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Abstract—In order to save energy of low-power sensors in
Internet of Things applications, minimizing the number of bits
to compress and communicate real-valued sources with a pre-
defined distortion becomes crucial. In such a lossy source coding
context, we study rate-distortion (RD) performance of various
single-sensor quantized compressed sensing (QCS) schemes for
compressing sparse signals via quantized/encoded noisy linear
measurements. The paper combines and refines the recent ad-
vances of QCS algorithm designs and theoretical analysis. In par-
ticular, several practical symbol-by-symbol quantizer based QCS
methods of different complexities relying on 1) compress-and-
estimate, 2) estimate-and-compress, and 3) support-estimation-
and-compress strategies are proposed. Simulation results demon-
strate the RD performances of different schemes and compare
them to the information-theoretic limits.

I. INTRODUCTION

In the near future, there will be a burgeoning demand for the
deployment of smart low-power sensors to serve the myriad of
Internet of Things (IoT) applications in, e.g., environmental,
industrial, healthcare, and military monitoring tasks [1–3].
By 2020, the number of IoT devices is envisioned to reach
hundreds of billions with market value being trillions of
dollars [2, 3]. Key enablers of diverse IoT applications are
wireless sensor networks (WSNs), where sensors are deployed
to collect intelligent data of an underlying application to, e.g.,
improve system performance and reduce maintenance costs.
In a typical WSN, geographically distributed, battery-

powered sensors separately observe and encode one or mul-
tiple information sources to be communicated to the sink
for joint signal reconstruction. Limited batteries – often non-
rechargeable or irreplaceable – dictate the lifespan of a WSN.
The main contributors to a sensor’s energy consumption are
wireless communications [4], and in some setups, the sens-
ing/sampling part [5]. Consequently, a well-designed sensor
acquires only a few data samples of a physical phenomenon
(e.g., temperature, humidity, or light), which, after compressed
at a minimal bit rate, are sufficient to reconstruct the signal
with a pre-defined fidelity at the sink.
Compressed sensing (CS) [6, 7] is an effective joint sam-

pling and compression paradigm to conserve sensors’ energy
in gathering sparse signals in, e.g., environmental monitoring
[8, 9], source localization [10], and biomedical sensing [11].
While the early CS works dealt with analog signals, the
practical necessity of converting the measurements into bit
sequences initiated quantized CS (QCS) [12]. Existing QCS

works can be classified as a) quantization-aware algorithm
designs, b) performance analysis under symbol-by-symbol
quantizers, and c) information-theoretic analysis, which, due
to indirect observations, falls into remote source coding [13].
This paper deals with classes a) and c) above by addressing

the rate-distortion (RD) performance of various single-sensor
QCS setups, where a sparse source is communicated to the
sink by quantized/encoded noisy compressed measurements.
The main contribution of the paper is to combine and re-
fine several recent advances in QCS algorithm designs and
theoretical analysis into a unified framework with empirical
performance comparison. In particular, several practical QCS
methods of different complexities relying on 1) compress-and-
estimate, 2) estimate-and-compress, and 3) support-estimation-
and-compress strategies are proposed. In particular, the strat-
egy 3) contains several novel methods which are empiri-
cally shown to achieve competent RD performance with low
complexity, beneficial to energy-limited IoT sensor applica-
tions. Simulation results demonstrate the RD performances
of different practical QCS schemes and compare them to
the compression limit – the remote rate-distortion function –
which is evaluated through an analytical lower bound and a
modified Blahut-Arimoto algorithm proposed in [14].
The paper is organized as follows. Section II defines the

system model. Section III presents quantization preliminaries
which are needed in developing the different practical QCS
methods detailed in Section IV. Section V addresses the
theoretical limits of the QCS setup. Simulation results are
provided in Section VI, and Section VII concludes the paper.

II. QUANTIZED COMPRESSED SENSING FRAMEWORK

We study the RD performance of a QCS framework depicted
in Fig. 1. The encoder observes the information source

via noisy linear measurements , followed by finite-rate
quantization/encoding and error-free communication to the
decoder for signal reconstruction.
Let be a discrete-time memoryless vector source

sequence. Each vector T is -sparse,
i.e., . Each is generated from the memory-
less sequence of tuples as ,
where denotes the Hadamard product; is a length-
zero mean Gaussian random vector with
positive definite covariance matrix , where is
the set of symmetric positive definite matrices;
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Fig. 1. Acquisition of a sparse source via quantized/encoded noisy com-
pressed measurements.

is a length- binary support random vector, independent of
, with a discrete alphabet , .

Each sparsity pattern T has ones and
zeros, and is associated with the a priori probability

so that .
The sensor (i.e., the encoder) observes indirectly

[6, 7] as
(1)

where is a fixed and known measurement
matrix performing dimensionality reduction, ,

with is a length- noise
random vector independent of , and each is a length-
measurement random vector. Note that while there are no
restrictions on , it plays a key role in the CS signal recovery
performance, which can be assessed by the restricted isometry
property (RIP) and coherence of [15, Ch. 5, 6].
The encoder-decoder pair - can take various implemen-

tations, each having different encoding complexity, memory
requirements, compression performance etc. Accordingly, we
study the achievable signal reconstruction performance 1) by
different practical QCS methods relying on symbol-by-symbol
quantization having moderate encoding complexity, and 2)
in an information-theoretic context using encoder/decoders
of excessively high complexity. The end-to-end mean square
error (MSE) is used as the distortion criterion, i.e.,

(2)

where represents a (method-dependent) length- reproduc-
tion random vector at the output of decoder .

III. QUANTIZATION PRELIMINARIES

This section introduces three general-purpose quantizers
that are needed in designing the QCS methods in Section IV.
Let be a length- random vector with PDF .

The vector is the input of a quantizer determined
by 1) encoder regions , , which par-
tition its input as , , for any ,
and , and 2) a reconstruction codebook

with codevectors . For a real-
ization , quantizer encoder produces an in-
dex if . For a received index , quan-
tizer decoder produces an estimate of as

.
1) A fixed-rate Lloyd-Max quantizer [16, 17] of rate

bits/ optimizes the quantization regions and the
codebook to minimize the MSE distortion

(3)

Algorithm 1 Lloyd-Max quantizer training (offline).

Input: a) Sequence sampled from ; b)
quantization rate .
Initialization: Reconstruction codebook .
Repeat until convergence
1) For a given codebook, find the optimal regions by
classifying as

.
(4)

2) For given regions, find the optimal codevectors as the
conditional expectations

. (5)

Output: Reconstruction codebook .

Algorithm 2 Fixed-rate quantization of an input (online).

Input: Reconstruction codebook ( or ).
Encoding: 1) Find the encoding index

; 2) communicate the -
bit representation of to the decoder.
Decoding: Given the received index , obtain an estimate
of as .

where and represents the quantization
index. Following the iterative Lloyd and Linde-Buzo-Gray
(LBG) algorithms [16–18], can be trained via the al-
ternating optimization presented in Algorithm 1. The online
compression phase is presented in Algorithm 2.
2) A variable-rate quantizer minimizes a cost function

(6)

where is given in (3), and is an RD trade-
off parameter. Following the principles of entropy-constrained
scalar/vector quantization (ECSQ/ECVQ) [19–21], can
be trained by the three-step iterative loop presented in Al-
gorithm 3. The online phase is presented in Algorithm 4.
In Algorithm 3, the source codebook ,
which, in general, contains variable-length binary codewords,
can be generated by, e.g., the Huffman coding [22]. The
average rate of is bits/ , where is
a function that computes the length of a binary codeword.
3) A uniform scalar quantizer (USQ) of rate bits/

consists of fixed-length intervals as presented in Algorithm 5.
The online phase is equivalent to Algorithm 2.

IV. QUANTIZED COMPRESSED SENSING ALGORITHMS

This section presents the design of three classes of practical
QCS methods, as depicted in Fig. 2. The devised methods rely
on the different quantization schemes described in Section III.

A. Compress-And-Estimate QCS Methods

A compress-and-estimate ( ) scheme depicted in
Fig. 2(a) consists of two stages: 1) a compression stage where

2



Algorithm 3 Entropy-constrained quantizer training (offline).

Input: a) Sequence sampled from ; b)
quantization levels ; c) weight parameter .
Initialization: i) Reconstruction codebook , and ii) index
probabilities , .
Repeat until convergence
1) For a given codebook and rate measures, find the optimal
regions by classifying as

.
(7)

2) Update the rate measures , , given the
new regions.
3) For given regions, find the optimal codevectors , ,
equivalently as in (5).
Output: a) Reconstruction codebook

; b) index probabilities , ;
c) source codebook generated using

, .

Algorithm 4 Variable-rate quantization of an input (online).
Input: a) Reconstruction codebook ; b) index probabil-
ities , ; c) weight parameter ; d) source
codebook .
Encoding: 1) Find the encoding index

; 2) communicate the binary
codeword to the decoder.
Decoding: Given the received codeword , find the
corresponding index and obtain an estimate of as

.

Algorithm 5 Uniform scalar quantizer (offline).

Input: a) Quantization rate ; b) input range parameters
.

Output: Reconstruction codebook
with codepoints ; ; and

, for all .

the encoder quantizes under an MSE distortion criterion
that depends only on (not on ), and 2) an estimation
stage where the decoder estimates from the decoded quan-
tized measurements . Let denote a
length- reproduction random vector at the decoder output
for . The end-to-end MSE distortion can be written as

(8)
where is a signal reconstruction algorithm at
. A principle underlies many early QCS algorithms in,

e.g., [23, 24]. An information-theoretic study of based
QCS can be found in [25].
We consider four algorithms that use the following

quantizers: 1) USQ, 2) Lloyd-Max SQ (referred to as ”SQ”

(a)

(b)

(c)
Fig. 2. QCS setups relying on (a) compress-and-estimate, (b) estimate-and-
compress, and (c) support-estimation-and-compress strategies.

in the QCS method names henceforth), 3) ECSQ, and 4)
VQ. Table I summarizes the considered methods and details
the main parameters for implementing the involved quantizer
using the algorithms described in Section III. Note that the
total average rate bits/ is reported in the last
column, where the rate is defined as the bits/entry of .
For entropy-constrained methods, computes the average
codeword length of a binary codebook .
Summarizing the basic operations of the SQ based

methods 1)–3) above, the decoder receives indices,
forms T, and estimates the source as

. For , the MSE-optimal output vectors of
that minimize the distortion in (8) are given as

(9)
where is the minimum mean square error (MMSE)
estimate of given a measurement realization , i.e.,

. (10)

Let denote the corresponding MMSE estimator.

B. Estimate-and-Compress QCS Methods

An estimate-and-compress ( ) scheme depicted in
Fig. 2(b) consists of two stages: 1) an estimation stage of

from at the encoder1, and 2) a compression stage to
quantize the resulting signal estimate under an MSE distortion
criterion. The end-to-end MSE distortion reads as

(11)
where is the length- reproduction random vector
at the decoder output, is a reconstruction
algorithm at , and denotes the estimator of from

1By modeling that and schemes access real-valued ,
we neglect the quantization error induced by the sensor’s analog-to-digital
converter assuming that it operates at a relatively high rate as compared to
the actual (low-rate) source encoder/quantizer.
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TABLE I
DIFFERENT QCS METHODS AND THEIR QUANTIZATION PARAMETERS

Class Method Training/
Online algorithm

Compress-and-Estimate

Algorithm 5 / 2
Algorithm 1 / 2
Algorithm 3 / 4
Algorithm 1 / 2

Estimate-and-Compress

Algorithm 5 / 2
Algorithm 1 / 2
Algorithm 3 / 4
Algorithm 1 / 2
Algorithm 3 / 4

Support-Estimation-and-
Compress

Algorithm 5 / 2
Algorithm 1 / 2
Algorithm 3 / 4
Algorithm 1 / 2

. The scheme is the optimal encoding structure for
remote source coding [26]. based QCS algorithms have
been devised in, e.g., [14, 21, 27–30]. The related information-
theoretic studies include [14, 31, 32].
Five algorithms with 1) USQ, 2) SQ, 3) ECSQ, 4)

VQ, and 5) ECVQ are considered (see Table I). For SQ based
methods 1) – 3), the decoder uses the received indices to
estimate the source as T. For VQ based
methods 4) – 5), the decoder operates simply as .

C. Support-Estimation-and-Compress QCS Methods

A support-estimation-and-compress ( ) scheme de-
picted in Fig. 2(c) consists of three stages: 1) a support
estimation stage where the encoder estimates from , 2) an
estimation stage of given and the support estimator at ,
and 3) a two-phase compression stage of the resulting source
estimate applying i) lossless compression for the estimated
support, and ii) lossy compression for its non-zero part. The
end-to-end MSE distortion can be expressed as

(12)
where is the length- reproduction random vector at
the decoder output, is a support estimation
algorithm taking values on alphabet at , and denotes
the estimator of from . The sparsity is assumed to
be known by . QCS schemes akin to have been
considered in, e.g., [12, 27].
Let be a length- random vector representing the

non-zero part of for a given support , .
The optimal in (12) is the one that minimizes
the MSE distortion . This is given as

, i.e., the MMSE estimator of
given and , with realizations

T T (13)

where extracts the columns of with indices
.

Four algorithms with 1) USQ, 2) SQ, 3) ECSQ,
and 4) VQ are considered (see Table I). Quantizers for
the estimated non-zero parts operate equivalently as in the
corresponding schemes. The support estimator
is communicated losslessly using a binary source codebook

, which can be generated by, e.g., the Huffman coding.

V. RATE-DISTORTION PERFORMANCE LIMITS OF

QUANTIZED COMPRESSED SENSING

For the QCS setup in Fig 1, the compression limit, i.e.,
the minimum achievable rate for a given distortion , is
given by the remote rate-distortion function (RDF) of source
, denoted as . While the closed-form solution of

remains open, the RD performance of QCS can
be assessed by the techniques derived in [14]. Thus, we
establish information-theoretic benchmarks for the proposed
QCS algorithms of Section IV by evaluating:
1) The analytical lower bound to , termed the

conditional remote RDF , given in [14, Theorem 1].
is based on having support side information at

the encoder and decoder. Since the encoder of a practical QCS
method can at best obtain an estimate of , each method is
expected to have a considerable gap to .
2) The numerical approximation technique for

represented by the modified Blahut-Arimoto (BA) algorithm
in [14, Algorithm 1]. Such an approximate curve, termed

, can be obtained by running the BA algorithm [14,
Algorithm 1] using a VQ that is trained via Algorithm 1 with

, where is the MMSE estimator (see (10)).
serves as a meaningful lower bound to practical

QCS methods because, as demonstrated in Section VI, it can
be approached using VQ and entropy coding – at the cost of
increased encoding complexity.

VI. NUMERICAL RESULTS

Consider a setup with , ,
, , , , ,
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and generated by taking the first rows of an
discrete cosine transform matrix and normalizing the columns

. Basis pursuit denoising (BPDN)2 [34] is used as
in , in , and in ; forms the

support estimate from the indices of the largest magnitudes
of the BPDN output. For and , and

are set as the minimum and maximum codepoints of
the corresponding Lloyd-Max SQs. The same procedure is
first used for , after which each codepoint is added
a constant shift so that contains the codepoint of

that is closest to zero. ECSQs/ECVQs are run with
. All source codebooks are generated via

the Huffman coding. The quantization algorithms are run with
. The BA algorithm [14, Algorithm 1] is

run with quantization levels.
Fig. 3 depicts the average normalized distortion

(dB) versus the average
rate (bits/entry of ) of different QCS schemes for

. The performances of the SQ based
methods can be ranked as , and
the VQ based methods as . Let us
elaborate each of the three algorithm classes in more detail.

: and perform nearly identically. The
entropy coding in can only slightly improve the per-
formance. For large values of , slightly outperforms

even though uses the optimal structure.
This is caused by the fact that in is approximated
as the BPDN instead of the MMSE estimator in (10); while

uses a suboptimal strategy, it uses the MSE-
optimal outputs in (9) for a given VQ.

: Among all QCS methods, entropy coding has the
most significant impact on . This stems
from the fact that while quantizes the frequently oc-
curring near zero inputs inefficiently using a fixed-length code-
word, intelligently assigns a very short codeword to
them. The best practical QCS method is the method
proposed in [14, Sect. V] which approaches the compression
limit of any practical QCS method, i.e., .

: It can be seen that the proposed adaptive compres-
sion of the support set and estimated magnitudes is an effective
strategy as the algorithms outperform all SQ based

and methods. Thus, the method even with
a simple USQ is a very competent, low-complexity alternative.
Since all curves nearly coincide, the support recovery
performance of chosen is the limiting factor in .
As increases, the QCS methods perform better and

the gap between the analytical MMSE estimation floor with
support side information (the lower horizontal line) and the
error floor of the BPDN reconstruction (the upper horizontal
line) decreases. Note that only and methods that
rely on the plain BPDN outputs saturate to the upper floor;
because removes the noise outside the (estimated)

2Note that better performance is attainable if, e.g., is set as the MMSE
estimator in (10), yet at the cost of exponential encoding complexity [33]
for a resource-limited sensor. Similarly, more sophisticated support recovery
algorithms could be considered as well.
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Fig. 3. RD performance of QCS schemes for , , and (a)
, (b) , (c) , and (d) .
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support of each BPDN output, it can surpass the floor, as
illustrated by Figs. 3(b)–(d).

VII. CONCLUSIONS

The paper studied the RD performance of various practical
and theoretical QCS schemes. Practical QCS algorithms re-
lying on 1) compress-and-estimate, 2) estimate-and-compress,
and 3) support-estimation-and-compress strategies were pro-
posed. The information-theoretic limit of the setup – the
remote RDF – was evaluated by an analytical lower bound
and a numerical BA approximation method. Simulation re-
sults showed that when SQ is used, the proposed adaptive
compression of the support set and estimated magnitudes is an
effective strategy. When VQ/ECVQ is used, the estimate-and-
compress strategy, as supported by the theory, is the best one.
Accordingly, the ECVQ based estimate-and-compress method
was numerically shown to approach the remote RDF.
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