racy as the proportion of the predicted correct 
labels to the total number of labels. Through the 
accuracy, we can evaluate the output (i.e., pre-
dicted off loading actions) with respect to the opti-
mal off loading actions.

Figure 2 illustrates the fl owchart of our model. 
It consists of three phases: off line demonstration 
generation, offline model training, and online 
decision making. In the following, we describe 
these phases.

Off line Demonstration Generation: Based on 
behavioral cloning [4], imitation learning performs 
supervised learning through imitating demonstra-
tions (i.e., optimal offloading action). Thus, the 
objective of this phase is to generate demonstra-
tions to train our DIL framework. We acquire a 
large number of decision samples by leveraging 
the off line optimization scheme for solving the opti-
mization problem. In general, when the decision 
space is:
• Small, we can use an exhaustive approach 

to obtain the optimal offloading decision by 
searching the whole action space (there are 3T

possibilities in the space).
• Medium, the problem can be solved by some 

mixed integer programming solver (e.g., 
CPLEX).

• Huge, we can leverage some approximate 
offline algorithms to obtain efficient decision 
samples. 

Then the network state S as well as its optimal 
off loading decision are recorded as raw decision 
samples to train our framework in the next phase.

Off line Model Training: In this phase, we use 
the deep neural network (DNN) to extract and 
train the features of training data. We conventional-
ly use the rectifi ed linear unit (ReLU) as the activa-

FIGURE 1. Proposed deep-imitation-learning-based off loading model.
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tion function for the hidden layers. Our off loading 
model inputs the system state S and outputs off-
loading decisions It(t = 1, 2, …, T). The sigmoid 
function is used as the output of our model. Note 
that it can be formulated as a multi-label classifi ca-
tion problem to maximize the multi-label (i.e., pre-
dicted offloading actions) accuracy. We consider 
the cross-entropy loss [12] to measure the perfor-
mance of the model, and use the Adam optimizer 
[13] to optimize the neural network. The output 
layer consists of T neurons that represent the off-
loading actions of the T sub-tasks. If an output 
neuron is less than 0.5, it denotes local execution; 
otherwise, off loading.

Online Decision Making: Once the offline 
model training phase of the DNN is fi nished, it can 
be used to make real-time computation offload-
ing decisions in an online manner. At this time, the 
DNN outputs a sequence of offloading decisions 
for all sub-tasks of the mobile application. Based on 

the outputs, we can evaluate the off loading accura-
cy and off loading costs of our DIL model.

complexIty AnAlysIs
Traditionally, using DIL to train an artifi cial intelli-
gence (AI) model is computation-intensive, espe-
cially in the off line demonstration generation and 
off line model training phases. Fortunately, it can 
be done using historical data in an off line manner. 
Thus, we can off load the data to the resourceful 
remote cloud data center when the associated 
computational overhead is high.

In the off line demonstration generation phase, 
the complexity for this phase is (|I|T), where 
|I| represents the size of the action space I, and 
T denotes the number of sub-tasks for the mobile 
application. The complexity for the offline model 
training phase is only (T3Q3), where Q represents 
the number of neurons in each hidden layer. After 
the off line training, our model can be deployed on 
either the mobile side or the edge server side, in 
order to make real-time off loading decisions. In the 
online decision making phase, our decision model 
has constant complexity (1), which is highly scal-
able and real-time.

In order to alleviate the tension between 
resource-intensive DNNs and resource-poor edge 
servers, DNN compression can reduce the model 
complexity and resource requirement. Two typi-
cal DNN compression technologies can be used: 
weight pruning, which can remove redundant 
weights (i.e., connections between neurons) from 
a trained DNN, and data quantization, which can 
reduce the computation overhead by using a more 
compact format to represent layer inputs, weights, 
or both.

proof-of-concept performAnce evAluAtIon 
sImulAtIon settIng

In order to evaluate the performance of our DIL-
based offloading scheme, we consider a MEC 
network consisting of a mobile device and a MEC 
server. The number of CPU cores for the SCceNB 
is set to be 16 (i.e., M = 16). For the edge network, 
we consider the Rayleigh-fading environment, and 
the total bandwidth is divided into 256 subcarriers 
(i.e., N = 256). The wired (backhaul) delay between 
the SCceNB and the remote cloud is W ∈ [0.01, 
0.02] s. FThe mobile application usually consists of 
a few sub-tasks to dozens of sub-tasks in reality. In 
this article, the mobile application consists of 6 sub-
tasks (i.e., T = 6). The data dependencies and the 
workload for the sub-tasks follow uniform distribu-
tion, similar to [14]. Note that the random variables 
for diff erent sub-tasks are independent.

In the off line demonstration generation phase, 
we use MATLAB to generate 100,000 demonstra-
tions, which means that the mobile application is 
executed 100,000 times independently under var-
ious network environments. At the same time, the 
sample of the optimal offloading scheme can be 
obtained in this phase. In the online decision mak-
ing phase, we evaluate the performance of our 
DIL-based off loading scheme (DIOS) by leveraging 
the Jupyter notebook. We consider the following 
eight benchmark schemes from the literature.

Optimal Offloading Scheme: We search the 
whole action space to fi nd the optimal off loading 
scheme (OOS).

FIGURE 2. Flowchart of the proposed deep-imitation-learning-based off loading 
framework.
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Local Offloading Scheme (LOS): The mobile 
application is executed on the mobile device local-
ly. Thus the off loading decision variables are It = 0, 
(t = 1, 2,…, T). 

Deep-Reinforcement-Learning-Based Off load-
ing Scheme (DROS): This is a computation off-
loading scheme that is based on the DRL method 
[9].

Greedy Algorithm-Based Off loading Scheme 
(GOS): The mobile device chooses offloading 
actions through a greedy algorithm, which means 
that the mobile device chooses the sub-action that 
can maximize the off loading cost in each sub-task 
execution step. 

Random Offloading Scheme (ROS): The off-
loading decisions are generated randomly. 

Shallow Learning-Based Offloading Scheme 
(SOS): The number of hidden layers is set to be 1.

Edge Off loading Scheme (EOS): With coarse 
off loading strategies, the entire mobile application 
is off loaded to the MEC server side.

Cloud Offloading Scheme (COS): In coarse 
off loading strategies, the entire mobile application 
is off loaded to the remote cloud side.

evAluAtIon results
Simulation results of our DIOS method are shown 
in Figs. 3–5.

Figures 3 and 4 report the off loading accuracy 
and corresponding off loading cost of diff erent off -
loading schemes with respect to the OOS. Figure 3 
shows that our DIOS outperforms other off loading 
schemes in off loading accuracy. At the same time,   
DIOS reduces the offloading cost on average by 
19.80, 18.24, 23.17, 8.37, 13.61, 1.15, and 2.34 
percent compared to the ROS, GOS, LOS, EOS, 
COS, DROS, and SOS schemes, respectively. Note 
that the EOS (offload computation to the edge) 
performs better than COS (off load computation to 
the remote cloud) and LOS (local execution). This 
proves that the MEC server can reduce energy cost 
on the mobile terminal side, as well as the back-
haul usage on the remote cloud side.

Figure 5 shows the task execution time using 
different offloading schemes with respect to the 
OOS. Note that our DIOS reduces the execution 
time by 23.25, 8.77, 47.98, 17.73, 18.70, 11.36, 
and 15.14 percent compared to the ROS, GOS, 
LOS, EOS, COS DROS, and SOS schemes, respec-
tively.

As a proof of concept, the numerical perfor-
mance evaluation results above corroborate the 
feasibility and promise of the proposed DIL-driven 
computation off loading scheme. We are working 
on exploring other deep neural network architec-
tures such as deep residual learning [15] for further 
performance gain and generalizing the approach 
to the challenging multi-MEC multi-user scenario.

future dIrectIons on 
IntellIgent edge computIng

In the sections above, we focus on the deep-
learning-based computation off loading approach 
for a MEC system. In this section, we further 
introduce several potential directions for apply-
ing deep learning into multiple intelligent edge 
computing research areas, including edge data 
analytics, dynamic resource allocation, security, 
and privacy, respectively.

edge dAtA AnAlytIcs
Edge data analytics refers to the analysis of data 
from the distributed edge servers in a MEC sys-
tem, and usually goes along with IoT applications 
and data caching.

IoT Application Scenario: Recently, MEC 
has received extensive attention in IoT scenarios, 
where inexpensive simple devices can generate 
huge volumes of raw data for big data process-
ing. When considering the limited computation 
and storage resources of each single edge serv-
er, applying traditional machine learning and AI 
algorithms (usually compute-intensive) is ineffi  cient. 
Thus, one huge problem in this scenario is how to 
process such big data in real time. We can apply 
deep learning in the MEC in order to improve the 
effi  ciency of data analyzing and processing. Deep 
learning can extract accurate information from 
the huge IoT data in such complex network envi-
ronments. Compared to the traditional machine 
learning methods, deep learning outperforms in 
processing huge data, since it can precisely learn 
high-level features (e.g., faces and voices), extracts 
new features automatically for diff erent problems, 
and takes much less time to infer information.

Data Caching Scenario: Data caching is one 
of the key features of a MEC system [1], and usu-
ally consists of content caching and computation 
caching. Content caching refers to caching pop-
ular contents (e.g., segments of popular movies) 
at the edge server in order to avoid retransmitting 
the same contents. This approach can signifi cantly 
reduce the backhaul traffi  c and transmission delay, 
whereas computation caching denotes caching 

FIGURE 4. Comparison of off loading cost. 
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FIGURE 5. Comparison of task execution time. 
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parts of popular computation result data (e.g., rec-
ognized face) that is likely to be reused by others. 
This approach can reduce not only the retransmis-
sion delay, but also the re-computation latency. 
We can apply the deep supervised learning (DSL) 
method to the edge servers to analyze and extract 
the features of the collected data from mobile 
devices. It makes more precise caching place-
ment decisions than traditional machine learning 
approaches. Moreover, the popularity of different 
data is usually time-varying. Thus, we need to col-
lect and process large amounts of data to obtain 
statistical inference from the data. Thanks to the 
model-free feature, we can maximize the long-term 
cache hit rate through DSL without knowledge of 
the data popularity distribution.

Dynamic Resource Allocation
Dynamic resource allocation (DRA) is a key tech-
nology to improve network performance in a 
dynamic environment. Note that the MEC perfor-
mance is influenced by a variety of time-varying 
factors, including communication and computa-
tion resources, workloads of mobile users, data 
caching and power management policies, and 
so on, which is a huge project. Therefore, there 
is a strong demand on intelligent edge resource 
management to maximize long-term resource uti-
lization. DRL has the potential to handle high-di-
mension state spaces of complicated control 
problems, and could be used to solve the DRA 
problem for MEC. It makes edge servers automat-
ically and efficiently negotiate the most appropri-
ate configuration directly from the complicated 
state space. Moreover, it can explore deep con-
nections in the data and obtain accurate prediction 
of resource allocation schemes for MEC network.

Security and Privacy
Recently, security and privacy issues pose a tough 
challenge for the development of MEC. Security is 
becoming an increasingly important issue in MEC-
based applications. Since edge servers are located 
at the edge and physically closer to attackers. MEC 
systems face multiple security threats such as wire-
less jamming, distributed denial of service (DoS) 
attacks, and smart attacks. Due to the sophistica-
tion and self-learning capability, deep learning pro-
vides more accurate and faster processing than 
shallow learning algorithms. It can play a key role 
in attack detection to deal with attacks. The priva-
cy issue is another important threat for the cloud-
based MEC system, where users risk exposing their 
sensitive data by sharing it and allowing edge data 
analytics. Moreover, MEC can provide location 
awareness services for cellular-network-based appli-
cations, which result in location privacy and tra-
jectory privacy issues. Deep learning can provide 
privacy protection by transferring sensitive train-
ing data into intermediate data. Such intermedi-
ate data in DNN usually have different semantics 
compared to the sensitive training data. For exam-
ple, as shown in Fig. 1, after extracting the features 
through the DNN filter, hackers cannot obtain the 
original information from the hidden layer.

Conclusion
In this article, we study the fine-grained compu-
tation offloading issues for a single mobile device 
within MEC networks, that is, a computation task 

can be executed on the mobile device locally, 
offloaded to an edge server, or offloaded to the 
remote cloud. In particular, we first introduce the 
application model and execution model, respective-
ly. Then we present our offloading decision making 
procedure, and formulate the optimization prob-
lem to minimize the overall offloading cost. After 
that, we propose a deep-imitation-learning-based 
algorithm to obtain a near-optimal solution rapidly 
for the optimization problem. Numerical results 
confirm that our proposal achieves an offloading 
accuracy up to 64.79 percent and reduces at most 
23.17 percent offloading cost at the same time. 
At last, we discuss the important directions and 
advantages of applying deep learning methods to 
multiple MEC research areas.
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