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1. Introduction

This study analyzes the diversification choices of fund of funds (FoF). FoFs a' gual ly involve the most
sophisticated subset of institutional investors. For this purpose, we extend the setu, ~f Goldsmith (1976)
to present a parsimonious log-linear, fixed-effects panel model for the or...~al a. ersification of FoFs
under frictional diversification costs. The optimal number of individual fi. *d b sIdings in any FoF depends
on the sum of assets under management (AuM), the costs of due uuigence and/or monitoring (i.e.,
frictional diversification costs), and the respective (clientele) risk ave. “ion. B- own et al. (2008a) describe
due diligence as an expensive activity. Consequently, larger £ ads ~~n more easily absorb that cost.
Attitudes toward risk also impact the diversification choice: riss-avers : investors are willing to incur

more frictional diversification costs for a small reduction in risk thai 'ess for risk-averse investors.

We test our empirical model on a unique set of 10 years nf mi== 1y data for a cross section of 127 FoF’s.
These panel data are obtained directly from SEC filings anu ~re not available from commercial databases
(e.g., Lipper TASS or BarclayHedge). We find stron - ¢ 1dence that frictional diversification costs limit

the applicability of traditional diversification advi. -.

In our empirical analysis, we use a set of fixed-c“ects panel regressions. In line with our theoretical
predictions, increasing levels of assets unuc® management allow FoFs to increase their number of
holdings with an elasticity of 0.5. This .. cons stent with a world where frictional diversification costs
will force smaller FoFs to offer a les , div :rsified portfolio of hedge funds than their larger peers would. In
the absence of those costs, we m 'ght ».'! “.nd different levels of diversification related to fund manager

conviction or predictive capabi’.ties "t not related to the fund size.

Our model survives a batter, - r robustness tests. First, we explore the robustness of fixed-effects panel
regressions by droppin‘, ou* potentially influential data points or individual FoFs. Second, we compare
the fixed-effects regressio.. w'th a pooled ordinary least-squares (OLS) regression. Without individual
effects, the data would im, ly that FoFs do not differ with respect to frictional costs, risk aversion, or
investment skill ' How .. .r, we can reject the pooled OLS model that ignores individual effects which
seem to be imortant. Next, we turn to nonlinearities or threshold effects which might be important. It
could be th= case wiat When assets under management grow, a FoF can increase the number of its holdings

because frict. ¥ al diversification costs become proportionally smaller. Therefore, the predicted theoretical

! Fung, Hsieh, Naik and Ramadorai (2008) show that a subset of FoFs poses investment skill (i.e., delivers a
significant Fung and Hsieh (2004) alpha).



relation may not be log-linear. We find no empirical evidence for this either. To sm up, we provide

robust evidence that FoFs tend to set portfolios withn? oc AuM .

We next relate the diversification to the FoF future performance. Our . ni.cture is that over-
diversification (too high costs, i.e., too low expected return per unit of risk or slop v due diligence if costs
are not spend) is as detrimental to performance as under-diversification (tc o his I .=k per unit of expected
return). Using both univariate and multivariate analyses, we document a 1. "™ust statistical relationship
between the degree of diversification and FoF future performance. In feed, th FoFs diversifying more in
line with our model’s predictions deliver superior performance. Th= =co... ~..c significance of this finding
is large and it cannot be subsumed by other variables that hac pee 1 documented to explain FoF
performance. According to our multivariate regression results, .'~Fs wat do not diversify along simple
model deliver 1.40%-3.40% lower returns per annum com ved to he FoFs that display diversification
consistent with our model of diversification under frictionai . ~sts. Hence, even after controlling for the
FoF’s size (Brown, Frazier, and Liang 2008), the numc *~ of underlying funds (Brown, Gregoriou, and
Pascalau 2012), the FoFs’ capital flows (Fung, Hsi ., 2'~*" and Ramadorai 2008), past performance or
autocorrelation in returns (Getmansky, Lo, and “Makai v 2004), a proxies for operational risk (Brown,
Goetzmann, Liang, and Schwarz 2008b, 2009, 2012  cu.npensation structure (Agarwal, Daniel, and Naik
2009), and discretionary (Aiken et al 2015b) an..' non-discretionary liquidity restrictions (Aragon 2007),
we find that our performance results holds smggesting the FoFs diversifying closely along the lines of our

simple model deliver superior future pe’ “ormanc :.

Finally, we examine the relationsu.> "etw en the degree of diversification and operational risk.” Our
results reveal that individual Fo” -~ diversitying more in line with our model’s predictions exhibit a lower
failure probability than their over- or w.der-diversified peers even after controlling for the role of existing
operational risk measures. ‘o b .tter understand mechanism behind the failure of FoFs, we examine the
link between operational risk anu ¥oFs’ underlying holdings. We find the FoFs diversifying more in line
with our model’s preai. “cas b ,Id less often individual funds that have imposed discretionary liquidity
restrictions such a side nockets and gates. We, however, are not able to document a significant
relationship betwee. the d- gree of diversification and operational problems (Brown, Goetzmann, Liang,

and Schwarz 2 ,08b) c - suspicious patterns in fund returns (Bollen and Pool 2012).

Our work 1. tel: ... on several steams of existing literature. Previous work on FoFs is devoted mainly to

one simple que tion: How many hedge funds are needed for a diversified fund of funds or a hedge fund

2 We are grateful for referee about this suggestion.



portfolio? Henker and Martin (1998), Amin and Kat (2002), Lhabitant and Learned (2°02), and Brown et

al. (2012) all use a simple two-step procedure to test for over- or underdiversificatior .

Step 1: Simulate random portfolios of increasing size (i.e., increasing pumu. of equally weighted

)

assets) and plot the evolution of volatility as a “diversification curv-": a . nctional relationship

between portfolio standard deviation and portfolio size.’

Step 2: Decide when the marginal improvement in the statist'¢ deried during step 1 becomes

“small”.

What “small” means is usually determined by eyeballing the ai. ~rsification curve, so that it tends to
reflect the researcher’s subjective judgment (or perhaps his ey. ~ight'. These papers typically find that the
optimal number of hedge funds ranges between 5 and 25. Witn. 't an explicit model from which to argue
how much diversification is warranted in the presence ot .. "ersification costs this looks like an ambitious
statement. We conclude that methods based on di. =rs1 w..ion curves have three major shortcomings.
First, no attempt is made to specify the frictio. ." cos.  of adding another fund to a portfolio. In the
absence of such costs it is always optimal to naively 'iversify across all possible investments. In the early
literature, Samuelson (1967) and Brennan (19, ) make this point by stating that investors should
diversify as much as possible while rema’ ..., aware of the trade-off between diversification and its costs.
However, there is no study that forma.  incor ,orates the frictional diversification costs faced by real-
world investors. We fill this researcl gap Fricional costs comprise the costs, per each additional fund, of
due diligence and monitoring as veli . the .0ss of the power to bargain for fee rebates when diversifying
among too many funds. The se 0..? main deficiency in the “diversification curve” method is that it does
not account for the actual as<... under management — even though fixed costs can be spread more easily
across a large pool of asse.. A decision maker seeking the optimal number of assets in which to invest
$10 million versus $1€s m’ilion should certainly receive a different answer in each case. Third, the
reduction in volatility tha. dive .sification is intended to provide is most valuable for investors with high
risk aversion. It is ¢ iear the. * investors with low risk aversion will be less willing to pay the diversification

costs of reducing riss. ‘i o, reducing volatility by adding more funds).

3 In the case of v atility, Elton and Gruber (1977) show that a closed-form solution exists. Yet the simulation aspect
is useful for illuminating how this procedure might extend to measures of risk and performance that are more
complicated.



Our research differs from that of authors who look to explain poorly diversified portfolos (portfolios with
too little a number of names) in terms of the behavioral shortcomings of privaf . . rsus professional
decision makers. Statman (2004) coined the term “behavioral portfolio tk.. v”: the attempt to
(psychologically) rationalize the observed underdiversification of individual inv. *o' 5. In Statman’s view,
individual investors divide their total wealth into mental “buckets” according . then investment goals.
Equities fall into the top portfolio layer, which reflects the investor’s desirr for .. s to a “lottery ticket”
scale. Recent support for this perspective is provided by Frazzini and Peu.<en (2014), who find that
aversion to leverage (a form of risk aversion) leads investors to cons uct unc >rdiversified portfolios that
concentrate on more volatile stocks. Elton et al. (2004), Plokovriche..'-~ (2005), Mitton and Vornick
(2007), and Phillips et al. (2007) all expand this theme of positi ¢ ~.ew ess and lottery preferences. Of
course, a lack of diversification might simply reflect friction.’ divursification costs. We would then
expect large funds (as measured by AuM) to display n.>ve div: rsification. This is the previously

unexamined focus of our study.

The work reported here is related to the growing set .. . ~=r< addressing hedge fund operational risk and
role as financial intermediaries. In a series of ps«ers, . town, Goetzmann, Liang, and Schwarz (2008b,
2009, 2012) show that hedge funds with a hig. or _perational risk tend to deliver lower average
performance and to exhibit a greater likelihoo.' ot iailure. Aiken et al. (2015a) show that FoFs may
provide valuable due diligence and monitoring services for investors by firing underperforming managers.
Agarwal, Nanda, and Ray (2013) exar me hed, e fund investments of institutional investors. They find
that larger institutions enjoy econs mies o. scale, enabling direct investment into relatively better
performing hedge funds. Brown ev.' 2017) establish that FoFs suffer from overdiversification and that
this condition may well be assor ~ted with their inability to perform timely due diligence, which is costly
when a FoF invests in a larece numuer of hedge funds. We differ from that literature by explicitly

modelling the FoFs’ portfo’ o ct yice with frictional costs related to due diligence costs.

The rest of this paper 1. 2 zani- ed as follows. Section 2 derives a parsimonious empirical model for the
optimal number of ! oldings in the presence of frictional diversification costs. Section 3 describes our data
set, after which Sction ¢4 presents the empirical tests. Section 5 examines diversification and fund

performance ac well a - operational risk. Section 6 concludes.



2. A Parsimonious Model of FoF Diversification

Following Goldsmith (1976) and Scherer (2013), we assume that a FoF employs a aai. ~ decision maker
who has no information on returns or risks. This decision maker will trade .1 he fund’s marginal
benefits from naive diversification (formulated as marginal risk reduction mui..~".ed by risk aversion)
against their marginal costs to diversify, which we view as the frictional co. - that arise from due
diligence and monitoring. Diversification is measured by the number of aeds ¢ 1. «ds in a FoF. Despite
this obviously heuristic way of conceiving diversification, Goetzmar= anu Kumar (2008) show that
investors succeed (i.e., their returns increase) under naive diver: ficatior but not under optimized
diversification — that is, when constructing a portfolio based on _..sets .vlatility and correlation.* We
model optimal diversification for a standard mean variance inves ~ In ¢ ur case this investor looks for a

solution of

(1) n' = argmax,u—)\UZ(n)—n“fT,
n

Here o* (n) denotes the risk (variance) of an equally w ‘untea portfolio of size 7, A the investor’s risk

aversion, and —— the additional costs (i.e., fixed . ost- , per additional fund as a fraction of assets

f
AuM

under management, AuM). We can most simply ‘u.” 0. f as the costs of a due diligence report. The
costs of exercising due diligence are far fro.. u...> with industry insiders estimating them to range
between $50,000 and $100,000 (US).> However, this would make it a one off expense which does not sit
well with our panel data regression. The .ater ex Hlicitly estimates within-funds effects, i.e., the reaction of
a FoF to an increase or decrease of its assew “'r ser management. Instead we could interpret f as per time

interval costs of holding a hedge ft ‘4 e'cher .n the form of due diligence costs spread across the expected

hedge fund holding period or as - 10nitori.. and complexity costs.

A few additional remarks - n th ; implicit assumptions of our model are in order. First, our investor is
unable to form different 4l esu. “ates on either returns, volatility or correlation. He replaces individual
estimates with univers wi .e ar crages on returns, correlations and volatilities.® While 1/n investors are

typically investors '.a. have ..o information at all, our investor must at least have some information on

* In our context 2 ,u.s’ mean return, volatility and correlations are based on individual hedge fund returns.

> See Greenwic 1 Assoc ites (2011). To the extent that due diligence costs are expected to fall (because of a
secondhand mar, -t for  ae diligence reports), diversification will increase. According to Brown et al. (2012), due
diligence rernrts are cueaper when investors are willing to share them.

6 Although t. » ev pu.t spreads might be large between funds, the ex ante predictability is low (Bollen, Joenviiri,
and Kauppila . «18) and difficult to exploit due to share restrictions (Joenvéird, Kosowski and Tolonen 2018).
However, the crc ,s-correlations may not be similar between funds. Fortunately, several papers suggest that the
accurate estimates for expected returns and variances are much more important than correlations (e.g. Chopra and
Ziemba 1991). We therefore believe that our assumption are realistic.

5



universe averages. Otherwise he could not trade of the marginal increase in utilitv (from a marginal
reduction in portfolio risk) with the marginal increase in diversification costs. Secor 4, "r model is a one
period model. While this supports the interpretation of f as due diligence coste, .= can view f more

broadly as coordinating or monitoring costs that also apply in a multi-period conw. "t

Another consequence from the one period character of the model is “aat vo ~ill exclude the fund
managers incentives (maximize his fee income) from the model by assum.. ~ the manager of the FoF
always acts in the clients’ best interest. Without this assumption pe¢ forman e fee maximization would
lead the FoF manager to take excessive risk with no interest dive...ucation. Once we introduce
performance based on fees, the portfolio management always hz - 2. inc ntive to increase risks in a one
period model (with or without frictional diversification cos..® pue diligence costs would make
diversification even less attractive as these costs will work .~ a dre ; on performance and hence reduce
expected performance fees. In contrast to this one period ins., ht, the theoretical and empirical literature
has shown that once we move to a multi-period setting - *hat allows us to introduce performance related
job losses or outflows after performance blowouts- w. = period intuition to increase risks is largely
mitigated. Fung and Hsieh (1997) and Brown, G ~tzm. n and Park (2001) find empirical evidence, that
reputational concerns largely dampen risk taking inc *nti. es from one period models. Theoretical work by
Xu and Scherer (2007) and Panageas and Wes. rfield (2009) confirms the empirical evidence. A one

period intuition does not carry over to (rea! -orld like) multi-period environments.

Even if the existence of incentive fe .s woulu aave a material effect on risk taking in the real world, we
believe it is not relevant for two reas. = .. Fir.t, in our panel data regression individual effect will take care
of the individual differences be .<en Foks. Second, we would not expect this to affect the relationship
between the number of funds ~~d assets under management, unless the incentive fee design covaries with

the fund size.

We can now write dr .. 1 the . st-order condition of our investor above as

2
@ i),
AuM dn

The expect~ variance for an equally weighted portfolio is well known to be’

7 Elton and Gruber (1977) prove that that this equality holds as an expectation if funds are selected randomly (i.e.,
without prior knowledge).



(3) 02(n)_i+[11]5273,

where & and p are the average volatility and correlation in the universe of inves abl. assets. We can find

an explicit solution for the marginal change in risk,

do*cn> 1 _

—5%(p -1
4) in il (p—1).
Substituting (4) into (2) yields Af via 7)\%52 (7 — 1), which can b. solved or the optimal 7:*
u n
f -1
5 f= X (1-p '
5) v =P -7) 5

The optimal number of assets increases with rising risk . ersiou (), rising average volatility (%),

falling average correlation (p ), falling frictional costs | - ), ana rising value of assets under management

(AuM). A portfolio with a small number of assets ... ~at be under-diversified. It could simply be a
small portfolio (low assets under management), o~ it mi_ht belong to investors who are less averse to risk

or who would incur high due diligence costs per ada tio..3l fund.

For our naive investor facing frictional diversification costs, the risk of an optimally diversified portfolio
(i.e., one for which the marginal benefi s from (¢ ‘versification only just equal the costs of diversifying) is

found by substituting (5) into (3):

\/52 (1 - 7)(//AuM)
_l’_

2 V‘* _
(6) o ) =55 !

The first term on the right-".and side of (6) represents the average covariance risk in the available asset
universe. This is the min’ nal a."ievable risk for n — oo — that is, in the absence of frictional costs or for
investors who are infin ely aver e to risk (rendering frictional costs unimportant). Note, that 7 — o0 is in
general not the opt’ ...l stra.. gy for optimized diversification. The number of holdings in a minimum
variance portfolio v ith kno' /n sample covariance under a long only constrained will not generally expand
with the size o” tne universe. The second term reflects the higher risk that results when a diversification
strategy accow ‘s for i'; associated frictional costs, since those costs preclude investors from diversifying

to the theo. w.._ ' aximum. Taking logs on both sides of (5) results in a linear model,

¥ This expression s identical to equation (1.10) in Goldsmith (1976, p. 1130). Despite its convincing intuition, that
model was not adopted by the empirical literature and has been largely ignored in both academic and practical work.
The rest of this section is devoted to extending the model’s conclusions and shaping it into a testable form.

7



@) log(n) = a + b - log(AuM) + ¢,

where a = 0.5- log(/\c?2 1-p)/f ) and b = 0.5.° However, our proposed model rredicts v.at first, there

is a positively sloped relationship between the number of funds and the .= ant of assets under
management. Second, it predicts that this relation is not linear but log-linear, w. ™ a slope coefficient of
0.5. In a log-linear model, b signifies elasticity (here, the percentage ir crea ¢ .- number of assets for
each percentage increase in assets under management). In order to test /7) o.. ~ur unique panel data set,

we propose running a fixed-effects model of the form
(8) 1Og(nit):a’i +b'10g(AU-Mit)+E,:

where i denotes a specific FoF and ¢ a particular moment in “me. This choice is motivated by the
possibility of omitted variable bias in (7). Equation (7) is n." likely to hold when investors are strongly
convinced of their own forecasting ability; such conviction .. the natural enemy of diversification. The
better our forecasting abilities, the more concentrated (.. . less diversified) our optimal portfolios will
become. Hence it is safe to assume that investors wiv * av.. ' ~r even presumed forecasting skills will hold

fewer funds than do investors with weaker forr “astiny abilities. Greater investment skills manifest as
variation in individual effects (g;). Investors who a. = optimistic about their level of forecasting ability

will invest in a fewer hedge funds irrespective of the “mount of assets under management. So even though
(7) suffers from that misspecification, ¢ .r 1..d-effects, panel data model uses cross-sectional units as

1

controls. The consequences of unobserve.' inve tment skill should cancel out provided the effect of skill
is constant (i.e., a fixed effect). Emr (rics . facts also support our specification, because Fung, Hsieh, Naik
and Ramadorai (2008) document that . < oset of FoFs consistently delivers alpha or poses investment
skill. Another neat side effec’ o1 i panel data model is that it corrects for alternative investment

universes, clientele effects (r'sk . version) and frictional diversification costs.

3. Data

To test the empiric: 1 predis ‘ions generated by our model of naive diversification under frictional costs, we

use a panel of registe. ~d f-.1d of (hedge) fund holdings for the period 2003Q1-2012Q4. A FoF may opt to

? Instead of using . —f , we could also use nt ﬁ more generally for modelling total frictional costs. This would
. L2 (1-p )k
lead to a = ﬁ-] )gl%] and b = ﬁ If costs functions differ, slopes across FoFs would also differ. For

k <1 (economies of scale in information gathering) b > % and hence the number of funds rises faster with

increasing assets under management. This would look like overdiversification, but it is not.

8



register with the US Securities and Exchange Commission (SEC) under the Investmert Company Act of
1940, thereby gaining wider distribution channels. Registered FoFs are considered t* v closed-end funds
and so are usually not listed on exchanges. Exactly as do mutual funds, registe ..' FoFs must disclose
mandated filings publicly, including quarterly disclosures of portfolio holdings .. *d ,emi-annual financial
statements. Following Aiken et al. (2013, 2015a, 2015b), we gather the underly ~o hedge fund holdings
of our sample FoFs from SEC forms N-Q, N-CSRS, and N-CRS. The da’1 in ...~ filings enables us to
create a panel of quarterly hedge fund holdings. For each FoF, the panel conw. s the current value of each
position. Hence we can calculate each FoF’s total assets under manag >ment ( \uM) and number of hedge
funds (n) on a quarterly basis. From these filings, we are also abl~ to . *"_c information on underlying
hedge funds’ both discretionary and non-discretionary liquidity r 'str_tiot 5 as well as on their investment
strategy. Next, we gather N-2 filings for each of the FoF’s in « v sawple. From N-2 filings, we hand-
collect manually information on compensation structure an. <hare 7 :strictions at the FoF-level. Finally,
we merge the FoFs’ underlying funds to union of commerc.. ! databases (BarclayHedge, EurekaHedge,
HFR, Lipper TASS and Morningstar) as well as to . >*m ADVs. This allows us to gather data on
individual funds’ quarterly returns, assets, fund-si ~.” - ~haracteristics as well as funds’ operational

problems. Appendix A provides more details abor* data rathering and merging process.

It is important to emphasize that commercial neee 1und databases do not provide panel data about the
number of underlying hedge funds in which a FoF has invested. Therefore, it would be impossible to test
our model predictions of frictional div rsificati n costs if we were limited to using data obtained from
commercial databases. Some comm .rcial o.ibases (e.g., BarclayHedge, EurekaHedge) do provide a
“snapshot” view of how many ind1, ¥l fir ids are in a given FoF’s portfolio, but none of them provide
information on how that numbe of funds changes over time. For example, the AuM of FoFs increased
rapidly before the financial cricis but 1cdemptions were rampant during that crisis. Finally, because our
data contains actual investe s’ b ,ldings that are investable, it exhibits neither survivorship nor backfilling
bias — both of which are ypical ¢ commercial databases (see, e.g., Fung and Hsieh (2000), Liang (2000),
Agarwal et al. 2013). t. "w._ver a potential concern is that our sample of FoFs may introduce a different
form of selection b’ .s bec~use only a subset of FoFs is registered with the SEC. Fortunately, Aiken et al.
(2013) show that th. returr , of registered FoFs do not seem to differ from those of the FoFs that report to
the commercie datab. ses (BarclayHedge, HFR and Lipper TASS). Indeed, registered FoFs are often run
by the most pr¢ ~iner hedge fund management firms that are rarely available for researchers (Edelman,

Fung and t.~1ev 2023)."° We therefore believe that our novel data and model provide a fertile setting in

10 Agarwal, Lu and Ray (2016) find that only 8 of registered FoFs report voluntary to the Lipper TASS database.
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which to explore the possibility of sophisticated institutional investors constructing portfolios that provide

optimal diversification benefits even after frictional costs are taken into account.

Our raw data are summarized in Table 1 and represented graphically in Figure 1 . ~d

Figure 2. Both the dependent and the independent variables exhibit considerable ~riation across and also
within units (FoFs). This feature of the data is important because it enat (es ' ...~ a fixed-effects panel
regression to address a potential omitted variable bias. We sort the 127 For. nto five groups depending
on the amount of available data. Because there are few observations f r many of our sample FoFs, we are
using an unbalanced panel. Of these 127 FoFs, 49 have less tha» onc ~.c of data available (about 2
quarters on average), and 76 FoFs have less than two years of q 'art (ly ‘ata. The table includes (as row
5) the individual regression slopes derived from (7). However, u. smau number of observations virtually

guarantees that individual regressions will yield unreliable e. ‘mates.

We therefore assume that the regression slopes are sin.'ar but not identical and apply the mean group
estimator instead. In each group, for every FoF wc esu ...’z log(n;) = a; + b;log(AuM, ) +¢,. Let T,
denote the number of available observations for u. . ‘th “oF; then the mean group estimator for all FoFs
in group & 1is given by

-1

N
©9) b, = | >, 7,

i=1

>

N(k)
2T
i=1

where N (k) is the number of FoFs .n tl.s group. The variance of (9) is calculated as follows:

. N(k) A -1
(10) var (b | - T? var (b, )

N(k)
TP
i=1

i=1

The mean group estimatr r is ba. 1 on weighting individual regression slopes by the number of available
observations. The vari.. ~e of th - mean estimate depends not only on the number of observations but also
on the precision of .ach estiuiate. Except for the FoFs with long observation histories, all estimates are

noisy and few diffe. signifi antly from our conjecture of 0.5."

! Performing robust regressions as suggested by Huber (1981) does not change our results.
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4. Empirical Tests
In this section, we test the predictions of the model. We first use a fixed-effer*s panel 1egression

model to examine whether FoFs are constructed in line of our naive predict ns. We then explore

alternative specifications as well as perform various robustness tests.

4.1. Baseline Fixed-Effects Panel Regressions
We start by running a fixed-effects (FE) panel regression model as sug, =sted by our theoretical
discussion in Section 3. Equation (11) presents our estimates fo. i = ",...,127 and for time ¢

ranging from 2003Q1 to 2012Q4, where the statistical ¢-valuc is ¢ ver in brackets:'?

(11) log(n,, ) = a, + gégsg] log(AuM,, ), n' =0.85.

For this FE model the estimated slope is highly signific. ~t (#-value of 12.843) and, at 0.473,

comes close to our prediction of 0.5 . A Wald test for v. “ether b is indeed insignificantly different
from our prediction of 0.5 (with H, :b=0.5) recults in a x*(1)-distributed test statistic of

0.54. The corresponding p-value of 0.45 dos -ot allow us to reject the null hypothesis of
b= 0.5. Including time effects does i. . ~ne this result, although the estimated slope
coefficient for the log of AuM does change marginally (to 0.503; #-value of 17.4). Yet testing
against a slope of 0.5 results in a p-~ alue 0.”0.97 — that is, making it even more difficult to reject
our theoretical prediction. We al-o try ~m’ting all funds with less than 1 or 2 year’s worth of
observations; although the slops est’ nate then drops to 0.45 or 042, it remains economically close

to our conjectured value of 0 »0. Inac. 4 FoF managers seem to set n® oc AulM .

One issue with our ana! /sis night be the large number of funds (76 out of 127) with less than 8
observations. Typice'ly t..~e funds also display high persistence (small variations) in both
dependent and ind ver sent variables. Low within-fund variation will boost model fit (as fund

specific intercep’. .re su. " cient to reduce the funds contribution to regression errors) and increase

R? in an unb. lanced panel regression. At the same time the sampling error for the slope

coefficient s con iderably higher than for a standard pooled regression model. However this is

2 Stan'ard cnors for significance tests in both regressions are corrected for cross-sectional

heteroskea. ticity by using a robust covariance matrix as in Greene (2008, p. 185). This correction was
necessitated v y a likelihood ratio test on the equality of variances across units (FoFs). That test rejected the
null hypothesis of homogeneous variance with a p-value of 0.000, which is only philosophically different
from zero.
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unlikely the case if within fund variation is driven by a common rule across all FoF’s. It is exactly

the (artificially) small precision in the slope coefficient that might avoid u. rejection of

H, :b=21 . The values for a fall between -6.21 and -4.74. Are they reali .uc For example if
0 2 i y p

o =02,p=05,f=25000,A =5 we arrive at ¢ = —6.21.

How much does our estimate vary when individual units (FoFs) are drop, =d from the panel data
set? We repeat the estimation of (11) for a total of 127 times « ach tim ' dropping (a different)
one of the units (FoFs) from the sample. Figure 3 plots the var~tio.. = Ustimates. As in previous
figures, all entries are sorted from left to right by the numbe - 0 ava ‘able fund observations. As
expected, omitting funds with few observations (first columu. ™ Tavle 1) has little or no effect on
the estimated coefficients. Variation increases as FoFs ~ith mc e observations are sequentially
dropped from the sample. Yet all coefficient estimates -emain near the conjectured value of
b = 0.5, and none becomes statistically different fro.. 0.5. Hence none of the FoF’s solely drives

our results.

Finally, we check for the existence of in. -....”~' Jata points capable of driving the results. For
each observation in our FE panel regression, we calculate its Cook’s distance (sum of squared
differences between full-sample fi ed v.'ues and fitted values from a model leaving one
observation out, standardized by' thc ~ur oer of parameters times the model’s mean squared
error). This distance measure is olot’ed ir Figure 4. To check for the collective effect of influence
points we drop the 1% of o! servati. -5 with the highest distance measure from our sample and

then repeat estimating (11).

.

— P2 _
(12) log \ n;, ) = a; + 85%‘3?] log(AuM,, ), R’ =0.92.

4.2. Alternative Jodel and Robustness Tests

We next i .vestig. ‘e whether alternative regression model specifications or functional forms fit
better in w..™ the data than with the fixed effects regression model. In line of our theoretical
discuss. ', " /o Jhow that the fixed effects regression model provides better fit in the data than the

pooled regy ssions or alternative functional forms.
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In order to validate our conjecture about the presence of individual effects in FoFs, we compare
the FE regression with a pooled ordinary least-squares (OLS) regression ..~ absence of
individual effects would imply that FoFs do not differ with respect to f.. ‘onal costs, risk
aversion (a reflection of different clienteles), or investment skill. The fi. *o .his pooled OLS

regression is given by

1 1 ) =-3.2 .345 log( AuM., R?2 = "4,
13 o8(n) = 3208 + QB los(Aud, ). B

The original data and the fitted values for both regressions are plc ted in F gure 5. We perform an
F-test of fixed effects versus pooling by comparing the resid’ a1 sum o1 squares for both models.
With a test statistic of 20.14, the p-value is close to zero; he _e wr can reject the pooled OLS
model. Pooling all observations amounts to ignoring indivi’al effects, which will bias the
estimated slopes (0.473 for FE regression versus 0.34_ for pooled OLS regression)."”” This
suggests that we should not ignore individual effects ree. ling the FoF specific the frictional

costs, the risk aversion, or the investment skill.

Although we have shown that the fixed-effec . ~anc model is both theoretically and statistically
the most proper way to test the predictiens of «ur simple model, it is, however, interesting to
examine the determinants of diversification cu. ‘ce. Table 2 present results for pooled OLS with a
set of control variables. Once we ad”~ wie ~ontrol variables, the coefficient for b is 0.258 with a
statistic of 26.74. More interestingly, ~ne pr cential major determinant of diversification choice is
the fee structure."* We, howev.r, fad that both the coefficient for management fee and the
coefficient for incentive fee - ce 0. 'v rarginally significant, while the coefficient for sales load
fee is statistically insignifi.an. Among the share restriction variables, only the coefficient for
notice period is positi' ¢ ud significant, whereas the coefficients for lockup period and
redemption period are .. ~i ;nificant. Finally, we find a negative relationship between the style
concentration and d’ vers fication. However, this relationship is rather mechanical, since the FoFs

with a fewer underlyn._ fu-.ds are also concentrated.

" We also ompare he fixed-effects model with a random-effects (RE) model by means of the Hausmann

test. The x* <1 )-di wibuted statistic takes a value of 21.27, so we can reject the null hypothesis of a RE
panel n. “ae, ™ high confidence (p-value of 0.000). Our slope parameter for the RE model is 0.47, which
is both nuw. :rically and statistically close to our conjectured value of 0.5. A Wald test with H; : b = 0.5
results ina y* (1) 0f2.26 (i.e., a p-value of 0.129).

4 We thank for anonymous referee about suggestion.
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Table 2
Pooled OLS with Control Variables

This table present pooled OLS regression results, in which log(number of funds) is - xpla’ 1ed by log(AuM),
compensation structure variables (management fee, incentive fee and sales lo. 1 fee,, <hare restrictions

(lockup dummy, redemption period, notice period), and style concentration.

Log( Number of "...ds (n),

log(AuM) 0.25
(26 74)
Management fee 0.80.
(1.87)
Sales load fee -u.700
(-0.72)
Incentive fee dummy -0.058
-1.72)
Lockup dummy -0.002
(-0.08)
Redemption period -0.076
(-1.03)
Notice period 1.040
(5.10)
Payout period -0.421
(-0.80)
Style concentr tion -1.339
(-20.96)
Intercept -1.103
(-4.77)
Adjusted R-sque. e 0.659
_Nur.ber fObservations 914
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Because our model suggests a linear regression in logs, we can use the MacKin on et al. (1983)
test to see whether a regression in logs does deliver better results than are obtain.1 from a

regression using untransformed data. In particular, we compare the log-liner me .el with a model
using untransformed data, n, = o, + 8- AuM,, + v,,, by running two pa. =l rey essions of the

respective forms

(14) log(nit) =a, +0b- log(AuMit) + ’y(g; - exp{lor \nit%” +e,
(15) nz.t:ai+ﬁ~AuMit+5~(10g</_n?)—lrd(//1;\]+vit.

Both equations add the difference in predictions (fitted v.es) ..ith respect to the competing

model to the model under the null hypothesis. If v (res, 6 )is ignificantly different from zero,
then the model based on log data (resp., untransformeu Jata) is rejected. Running both panel

regressions yields § = 11.01 with t(é) = —4.36 and 5 = 0.00 with ¢(§) = 0.62. In short, we

can reject the model using untransformed data bv.* ce mo: reject the model using log-transformed
data. Thus the functional form proposed in .- the. retical model is in line with the empirical

findings.

Finally, we need to show that our "ug-..~ear model is indeed linear; hence we must test for
threshold effects.'” The idea here 15 "at re ression slopes might differ across regimes, where a
regime is characterized by a (sc .ar chreshold value of a relevant “break” variable. What would
justify the break points in ov mo.~1? What circumstances would lead to these regimes? When
assets under management ,rov. a FoF can increase the number of its target funds as frictional
diversification costs becs . proportionally smaller. However, there may not exist enough target
funds that satisfy this k.7 “avestor’s criteria. The FoF may be unconvinced of the target’s ability
to deliver high (risk adjr sted) excess returns, or the FoF may face regulatory requirements that its
current management 1. ~of crained to address. For these reasons and others, there is likely a limit
to the number of func ' actually eligible for inclusion in a FoF; that is, the number of viable

additional helding. *~ ,of increasing in assets under management.

Following Hai.ouut (1999), we estimate a threshold FE panel regression of the form

15 A simple k imsey reset test (including higher-order powers for the fitted values of the dependent variable
and testing for their joint significance) does not indicate nonlinearity. In other words, the higher powers are
neither individually nor collectively significant.

18



(16) log(nit) =a, +0b- log<AuMit) + A log(AuMit ) D, + v,

for
(17 D 1 if AuM,, > v,
10 otherwise.
Here 7 is the threshold of AuM,, that activates an indicator vari .ole. . To estimate the

unknown break point, we perform a grid search. More precisely, == usc 100 quintile values as

candidates for 7Y while estimating equation (16) a total of 400 tir ‘es. For *ach candidate value of

7 we calculate an F-ratio of the form

(18) ) = ==

here € is the vector of residuals from (8), © is the vecto. f residuals from (16) for a particular
v, and #Obs. is the number of valid observations. . ~tructural break in the proposed log-linear
relationship is suspected for § = argmax(F(') -1/.84. But when is F(9) statistically
significant? We infer the critical value for (1%, 1. ™ .he results of bootstrapping 5,000 times the
residuals from our empirical estimate of \ « =~ is, under the null of no threshold effects. We

thereby create 5,000 new data sets log(nit),log(AuMﬁ) by adding the bootstrapped residuals to

our base model. Within each of the' = data s ts we again perform the grid search just described to

maximize the value of equati-a (18), .nus creating new estimates of I, F,,...,F,, . This

procedure yields a distributior for '8) from which we can now calculate the correct p-value for
F . In our example, ¥ ="..5. with a test statistic of F = 33.84. After 5,000 resamplings we
finally obtain the distrib.cior of our test statistic under the null of no breaks. The p-value for F is
then 0.103; hence we can.. t reject the null hypothesis (of no break) at the 90% confidence level.
Thus we can conc’ude .hat log-linear model is indeed linear suggesting that FoFs seem to be
capable to hire (fi=2) m..*v .dual funds that (do not) fulfill their selection criteria when their total

assets under m: nageme 1t increase (decline).
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5. Diversification and Performance

In this section, we investigate the relationship between the degree of diversi’.ca ‘on and FoF future
performance as well as operational risk. In previous sections, we show that ¢~ ave.. v b is close to 0.5,
i.e., FoFs on average behave as if they would employ a naive diversificat on ~~del as above. However,
we also report that mean group (across buckets with similar number ~f ov. rvations) estimated betas
show some variation, i.e., some funds deviate from the optimal level ¢ © divers fication. Therefore, we test
whether these violations of diversification (according to a na ve ".i0¢:l) are related to deteriorating
performance or more practically can be used to forecast futmi. FoF returns or operational risk. We
conjecture that over-diversification (too high costs, i.e., tc. low v~ :cted return per unit of risk or sloppy
due diligence if costs are not spend) is as detrimental . * pertormance as under-diversification (too high
risk per unit of expected return). If underperforman ¢ .. ured against various benchmark models) is
related to over or under-diversification, investors <.~ us. this knowledge to better select FoF’s. It also
would offer additional support for (5). We prop ~se 1u. each individual FoF a diversification measure that

classifies whether a FoF is (i) well diver-:"~d, (ii) underdiversified or (iii) overdiversified. The FoF is

well diversified when H; : b = 0.5 is bas. ' or the two-sided test at a 10% significance level, while the

FoF is underdiversified (overdive=si.. ) wien b < 1/2 (b > 1/2) based on the one-sided test at a 5%

significance level. For every I oF, w. estimate its diversification measure by using equation (8). Given
that our time-series are rel: ivel, short, the use of the #-test instead of point estimates seems appropriate.
The #-test statistic is a 1 .vot- ( statistic with better sampling properties and, it should provide a correction

for spurious outliers *, norw.. izing the estimated parameter by the estimated variance of the parameter

J

estimate.

We first € ... '~ bhoth portfolio sorts and nonparametric cross-sectional regressions and then turn to
multivariate pa el regressions. Nonparametric regressions are particularly well suited for our purposes

given that we aim to investigate whether there is a nonlinear relationship between the degree of

23



diversification and the FoFs’ performance, while a standard portfolio sort methodrlogy allows us to
gauge economic significance of our results. Given that portfolio sorts and nonparar..etric ~gression work
well only for one variable (i.e., our diversification measure), we use multivariate cegr ssions to control for

the role of other variables that has been documented to explain FoF performance.

To ensure that our performance evaluation results are robust, w' use arious benchmark models.
Motivated by Jagannathan, Malakhov and Novikov (2010), we use *he ¢., " -weighted FoF portfolio as a
first benchmark portfolio. Such a benchmark portfolio measure. “.ow ! edge funds perform relative to
other funds, but do not say anything about risk-adjusted perfori ance. Therefore, we use both the
Carhart’s (1997) four-factor model and the Fung and Hsie.. “2004) seven-factor model. The Carhart’s
(1997) contains four risk factors: the excess returns on va.. =-weighted mark index (MARKET), the size
factor (SIZE), the value factor (HML) and the mome. + m factor (UMD).'® The Fung and Hsieh (2004)
model contains seven risk factors; the excess return ot .:e S&P 500 index (SP), the return of the Russell
2000 index minus the return of the S&P 500 w..'»x (SIZE), the excess return of ten-year Treasuries
(CGS10), the return of Moody’s Baa-ra‘:d cor, orate bonds minus ten-year Treasuries (CREDSPR), and
the excess returns of look-back stra-.dles oi. "onds (PTFSBD), currencies (PTFSFX) and commodities
(PTFSCOM)." Finally, since Bro vn,  “egr riou and Pascalau (2012) show that some FoFs are exposed to
left-tail risk, we use two alterr.ative . ~ecifications including; volatility (VOL) and jump (JUMP) factors
proposed by Cremers, Hal’ng .nd Weinbaum (2015) and the equity option factors (OTM_CALL and

OTM_PUT) developed "y A ;arwal and Naik (2004)."

5.1. Nonparametric Regres ;ion and Diversification

' We download 1. ¢ Carhart factors from Kenneth French webpage.
" We thank David Hsieh for making trend-following factors available in his webpage.
'8 We use data obtained from OptionMetrics to replicate returns on these factors.
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We start by running nonparametric cross-sectional regressions using a robust version of local regression
proposed by Cleveland (1979) and further developed by Cleveland and Devlin (19£38). 1. Yoing so, we fit

a locally weighted polynomial regression model:

(19) Performance; = f(Diversification; ) + &,
where Performance,is the t-statistic of alpha (intercept) obtained fror . the re ative benchmark regression
with respect to the equal-weight FoF index, the Diversification; i defi=~ as the t-statistic of b estimated

using equation (8) for every FoF i and f() represents the locally . igu.wed polynomial regression model."

At each point in the data set a low-degree polynomial is “ttea “~ - subset of the data, with explanatory
variable values near the point whose response is being « -unatea. The fitted values are computed by using
the nearest neighbor routine and robust locally wei, 'wcw . “ression of degree 1 with the tricube weight

function.

Figure 6 presents fitted values for loca',” weighted polynomial regression results when the relative

performance is regressed against the Duv. <ificr sion, . From the scatterplot, we can observe that the FoFs

diversifying along the lines of our s, ~r ¢ m del deliver better performance than the FoFs that hold only a
few or a high number of indiv du.' hedge funds (relative to their AuM). The nonparametric regression

also shows that the fitted va'ue t: r alpha is highest where the Diversification, is close to zero, i.e., close to

the null hypothesis. In summary, our results suggest that deviations from optimal diversification are
penalized and there i< — as . ~ jectured — a nonlinear relationship between the diversification and relative

performance.

 To obtain "~ rstatistic of alpha, we run for every FoF the following regression,
Ret,, = o, + o 2wy Gy where Ret; (Rety,, ) is the FoF’s excess return (equal-weighted FoF

portfolio returt. We calculate the quarterly simple returns of individual hedge funds as in Aiken et al. (2013a).
When a FoF holc s the same hedge fund in two consecutive quarters with an unchanging cost, we calculate the
underlying individual hedge fund’s simple return as a fractional change in value. In case that several FoFs’ holdings
can be used to calculate such a return estimate, we use the median.
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Figure 6
Diversification and Performance

This scatter plot presents locally weighted polynomial regression (LOESS) estimetion . <ults when each FoF’s
alpha r-statistics is regressed againts the FoF’s diversification z-statisic. Alpha #-statistic "~ obtained regressing each
FoF’s returns againts equal-weighted FoF portfolio return. Diversification #-st”us.’c is cotained by running a
regression for each indivual fund and then testing whether b=1/2.

Alpha t-Statistic

Diversification t-Statiste (HO: b=1/2)
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5.2. Portfolio Sorts and Diversification

To measure the potential economic value of our diversification measure, we "1se « standard portfolio
sorting methodology. On each quarter from 2004Q3 to 2012Q2, we sort f'.nds uw *hree portfolios, based
on the diversification measure,” and track the equally-weighted retur . produced by the portfolios in the
following quarter. To assess the performance of the diversification 1. »asv_ sorted portfolios, we first
calculate summary statistics of their quarterly raw returns. Su b static iics have the benefit of being
independent of the benchmark model. As straightforward statis.’cs, we calculate the mean return,
volatility and Sharpe ratio. For each mean return and Sharpc -atio, we test whether the difference between
an equal-weight portfolio of optimally diversified For. and an equal-weight portfolio of FoFs that

underdiversify (overdiversify) is statistically significa. *.*'

Panel A of Table 2 reports that both mean re..n and Sharpe ratio are the highest for the optimally
diversified portfolio, while the volatiliti- s arv quite similar across portfolios. Statistical tests show that
mean spreads are significantly higher for o v ally diversifying FoFs at the 1% level, while Sharpe ratio
differences are significant at least a. > : 1070 level. The relative performance results reported in Panel B
support these findings. We fir 1« tu.* both alphas and information ratios with respect to equal-weighted
FoF portfolio are significar Jly } igher for FoFs that diversify optimally. It also look like that the FoFs

which underdiversify de’.ver the 1. west performance among these three groups.

20 Three portfolios .. * contain either (i) optimally diversified (b = 1 /2), (ii) underdiversified (b <1 /2 ) or (iii)
overdiversific 1 Fuks (b > 1 /2).. FoF is optimally diversified when b=1 /2 using two-sided test at a 10%
significance leve. The FoF is underdiversified (overdiversified) when b < 1 /2 (b>1 /2 ) using one-sided test at
a 5% significance level. b is estimated using an expanded window.

21 We employ the Ledoit and Wolf (2008) approach to test difference between two Sharpe ratios.
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We next turn to the performance of FoFs by using both the Carthart’s (1997) four-factrr model and Fung-
Hsieh (2004) seven-factor model. Panel C shows that both the Carhart’s alphas and infoi. *ation ratios are
the highest for FoFs that diversify optimally. We do find that all for all threr por (olios that FoFs are
significantly exposed to value-weighted market portfolio, while other facw < remains statistically
insignificant. In addition, we can see that the magnitudes of risk lo’ ding; arc quite similar across
portfolios. As a complementary assessment of the performance of th sortec portfolios, we use the Fung
and Hsieh (2004) model. Panel D shows that the alphas and inform~*ion . -**_s are significantly higher for
the portfolio containing the FoFs that diversify optimally. Again, ." o FoF ; that underdiversify deliver the
lowest performance. We do not find any significant difference bet reen risk loadings among the three

groups.

Given that Brown, Gregoriou and Pascalau (2012) sh¢ v .hat FoFs are exposed to tail risk, we investigate
issue by two additional specifications. First, using u.-¢ v. th aggregate jump (JUMP) and volatility (VOL)
risk factors proposed by Cremers, Halling and *eisbaum (2015). They show that stocks with high
sensitivities to jump and volatility risk ! ave lo 7 expected returns. Second, using the two option-writing
factors developed by Agarwal and N- .k (20uv-.". Panel E and Panel D show that our results hold even after

adding these factors. This suggest' tha. ~ur ndings may not by driven by left-tail risk.

To investigate whether our oort olio sort results are consistent over time, Figure 2 plots the cumulative
performance results for chre ; diversification groups. Panel A plots cumulative excess returns, while in
Panel B cumulative - “urns .~ cess to equal-weighted FoF portfolio. Panel C and D plot the cumulative
abnormal returns w ‘th res sect to Carhart (1997) factors and Fung-Hsieh (2004) factors. Cumulative
performance 1 :sults a = striking. These four panels show that FoFs that diversify along the simple

~

predictions . “ndel outperform the FoFs that either under- or overdiversify. Cumulative performance is
consistently hi_her for them no matter whether we use raw returns, relative returns or risk-adjusted

returns in terms of Carhart (1997) or Fung and Hsieh (2004) model.
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Table 3
Portfolio Sorts and Diversification
This table present the out-of-sample results for three portfolios that contain either o optimally diversified
(b =1 /2), (ii) underdiversified (b <1 /2 ) or (iii) overdiversified FoFs (b >1 /2).. “oF °, optimally diversified
when b =1 /2 using two-sided test at a 10% significance level. The FoF is underdiv. «ifieu ‘~verdiversified) when

b <1 /2 (b >1 /2 ) using one-sided test at a 5% significance level. b is estim- .. ! using an expanded window.

“Mean” is an annualized mean excess return for a particular portfolio. “Std” is an e .nu.":zed standard deviation.
“Sharpe” is an annualized Sharpe ratio. “Alpha” is an annualized intercept obtainc.’ rom the respective benchmark
model. “TE” is an annualized tracking error defined as a standard deviation ». .esidua, .erm. “IR” is an annualized
information ratio defined as a respective benchmark model intercept divide 1 by the standard deviation of residual
term. The Ledoit and Wolf (2008) approach is used in Sharpe and IR dit.“rence osts. T-statistics of parameter
estimates are presented in parenthesis.

EW Portfolios Mean Std Sharpe L Alpha TE IR

Underdiversified 1.932 7.447 0.259 -1.249 1.011 -1.235
(0.65) (-3.48)

Optimal 5.835 7.546 C. > 2.667 1.721 1.550
(1.80) (4.27)

Overdiversified 3.250 6.635 0..70 0.473 1.597 0.296
(1.15) (0.73)

Difference tests

Optimal - Underdiversified 3.903 0.514 3.916 2.785
(4.62) (3.75) (4.73) (5.02)

Optimal - Overdiversified 2.586 0.284 2.194 1.254
7€ (1.72) (2.40) (2.07)

Pan.® _: Carhart Adjusted-Returns

EW Portfolios Al a TE IR Market SMB HML UMD
Underdiversified 0.545 3.782 0.144 0.393 -0.063 -0.182 0.046
0.40) (5.35) (-0.44) (-1.81) (1.17)
Optimal 1.294 3.709 1.158 0.370 0.067 -0.149 0.007
(4.24) (4.18) (0.45) (-1.54) (0.17)
Overdiversified 1.964 3.478 0.565 0.319 0.037 -0.121 -0.001
(1.45) 4.72) (0.30) (-1.30) (-0.01)
Difference test.
Optimal - Underdiv...itied 3.749 1.014 -0.023 0.129 0.032 -0.039
(5.61) (3.27) (-0.94) (1.94) (0.75) (-2.44)
Optimal - Over. ‘iversified 2.329 0.593 0.051 0.030 -0.028 0.008
(2.47) (1.68) (1.59) (0.41) (-0.52) (0.43)
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5.3. Multivariate Analysis and Diversification

We next turn to the multivariate analysis of diversification and future FoF perform~nce. Foi this purpose,
we run a set of panel regressions to explore whether the variables documentec by r xisting literature are
more important variables in explaining the FoFs’ performance than the propos. ' dive. sification measure.
Given the quarterly frequency of our data, the most convenient way to ex- mir > the 1ssue raised above is

to run the following panel regression:

Return,, = v, + v, NonOptimal,, | + 7, log(AuM),, ; + v;log(n),. .~ ~ P oblem;, | + ~y;BollenPool;,
+YDLR,, | + v, Flow,, | + vygReturn,, | + vy,StyleConcentratio ,, , . Timeln variantControls,,

where Return;, is the FoF’s quarterly relative return defined as the ¢ “cess return over the equal-weighted

FoF portfolio. To obtain the diversification measure on a ™manu..y basis, we create a dummy variable

(NonOptimal,, ) from our time series of diversific -iou wecasures (estimated from OLS using an

expanding data window). This dummy variable ic «."~=d as the statistically significant non-optimal

diversification at the 10% level.”> Thus, in this ~egres. on, the negative coefficient for NonOptimal, , ,

indicates a higher performance for FoFs that divers. along the lines of our simple model. We include

quarterly dummies across specifications (not tabu.. “ed), and cluster standard errors by FoF.

Table 3 shows a robust and a negative . ~lations 1ip between NonOptimal,, , and FoF performance even

once we add a set of control variab’:s. I provides evidence that the FoFs that do not diversify along the
simple model deliver 1.4%-3.4% owe. -l .tive returns per annum compared to the FoFs whose behavior

is consistent with the model tal .ng .’ *~tional costs into account.

To examine the robustness o. *.¢ diversification and performance result, we base our control variables to

the previous literature ¢ 1 be n hedge fund performance and mutual fund performance.” First, we include

the logarithm of the oF's e (log(AuM),, ,) into the regression model. Brown, Frazier, and Liang

it—1
(2008a) argue that ~nly rel itively large FoFs can absorb fixed costs that are required for setting up an

effective due d’.igence process. Table 4 shows that the FoF’s size does not drive our results. Although we

* Our results a. quantitatively similar for the significance levels 1% and 5% as well as full-sample diversification
measures. We als. find quantitatively similar results using the Fama and MacBeth regressions (1973). These results
are available upon a request.

3 Table A2 provides the summary statistics for the set of control variables.
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often find a significant and positive relation between log(AuM),, , and FoF relativ : performance, the

coefficient for NonOptimal,, , remains negative and significant.

Second, we add log(n),, , into the regression model due to the fact that Polle. ~nd Wilson (2008)

-1
document evidence suggesting that better diversification measured by 4 la ~>r number of stocks is
associated with superior performance especially for small-cap mutual fun. In contrast, we find some
evidence that a lower number of underlying hedge funds is associate . with , -eater relative performance.

Importantly, adding log(n) does not impact the significance of our x * v~_1able NonOptimal,, ;.

i,t—1

We next include three different operational risk measures into « *r regression model.”* The first one is

defined as a fraction of “problem” funds that a FoF holds au.ng the quarter ( problem,, ,).The rationale

stems from a series of papers done by Brown, Goetzmann. 1. ~ng, and Schwarz (2008b, 2009, 2012).
Second, in the spirit of Bollen and Pool (2012), we for.. the suspicious return —flags variable that is
defined as the fraction of underlying funds with sus, icir us ceturn patterns. Finally, we build a variable
that is defined as the fraction of underlying fun. ~ “vhic ° have impose discretional liquidity restrictions
(Aiken et al 2015b). Even after controlling fer the r le of three different aspects of operational risk, we

find that the coefficients for N OnOptimali’ ., are n.ative and statistically significant.

Since Fung, Hsieh, Naik and Ramadorai (~208" document that the capital inflow attenuates the ability of
good performing funds to deliver s .uper'or fiture performance, we add the FoF’s quarterly capital flow

(flow,, ,) into the diversificatic 1-peric ~.ance regression model. After adding flow, we still find a

negative and significant coefficient to. NonOptimal,, | suggesting our finding is robust.

It is well-known that hr ige fun. monthly returns tends to be autocorrelated (e.g. Getmansky, Lo and
Makarov 2004). In our .~ ¢, th fund returns are quarterly, which according to Asness, Krail and Liew
(2001) naturally al’ -viates the effects of non-synchronous price reactions on estimates of volatility and
correlation. Howevy~ to rasure that the potential presence of stale prices does not contaminate our

regression coe ficient. we add, in the spirit of Dimson (1979) and Scholes and Williams (1997), the

lagged return (..., ;) in our regression model. Consistent with idea of stale pricing, we find a

2 Please, see from the Data Appendix details how operational risk variables are constructed.

35



positive and significant coefficient for lagged return. More importantly, tke coefficient for

NonOptimal, ,_, is still significantly negative.

Since the previous literature documents that the hedge fund compensation structwi. e.g., Agarwal, Daniel
and Naik 2009) and share restrictions (e.g., Aragon 2007) are associated with “nd performance, we
control for the role of these variables in our regression model. Our retu as 2 ¢ nc. of underlying hedge
fund fees, but gross of FoF fees. Hence, the compensation structure v2~"~bles .“ould control for the role
of fee difference between FoFs. The FoF’s with tighter share restrictic ns may nanage capital flows better
than the FoFs more honorable redemption restrictions. Even after .uding a set of compensation and share

restriction variables, we find that the coefficient for NonOp'* w«al,  is negative and statistically

significant.

Our final concern is that some of the FoF may focus onlv ~» ~- e of the investment styles, and thereby
have concentrated portfolios. One of the shortcoming our di. ~rsification model is that it does not take this
possibility explicitly into account, therefore we add .“e style concentration variable into our regression

model. After controlling for the role of style conce .. ~tior., our main result hold.

To summarize, our multivariate evidence suggests u. t there is a robust nonlinear relationship between the

proposed diversification measure and the ror erformance. Indeed, the FoFs that set their diversification

policy close to n* oc aum. i.e., divessify .~or. closely to our simple model tend to deliver relatively
higher performance than the FoFs chat nold either a few or a high number of individual hedge funds

relative to the FoF’s size.

5.4. Diversification and Oper ... 1al Risk

1

Next, we analyse the relation.' o between the degree of diversification and operational risk. We start by

examining whether the foF, thnse do not diversify along simple model fail more often than the FoFs
following closely the nrea.. “ic.as of our model. In doing so, we run a set of Probit models, in which the

FoF failure is (xplaine. the non-optimal diversification (NonOptimal;, ), while controlling

simultaneously .uc role ot the FoF size, number of funds, style concentration and operational risk as well

as compensatic " struct .re and share restrictions variables.

Table 4 reporw. that across specifications the coefficients of non-optimal diversification ( NonOptimal, , )

are consistently positive and statistically significant. Our results reveal that the degree of diversification is
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associated with failure probabilities. Indeed, those FoFs diversifying closely along the lines of our simple

model exhibit a lower probability to fail.

It is interesting to note that none of three operational risk measures that we use .~ ¢ )ntrols are capable to
predict FoF failures, but the degree of diversification do so even after thes. three operational risk
measures are added to the Probit model. Among the control variables, on , e FoF size and style
concentration are associated with FoF failure. However, even after conu. 'ling for the role of these

variables the degree of diversification is robustly related to FoF failurr s.

To better understand the link between the diversification anc o crat »nal risk, we run a set panel
regressions, in which the operational risk are predicted by the degice of diversification. We start by
examining the link between the fraction of underlying .. ~ds ha iing imposed discretional liquidity
restrictions and non-optimal diversification. Across speci. ~ations, we find positive and statistical
significant coefficients for non-optimal diversification . ~ogesting that those FoFs which diversify non-
optimally are likely to invest in underlying funds the ..., ~-= discretionary liquidity restrictions. For other
two operational risk measures (operational prob'=ms « 'd suspicious return patterns), we do not find a
significant relationship between them and the o >grc. of diversification. Hence, the non-optimally
diversifying FoFs select in their portfolios n..ve o1 the underlying funds that subsequently impose

discretionary liquidity restrictions such as oates and side pockets, but degree of diversification is not

associated with two other forms of oper tional n k.

6. Conclusion

We employ a model of naive uiversi..~ation with frictional diversification costs to motivate a positively
sloped log-linear relation b cwer a a fund of fund’s number of holdings and the value of its assets under
management. When appl’2d to . nreviously unavailable data set, our model produces evidence that FoFs
diversify in line with t' s n .ive .dvice. In fact, we find a log-linear with a regression coefficient of close
to 0.5. Diversificati~.. is no . ee lunch but only available to those who can afford it. No indications of
nonlinearities or thi >shold ¢ ffects were evident, and our results do not change materially when individual
data points or i".uividral FoFs are dropped from the sample. Finally we provided evidence that those FoFs
following morc closely our simple model’s predictions are able to provide better future performance and

fail less of. -u.

37



Table 4
Multivariate Analysis and Diversification

This table reports results for the multivariate regressions, where the FoFs’ relative r wurn¢ are explained by the
quarter lagged diversification measure and a set of one quarter lagged control variabic. The variable “Relative
return” is the FoF’s quarterly relative return defined as the excess return over the equar- ighw d FoF portfolio. The

Aol

variable “Non-optimal diversification” is an indicator variable getting one = ‘he r.% is underdiversified
(overdiversified) when b < 1 /2 (b >1 /2 ) using one-sided test at a 5% sigr ricar -e .. sel, and otherwise zero.

“Log(AuM)” and “Log(n)” are the logarithm of assets under management and nun.. ~r of funds. “Operational risk”
is the fraction of problem funds that the FoF hold. Problem funds are classific .« using an ndicator variable that takes
on a value of one if the fund denotes any action brought by a regulator o1 the cow s in Question 11 of its ADV
filing, and zero otherwise. “Flow” is capital flows in percentiles. “Time t 7<?” r rers to calendar fixed effects.
“Clustered SEs?” refers to the standard error that are clustered at FoF lev 1.

Panel A: Baseline specifice*ions

Relc “ve Retur !

Non-optimal diversification -0.0085 -0.0075  -c 207 -0.0048 -0.0059 -0.0068 -0.0045
(-2.72) (-3.56) (3% (-3.06)  (-3.99) (-2.85) (-3.34)

log(AuM) 000 2 00014 0.0008 0.0007 0.0016  0.0006
(-1.54) (-1.76)  (1.13)  (0.96)  (-1.84)  (1.01)

log(n) 0.0  -0.0091 -0.0071 -0.0061 -0.0113  -0.0053
34Uy (279)  (2.05)  (-1.89)  (-2.73)  (-2.89)

Problem 0.0071
(-0.69)
Bollen-Pool Score 0.0347
(2.28)
DRL -0.0132
(-2.13)
Flow 0.0152
(-1.81)
Lagged Return 0.3222

(2.96)
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Panel B: Compensation structure and share restrictions

Relative return

Non-optimal diversification -0.0034
(-2.01)
log(aum) 0.0011
1.7~
log(n) -0.0)17
(-0.6
Management fee 7.3850
1.5v)
Sales load fee 0. 241
A7)
Incentive fee dummy -0.0019
(-0.98)
Lockup dummy -0.0042
(-2.42)
Redemption period 0.0024
(0.58)
Notice period 0.0339
(2.68)
Payout period -0.0060
(-0.27)
Style concentr tion 0.0012
(0.23)
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Table 5
Non-optimal diversification and FoF failure

This table present Probit analysis results, in which the fund failure is explaind b¢ lagged non-optimal
diversification and set of control variables. “FoF failure” gets a value 1 when the FoF is . “r.mated and 0 if the FoF
continues to report with SEC. The other variables are as in Table 3.

FoF failurc
Non-optimal diversification 0.0198 0.020° 7.0222
(2.48) 2.4) (2.31)
log(aum) -0.0161 -0.015¢ -0.0108
(-4.10) -3.77, (-1.53)
log(n) 0.0057 -L.v009 -0.0526
(0.62) " 10) (-2.41)
Problem -0.01 36
L v.09)
Bollen-Pool 7.1728
(-1.02)
DLR 0.0694
(1.34)
Management fee -1.8440
(-0.71)
Sales load fee -0.4124
(-0.80)
Incentive fee dummy 0.0047
(0.38)
Lockup dummy 0.0049
(0.33)
Redemption per od -0.0039
(-0.18)
Notice perio” -0.1948
(-1.59)
Payout perio. 0.3134
(1.73)
Style cu.- entr .tion -0.0931
(-2.38)
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Table 6
Operational risk and non-optimal diversification
This table presents the panel regression results, in which there operational risk proxies (DI ~, Problem and Bollen-

Pool) are explained by lagged Non-optimal diversification and a set of control variables. .he v ariables are defined in
Table 3.

DLR Problem Bollen-Pool
Non-optimal diversification 0.027 0.022 -0.002 0 00 -0.001 0.000
(3.55) (2.33) (-0.28) (-0.02, (-0.89) (-0.13)
log(aum) -0.005 -0.004 -0.007 -0.001 0.001 0.001
(-1.66) (-1.10) (-1.92) -0.33) (1.07) (1.35)
log(n) 0.014 0.000 0.001 -0.012 0.003 0.003
(2.06) (-0.03) (0.13) (-C 96) (1.28) (1.39)
Management fee 2.240 ..618 -0.343
(1.53) (0.99) (-0.91)
Sales load fee -0.203 0.167 0.005
(-0.57) (0.54) (0.08)
Incentive fee dummy 0.010 0.000 -0.001
(1.15) (-0.04) (-0.48)
Lockup dummy 0.027 0.008 -0.002
(3.1 (0.97) (-1.28)
Redemption period 0.006 -0.037 -0.005
(AR (-1.74) (-1.62)
Notice period -0.161 -0.036 0.035
67) (-0.61) (2.40)
Payout period 0.04) 0.124 -0.078
0.19) (0.66) (-2.03)
Style concentration -0.018 0.018 -0.008
-0.63) (0.76) (-1.70)
Lagged DLR 7904 0.859
32.30, (25.32)
Lagged Problem 0.870 0.881
(34.92) (36.72)
Lagged Bollen-Pool 0.848 0.808

(29.65) (24.33)
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Appendix

A. Data Gathering Process

We start our data construction by downloading all SEC EDGAR master filing indic. ~ from 1993 to 2012.
Each SEC filer is identified by its central index key (CIK). For each CIK ar_ aring "2 the master indices,
we download its most recently filed NSAR filing (either NSAR-A or NS/ R-P,. This yields 3,032 NSAR-
A filings and 2,328 NSAR-B filings, for a total of 5,360 NSAR filings _ach CL. is classified as a closed-
end fund if the answer to question 76 of its most recently filed NSA®> form s zero. This yields a list of

4,521 CIKs of closed-end funds.

For each of these CIKs, we download all their annual reports (. -CSR, available from filing quarter
2003Q1), semi-annual reports (N-CSRS, available from filing  *ar*.r 2003Q3) and quarterly reports (N-
Q, available from filing quarter 2004Q3). The intersection nf: sse report types is available from filing
quarter 2004Q3. These reports have a similar structure, so w ~ use a single automated program to parse the
fund holdings from each report. For each holding, w. p7.se the name of the asset held, its original cost,
and its current market value. To narrow the samp.- ~om “losed-end funds down to funds of hedge funds,
we restrict the sample to funds whose name “~dicatc< that the fund is 1) a fund of funds, 2) a fund of
hedge funds, 3) a limited liability company (LLC), ~r 4) a limited partnership (LP). This leaves us with
202 CIKs. Finally, we manually insper. tne holdings of these funds, and remove funds that do not
primarily hold hedge funds. This leave. s w'.h 127 distinct FoFs that have invested in 1,751 unique
target funds. 776 of these funds we were able to match by name to a consolidated version of commercial
hedge fund databases (BarclayH .dge, “ur.kaHedge, HFR, Lipper TASS and Morningstar) created by

following the steps described ir Jo.. vddrd, Kosowski and Tolonen (2015).

Next, we parse the underly..> dunds’ investment strategies, discretionary liquidity restrictions and non-
discretionary liquidity estr ctions. Since it is very difficult to parse these variables using a single
automated parser, we man. *1J' verify that we have gathered all of these variables correctly. This labor
incentive step allo' /s us a» o to check that the name of the asset held, its original cost, and its current

market value are ~ollc. - * correctly without obvious parsing errors.

B. FoF-le el v v...pensation Structure and Liquidity Variables

We use each t °F registration statement forms (N-2 and N-2 amendments) to gather information on

compensation structure and share restriction variables. We hand collect variables related to fixed asset-

42



based fees (management fee, sales load fee) as well as variables related to profit-b~sed incentive fees
(incentive fee, hurdle rate, and high-water mark). Information on used share equs .1.. “ion methods and
crystallization periods is often missing or inaccurate. This implies that it would L. difficult to estimate
FoFs’ gross returns. Among the share restriction variables, we obtain informea ‘or on length of lockup
period, redemption period, notice period and payout period. Table Al presen. summary statistic and
Table A3 correlation matrix for N-2 variables. Since the incentive fee, b’ gh-v ..~ mark and hurdle rate
are highly correlated with other, we never put them into same regression. model. We opt to use the
incentive fee as main control variable for managerial incentives. The >onclus. »ns are not sensitive to that

choice.

C. Style Concentration and Operational Risk Measures

First, we construct a style concentration (Herfindahl-Hirsckman) Inc :x by gathering the underlying fund
investment strategies from N-Q, N-CSRS, and N-CRS tu. os. vwe harmonize the strategies into eight
styles: Directional, Event Driven, Long/Short, Market I' -uuai, viulti-Strategy, Relative Value, Sector and
Other. Thereafter, we define the Herfindahl-Hirschr -~ Index as the percentage of AuM weights of eight
underlying fund strategies (Directional® + Event Dr. .n’ + Long/Short + Market Neutral’ + Multi-

Strategy’ + Relative Value’ " Sector’ + Other?).

Next, we construct three measures for operational risk: discretionary liquidity restrictions, operational
problems and suspicions return patterns [able . 1 and A2 presents summary statistics, whereas Table A2

presents the correlation matrix for the e vai.. bl s.

To find out which of the underly mg heay. funds have imposed discretionary liquidity restriction (DLR),
we follow Aiken et al. (2015b) class.Scation. We define that the underlying fund has imposed a DLR
when any FoF reports a por tior for the underlying fund that is 1) in a side pocket (either completely or
partially), 2) subject to i vesto. level gates, 3) liquidating, 4) organized as a special purpose vehicle or
special liquidating veh' le, ,r 5) explicitly said to be illiquid or having its liquidity restricted. We define a
FoF-level discretior .., liquicity restriction (DLR) variable as the fraction of underlying funds which

have impose discre. ‘onal lic aidity restrictions.

Next, we build he sus’ icions return patterns flags in the sprint of Bollen and Pool (2012). For each of the
underlying -u..' *»2t we can match to commercial database, we compute nine Bollen and Pool (2012)
measures. Usi 7 a rolling 24-month return window, we compute; 1) the z-score of a return discontinuity

around zero (in local currency); 2) the maximum adjusted R2 from a regression of excess fund returns
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against all possible subsets of the Fung and Hsieh (2004) risk factors; 3) the p-value ~f the slope from a
regression of excess fund returns against the returns of a hedge fund’s style inde ; " the z-score of a
fund’s return autocorrelation coefficient; 5) the z-score of a fund’s return aut~ .. “relation coefficient,
conditioned on relative return level; 6) an indicator for whether a fund’s histo. " i-.cludes a string of at
least three identical returns (in local currency, rounded at four decimals); 7) the 4~ ~tatistic against the null
hypothesis of a uniform distribution for the last digit of returns (in loce” cur cu. 7); 8) an indicator for
whether the fund reports at least two exact zero returns (in local currencv); v, the percentage of negative
returns (in local currency). We define a FoF-level Bollen-Pool score as the i action of underlying funds

which have suspicious return patterns.

Finally, following Brown, Goetzmann, Liang, and Schwarz (2u.%h, 2009), we classify as “problem”
funds those individual hedge funds that answered “yes” to at . st or : question in Item 11 of ADV filing.
Item 11 identifies all problems that the management or the .~lated advisory affiliates have, including
felonies, investment-related misdemeanors of any ag.-cy, SEC, CFTC, or self-regulatory issues,
regulatory disciplinary action as well as civil lawsu. <. v. . 'zfine a FoF-level problem as the fraction of

underlying funds which exhibits problems.
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Table A1l

Cross-Sectional Descriptive Statistics

N-2 variables

Management fee 71 0.005 0.020 0.01. 0.013 0.003
Sales load fee 64 0.000 0.050 0.0'5 0.020 0.014
Incentive fee 65 0.000 0.150 nn35 0.000 0.045
Incentive fee dummy 71 0.000 1.000 0.380 0.000 0.489
Hurdle dummy 71 0.000 1.000 2169 0.000 0.377
High-water mark 71 0.000 1.000 ..266 0.000 0.485
Lockup dummy 59  0.000 1.000 0. 08 1.000 0.504
Redemption period 59  0.250 1.000 0.364 0.250 0.169
Notice period 56  0.000 6.2<0 0.128 0.086 0.077
Payout period 59 0.000 u.'64 0.078 0.082 0.040
Operational risk (time-sc. »s mean)
DLR 81 0.000 <739 0.166 0.152 0.135
Problem (RT) 79 0.0 0.649 0.216 0.194 0.138
Bollen-Pool 80 -0.05"  0.126 0.063 0.060 0.032
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Table A2
Time-Series Descriptive Statistics

N Mean Median “d
Performance statistics y N,
Fund excess return (%) 1043 0.899 1.650 4.065
Capital flow (%) 1042 1.102 <145 20.605
Diversification measures
Diversification t-statistic 1043 -1.512 -l.uvo 5.307
Diversification dummy 1043 0.573 1.009 0.495
Portfolio statistics
AUM (MUSD) 1283 282.315 94.377 681.813
log (AUM) 1283 18.5.° 18.363 1.409
N 1283 28.4-F 25.000 19.927
log(N) 1283 3.156 3.219 0.655
Style concentration 1282 0.4.1 0.378 0.235
Operatioi ~1 -.sk
DLR I..2 0.175 0.100 0.199
Problem (RT) 1252 0.206 0.179 0.166
Bollen-Pool 75y 0.064 0.062 0.039
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