
Continuous Deployment of Software Intensive Products and Services: A Systematic
Mapping Study

Pilar Rodrı́gueza,∗, Alireza Haghighatkhaha, Lucy Ellen Lwakatarea, Susanna Teppolab, Tanja Suomalainenb, Juho Eskelib, Teemu
Karvonena, Pasi Kuvajaa, June M. Vernerc, Markku Oivoa

aDepartment of Information Processing Sciences. Box 3000, 90014 University of Oulu, Finland.
bVTT Technical Research Centre of Finland P.O. Box 1100, FI-90571 Oulu, Finland.

cKeele University, UK.

Abstract

BACKGROUND - The software intensive industry is moving towards the adoption of a value-driven and adaptive real-time business
paradigm. The traditional view of software as an item that evolves through releases every few months is being replaced by the
continuous evolution of software functionality. OBJECTIVE - This study aims to classify and analyse the literature related to
continuous deployment in the software domain in order to scope the phenomenon, provide an overview of the state-of-the-art,
investigate the scientific evidence in the reported results and identify areas suitable for further research. METHOD - We conducted
a systematic mapping study and classified the continuous deployment literature. The benefits and challenges related to continuous
deployment were also analysed. RESULTS - The systematic mapping study includes 50 primary studies published between 2001
and 2014. An in-depth analysis of the primary studies revealed ten recurrent themes that characterize continuous deployment and
provide researchers with directions for future work. In addition, a set of benefits and challenges of which practitioners may take
advantage were identified. CONCLUSION - Overall, although the topic area is very promising, it is still in its infancy, thus offering
a plethora of new opportunities for both researchers and software intensive companies.

Keywords: continuous deployment, continuous delivery, rapid release, software development, continuous software engineering,
software product, software intensive system, software service, systematic mapping study, secondary study, literature survey

1. Introduction

The software intensive industry is evolving towards a value-
driven and adaptive real-time business paradigm [39]. The
Age of Information [19], which is strongly based on the In-
ternet speed-of-things, has shaped a digital economy and a
knowledge-based society. Digital resources are constantly
available for everyone, information flows are accelerated and
individuals can explore their personal needs more easily.
Consequently, fast-changing and unpredictable markets have
shifted the competitive software development landscape. The
traditional view of software as a static item that can be bought
and owned is giving way to software services in which cus-
tomers expect a continuous evolution of product functional-
ity that provides additional value [14]. These market features
enable new business opportunities. However, they also exert
pressure to develop dynamic capabilities [28]. To maintain
their competitive advantage, software intensive companies need
to deliver valuable product features to customers considerably
faster than before, if not near to real-time, while embracing
business changes and pursuing economic efficiency.

Agile software development (ASD) emerged in 2001 [6] as
a ground breaking foundation for new software development

∗Corresponding author. Tel.: +358 40 1602 179.
E-mail address: pilar.rodriguez@oulu.fi (P. Rodrı́guez).

processes. Iterative development, continuous integration and
short feedback cycles were advocated as a replacement for the
traditional engineering stage-gate models. The ultimate aim of
ASD was to improve the organization’s capability to adapt to
market fluctuations and customer needs. Although ASD was
initially considered a fad, and caused some controversies [11], it
became progressively mainstream. Thus, software practitioners
have increasingly adopted ASD [69], and the research in the
area has become well-established [25].

A recent evolutionary step from agile and lean software de-
velopment is rapid and continuous software engineering. Rapid
and continuous software engineering refers to the ’organiza-
tional capability to develop, release and learn from software in
rapid parallel cycles, such as hours, days or very few weeks’
(ICSE 2014, http://continuous-se.org/). ASD is extended to
approaches where the step between development and deploy-
ment is minimalized in order to deploy code immediately to
production environment for customers to use. Continuous de-
ployment (CD) is the term used to refer to this phenomenon
[36, 61, 32, 39, 21]. Although the concept of deploying soft-
ware to customers as soon as new code is developed is not new
and is based on ASD principles, CD extends ASD by moving
from cyclic to continuous value delivery. This evolution re-
quires not only agile processes at the team level but also inte-
gration of the complete R&D organization, parallelization and

Preprint submitted to Journal of Systems and Software January 4, 2016



automation of processes that are sequential in the value chain
and constant customer feedback.

Leading organizations, such as Facebook, Microsoft and
IBM, have provided examples of CD implementation [21],
which has led to the emergence of studies related to CD in
the scientific literature (e.g. [61, 24, 31, 47]). Mäntylä et al.
[52] recently published a semi-systematic literature review as
part of their research on rapid releases and testing. Although
their findings are significant and shed light on the grey area of
CD, the CD research field remains dispersed among different
research areas and a structured understanding of the main fac-
tors that characterize CD is not provided. Therefore, the goal of
this study is to identify the state of the art of the phenomenon
of CD in the context of software development. This systematic
mapping study [44] aims at the following:

1. To establish the body of knowledge of CD by identifying
and categorizing the available research on the topic

2. To assess the quality of the existing research in terms of in-
dustrial relevance and research rigour

3. To identify the most relevant articles in the field of CD
4. To determine the underlying factors that characterize CD as

both a concept and a phenomenon
5. To provide baselines to assist with further research

This study combines the process of a systematic literature re-
view (SLR), as established by Kitchenham and Charters [43],
with the mapping study, as suggested by Petersen et al. [66].
We wish to present a a logical organization of the CD literature
in order to provide researchers with a structured body of knowl-
edge on which to base their studies. We also want to furnish
practitioners with the main factors they should consider when
deciding whether or not to migrate to CD, the benefits that they
can expect, as well as the potential risks and challenges they
might face with CD.

The remainder of this paper is organized as follows: back-
ground and related work are presented in Section 2. Section 3
describes the research methodology, including a discussion on
threats to validity and countermeasures taken to minimize their
effects. In Section 4, we present the results of the mapping
study. Sections 5 and 6 provide an analysis of the factors, bene-
fits and challenges characterizing CD. Opportunities for future
research are discussed in Section 7. Section 8 presents a com-
parison of our findings with related work and, concretely, to the
semi-systematic literature review conducted by Mäntylä et al.
[52]. Finally, we present our conclusions in Section 9.

2. Background and Related Work

The roots of CD began fifteen years ago with the formulation
of the Agile Manifesto [6]. Some argued that ASD was just old
wine in new bottles [55], in reference to the roots of ASD in
iterative models, such as the spiral model [13]. Undoubtedly,
today’s software engineering is the result of the evolutions of
previous software development models [12]. This section de-
scribes the phenomenon of CD, providing a historical view and

identifying its core ideas. We then summarize previous litera-
ture reviews related to CD and justify the need for this review
and its research questions.

2.1. Continuous deployment

The Internet-speed of things has changed the way software
companies deliver value to their customers. The widespread
adoption of lean principles and agile methodologies [69] has
provided evidence of the need for and value of flexibility and
adaptation in the current environment of software development
[32]. ASD established some foundations for CD. For exam-
ple, agile principles, such as ’our highest priority is to satisfy
the customer through early and continuous delivery of valu-
able software’ and ’deliver working software frequently, from
a couple of weeks to a couple of months, with a preference to
the shorter timescale’ make clear reference to CD. However,
ASD has mainly focused on speeding up the development pro-
cess at the team level through methods such as eXtreme Pro-
gramming [5] and Scrum [71]. CD moves beyond the concept
of ASD towards a situation in which software functionality is
continuously deployed to the final customers (production en-
vironment), and where customer input is the main driver for
innovation [62]. Instead of working for months on a major
new release, companies limit their cycle time (i.e., the time be-
tween two subsequent releases) to a couple of weeks, days or,
in some cases, even hours [52]. A plethora of evidence related
to CD exists in organizational white papers and on-line blogs,
where practitioners have voiced their experiences and expec-
tations in moving to CD (e.g. Facebook1, IBM2, Microsoft3,
Google4, Adobe5, Netflix6 and IMVU7). Accordingly, a body
of academic literature is also emerging on this topic.

Humble and Farley [36], in their book on CD published in
2010, state that continuous delivery provides enterprises with
the ability to deliver rapidly, reliably and repeatedly value to
customers at low risk with minimal manual overhead. While
continuous integration, which is a core ASD practice, mainly
focuses on the automation of the build process (the code is built,
and a set of unit tests are run when it is checked into version
control repository), continuous delivery is a logical progression
that automates the entire workflow simplifying the rapid release
of software. The central concept in Humble and Farley’s ap-
proach is a deployment pipeline that establishes an automated
end-to-end process to ensure that the system works at techni-
cal level, executes fairly automated acceptance tests and lastly
deploys to a production or staging environment.

1https://www.facebook.com/notes/facebook-engineering/ship-early-and-
ship-twice-as-often/10150985860363920 (accessed 09, 2015)

2http://www.ibm.com/developerworks/rational/library/continuous-
deployment-rational-alm/ (accessed 09, 2015)

3http://blogs.msdn.com/b/bharry/archive/2012/06/07/announcing-
continuous-deployment-to-azure-with-team-foundation-service.aspx (accessed
09, 2015)

4https://air.mozilla.org/continuous-delivery-at-google/ (accessed 09, 2015)
5http://steveblank.com/2014/01/06/15756/ (accessed 09, 2015)
6http://steveblank.com/2014/01/06/15756/ (accessed 09, 2015)
7http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-

the-impossible-fifty-times-a-day/ (accessed 09, 2015)

2



The concepts underlying CD have also attracted the atten-
tion of researchers. Recent editions of the ICSE8 conference
(2013, 2014, 2015) have offered workshops focused on the
topic such as the International Workshop on Release Engineer-
ing (RELENG), which emphasized ’the recent trend to reduce
the release cycle to days or even hours’, as well as the Inter-
national Workshop on Rapid and Continuous Software Engi-
neering (RCoSE). Drawing upon the concept of rapid and con-
tinuous software engineering, Fitzgerald and Stol [32] propose
a conceptual model that presents a set of continuous activities
across the software development lifecycle with a holistic view
of business, development, operations and innovation activities.
In a similar vein, Järvinen et al. [39] propose a model to char-
acterize the evolution of enterprises towards and beyond real-
time value delivery. The model is based on concepts borrowed
from the Elastic Enterprise [80] and the Lean Startup frame-
work [68]. The authors argued that in the current economic
climate, software companies require new capabilities to: 1) de-
liver value in real-time; 2) increase customer insight through
active customer involvement and rapid experimentation; and 3)
seek new ways of executing their existing businesses to enable
them to move into completely new business areas when needed.
The last stage is called mercury business.

According to Olsson et. al ’s model [62], companies evolve
from traditional development to ASD through the careful adop-
tion of agile practices and a shift to smaller cross-functional
teams. When an organization matures in the use of agile, and
uses automated system integration and verification, then that or-
ganization can take the next step, which is the adoption of con-
tinuous integration. When continuous integration is in place,
customers often express an interest in receiving enhancements
and bug fixes more frequently, so the organization migrates to
CD. The final step occurs when the organization not only re-
leases software continuously but also develops mechanisms to
conduct rapid experimentation in order to drive innovation.

Although similarities and differences exist among the emerg-
ing models of CD, three major themes characterize the models:
1) deployment, 2) continuity and 3) speed. Hence, continuous
deployment means the ability to bring valuable product features
to customers on demand and at will (deployment), in series or
patterns with the aim of achieving continuous flow (continuity)
and in significantly shorter cycles than traditional lead-times,
from a couple of weeks, to days or even hours (speed). In ad-
dition, some authors distinguish between delivery and deploy-
ment. For example, Humble and Farley [36] describe continu-
ous deployment as the automatic deployment of every change
to production, whilst continuous delivery is an organizational
capability that ensures that every change can be deployed to
production, if it is targeted (the organization may choose not to
do it, usually due to business reasons). However, most of the
scientific literature uses the terms continuous deployment and
continuous delivery interchangeably.

8International Conference on Software Engineering, http://icse-
conferences.org/

2.2. Related work

This section clarifies the need for our CD study. Several stud-
ies have systematically analysed the literature on areas related
to CD. However, no review has specifically focused on actually
structuring the body of CD knowledge [83].

ASD and its practices have been the topics of diverse SLRs.
Dybå and Dingsøyr [26] conducted a well-known SLR on em-
pirical studies of ASD published up to and including 2005. In
this review, 33 relevant primary studies were identified and clas-
sified into four thematic groups: introduction and adoption, hu-
man and social factors, perceptions of agile methods and com-
parative studies. They found a steady increase in the number of
studies on ASD. However, they also observed poor quality with
regard to the research methods used in most studies, and they
suggested an increase in both the number and the quality of em-
pirical studies on ASD. However, the focus in [26] is different
from a review of CD as most primary studies included focus
on agile methods at the team level instead of integration of the
complete R&D organization. As noted by Olsson et al. [62],
transition to CD involves evolving agile practices beyond the
R&D organization to ensure that other functions such as prod-
uct management and sales are functioning in an agile manner
as well.

As the body of knowledge on ASD has matured, other au-
thors focused their analyses on specific ASD practices. Test-
driven development (TDD) is one of the most reviewed areas
[20, 77]. However, the described benefits and drawbacks of
TDD were inconclusive. Similarly, continuous integration was
the subject of several SLRs [73, 27]. Ståhl and Bosch [73]
performed a SLR in order to investigate how the practice of
continuous integration is implemented in practice. Twenty-two
descriptive themes, including build duration, build frequency
and pre-integration procedures, were extracted from 46 publi-
cations. The authors concluded that a multitude of continuous
integration variants exist in practice, but there was no consen-
sus on continuous integration as a single homogeneous practice.
Similarly, Eck et al. [27] conducted a SLR to examine how
organizations assimilate continuous integration. Based on 43
studies, the authors presented a conceptual framework illustrat-
ing the assimilation stages of continuous integration, which in-
cluded acceptance, routinization and infusion. Again, although
continuous integration is a key aspect of CD (as our findings
also confirm), continuous integration merely focuses on au-
tomating the build process. In general, although ASD and its
practices are within the scope of this research, because they rep-
resent the origins of CD [52], we are interested in ASD only as
far as it explicitly supports CD.

Recently, Mäntylä et al. [52] published a semi-systematic
literature review as part of a study focused on rapid releases
and testing. They analysed the current tendency towards rapid
releases, as well as its benefits, enablers and problems. This re-
view showed that rapid release is a prevalent practice in indus-
try that originated with the agile, open source, lean and Internet
speed development movements. Parallel development, strong
tool infrastructure for automatic deployment and testing, as
well as pro-active customers and product managers, were found

3



to be enablers of rapid release, whilst time pressure, increased
technical debt, customer unwillingness to update, as well as
conflicting goals between rapid release and achieving high reli-
ability and test coverage, were found to potentially cause prob-
lems. In addition, shorter time-to-market, rapid feedback, cus-
tomer satisfaction, increased efficiency, improved quality focus
and easier monitoring of progress and quality, were identified as
benefits. Although Mäntylä et al.’s study shed light on the grey
area of CD, what characterizes and constitutes the phenomenon
of rapid releases was unclear.

In summary, CD has attracted a lot of interest from the soft-
ware industry within a short time, and the notion of CD among
practitioners is growing. In addition, research related to CD is
emerging in the scientific literature. However, the literature is
not well structured, and there is no clear understanding of the
main factors that characterize CD. The existing literature re-
views, which were presented in the previous section (i.e., ASD
literature reviews and Mäntylä et al.’s semi-systematic literature
review [52]), only partially cover the existing scientific stud-
ies on CD. Furthermore, the validity of the evidence in the CD
literature is unclear because no previous review evaluated the
quality of the published studies.

3. Research Methodology

A systematic mapping study was conducted to obtain an
overview of the research on CD. The main difference between
systematic mapping studies and SLRs is that while SLRs aim
to ’identify best practice with respect to specific procedures,
technologies, methods or tools by aggregating information from
comparative studies’, mapping studies focus on ’classification
and thematic analysis of literature on a software engineering
topic’ [44]9. In the case of CD, although the term is fre-
quently used in industrial and academic circles (see Section 2),
its meaning and the main factors that are part of CD have re-
mained undefined. Therefore, before aggregating information
in terms of research outcomes, we need to provide a compre-
hensive definition of CD, that is, identify, categorize and anal-
yse the available research on the topic of CD in order to de-
scribe the phenomenon, obtain an overview of its state-of-the-
art, determine the scientific evidence in the reported results and
determine areas that are suitable for more detailed study.

In our mapping study, we followed the process of a SLR as
established by Kitchenham and Charters [43], but we adapted
it to a mapping study, as suggested by Petersen et al. [66]. The
research process is outlined in Figure 1. The process was it-
erative, with feedback loops between the steps that helped to
focus the mapping study as we learned more about the phe-
nomenon itself. For example, the search string was piloted until
we found one that ensured the most complete access to the body
of knowledge about CD. Furthermore, additional research ques-
tions were incorporated when we learned more about the data
available in the primary studies. However, in order to achieve a

9A more detailed description of when to use systematic mapping studies and
a discussion of its main differences from SLRs is presented by [44].

legible description of how the research was conducted, the re-
search process is described in a sequential manner, emphasizing
the important design decisions taken during the process.

This section describes the design and execution of our sys-
tematic mapping study. The complete research package, which
includes the research protocol that helped maintain the chain of
evidence and the transparency between each step in the process,
is available on request.

Figure 1: Mapping study steps.

4



Table 1: Research Questions for the Mapping Study
ID Question Aim

RQ1 What is the current state of the research pertain-
ing to CD in the context of software intensive
products and services?

Providing an overview of the studies on CD in the context of soft-
ware intensive products and services.

RQ1.1 What research methods have been used in stud-
ies related to CD?

To categorize available CD research according to research type
(industry report, case study, experiment, survey questionnaire, the-
ory development, etc.).

RQ1.2 What kinds of contributions are provided by
studies related to CD?

To categorize available CD research according to its contribu-
tion facet (model, theory, framework/method, guidelines, lessons
learned, advice/implication or tool).

RQ1.3 What are the publication channels used to pub-
lish studies related to CD?

To gain an overview of the publication channels used for CD stud-
ies (conference or journal) and publication years’ frequency dis-
tribution.

RQ1.4 What are the levels of relevance and rigour in the
published articles?

To assess the quality of the CD studies by examining two perspec-
tives: their industrial relevance and scientific rigour.

RQ2 What are the main factors that characterize CD
in the context of software intensive products and
services?

To structure the state of the art of CD by identifying and analysing
the underlying themes associated to this phenomenon discussed in
the literature and that, therefore, define it.

RQ2.1 What do researchers mean when they refer to
the term CD in the context of software intensive
products and services?

To identify and analyse the different definitions of CD available in
the literature.

RQ3 What are the reported benefits and challenges in
association with CD in the context of software
intensive products and services?

To identify the reported benefits and challenges experienced when
using CD.

RQ4 What are the research gaps in the area of CD
in the context of software intensive products and
services?

To identify research gaps in the field of CD and opportunities for
further research.

3.1. The need for the study and definition of research questions

The need for this mapping study (step 1, Fig.1) emerged in
the context of the large Finnish research program, Need for
Speed (N4S, 85 Me, 2014-2017)10. The main objective of
this study (step 2, Fig.1), which is mentioned in section 1, is
to identify the relevant CD literature in order to: 1) create a
knowledge base in the area; 2) understand the factors that char-
acterize the nature of CD in the software intensive industry; 3)
critically determinate the scientific evidence reported in the CD
literature; and 4) identify areas that should be addressed in fu-
ture research. Our objectives are expressed in the form of the
research questions presented in Table 1 (step 4, Fig.1). The
research questions (RQ) were defined from a broad perspec-
tive. RQ1 concerns the state of the research pertaining to CD;
RQ2 concerns the main factors of CD; and RQ4 concerns the
research gaps in the area of CD. After reading the entire set of
primary studies and gaining a better understanding of the data
(step 9, Fig.1), we discovered that different definitions of CD
were present in the literature, as well as benefits and challenges
regarding its adoption. Accordantly, RQ2 was supplemented
with RQ2.1 and RQ3 was formulated to complete the set of re-
search questions. The research questions defined the data to be
extracted from the primary studies (see Section 3.5).

10http://www.n4s.fi/en/

3.2. Search strategy and databases

Several experimental searches were piloted from April to
June 2014 (Fig.1, step 3) in order to better scope the research
and determine the search string that most appropriately de-
scribes the phenomenon. The following search string was the
first used in the review:

Pilot search string: (“continuous delivery” OR “continuous
deployment”) AND “software”

Using this string, 28 hits were found in Scopus, and 17 of the
28 were closely studied. Eleven were excluded because they
were duplicated, did not focus on the software domain or were
non-scientific. Based on an initial reading of the 17 studies,
the search string was revised to include the keywords that best
described the phenomenon of CD. Table 2 presents the final
search string used to retrieve the primary studies together with
the rational for the selection of those terms. The search string
is composed of terms that represent the population AND inter-
vention, as proposed by Kitchenham and Charters [43]. Our re-
search focus is on scientific studies that discuss software (pop-
ulation) AND have the intention of deployment [OR closely re-
lated terms] in a continuous [OR closely related terms] manner
(intervention).

5



Table 2: Search Keywords
Search term Rational

Population software Studies discussing soft-
ware, software development,
software engineering or
software intensive prod-
ucts/services/systems.

AND

Intervention
deploy* Studies discussing ”deploy-

ment” in the context of soft-
ware (e.g. deploy, deploy-
ment, deploying).

deliver* Studies discussing ”delivery”
in the context of software
(e.g. deliver, delivery, deliv-
ering).

release* Studies discussing ”release”
in the context of software
(e.g. release, releasing).

AND
continuous* Studies discussing ”continu-

ous” in the context of soft-
ware delivery or deployment
(e.g. continuous, continu-
ously).

rapid* Rapid is a closely related
term to ”continuous” (e.g.
rapid, rapidly).

fast* Fast is a closely related term
to ”continuous” (e.g. fast,
faster).

real time Real-time is a closely related
term to ”continuous” (e.g.
”real-time delivery”).

agil* Agile is a closely related term
to ”continuous” (e.g. agile,
agility).

iterat* Iterative is a closely related
term to ”continuous” (e.g. it-
erative, iteration, iterations).

increment* Incremental is a closely re-
lated term to ”continuous”
(e.g. incrementally, incre-
ment, incremental).

To increase publication coverage, we decided to use the
broad term software to ensure that we would not miss relevant
references. In addition, during the pilot study, we discovered
that various terms referred to the concept of continuous, such
as real-time or rapid; therefore, we added these terms to the
search string. We also learned that relevant studies, such as [29]
and [37] were missed when the terms continuous and delivery
or deployment were used together (e.g. ’continuous deploy-
ment’). Therefore, we decided to allow the term continuous (or
its closely related terms) to be separated from the terms deploy-
ment, delivery and release. These design decisions, together

with the extensive usage of closely related terms, increased the
number of studies retrieved (i.e., introduced noise in the search)
but reduced the risk of missing relevant studies. We used this
search string to search within keywords, titles and abstracts.

The selected databases in which we performed the search are
shown in Table 3, in addition to the number of studies retrieved
from each database (up to and including June 2014)11. The
databases were selected considering their coverage of the soft-
ware engineering literature. The individual search strings in the
study protocol are available by request.

3.3. Primary study selection criteria
Studies were eligible for inclusion in the mapping study

if they presented a scientific contribution to the body of CD
knowledge in the context of the software-intensive industry.
Concretely, the inclusion criteria were defined as ’any study
that is a scientific article and clearly states that it focuses on
software development or software intensive products, systems
or services AND includes any software development activity as
primary subject with the intention of continuous deployment or
delivery of a software product, system or service’.

Because our goal was to analyse trends in the area of CD
rather than aggregate empirical evidence gathered from indi-
vidual studies, both theoretical and empirical studies were in-
cluded in the mapping study [44]. Similarly, studies conducted
in both industry and in academia were included. Three aspects
were considered during the screening process used to evaluate
whether the content of an article was relevant to CD: deploy-
ment, continuity and speed. To be included in the review, the
study had to: 1) show intention/ability of bringing a software
product/system/service to the production environment in order
to be used by the customer (deployment); 2) emphasise contin-
uous series or patterns so that the software is deployed repeat-
edly, providing a continuous evolution of software functional-
ity (continuity); and 3) focus on significantly shorter cycles than
traditional development lead-times, preferably near to real time,
at will or on-demand (speed).

We excluded search results that:

1. Did not clearly discuss the continuous deployment or deliv-
ery of software intensive product/systems/services.

2. Were not related to the software domain (e.g., medicine, bi-
ology, physics, etc.).

3. Were not peer-reviewed scientific articles (e.g. presenta-
tions, call for papers, keynote speeches, prefaces, etc.) or
book and book chapters.

4. Were short papers.
5. Were not written in English.
6. Were duplicate articles.

For example, because the focus of this mapping study is on
the phenomenon of CD, general discussions about ASD, lean
software development or any of their practices and tools with-
out an explicit application to CD were excluded. In addition,
we imposed no limitations with regard to quality (rigour and
relevance) in selecting primary studies.

11Performed on 27 June 2014

6



Table 3: Selected databases and retrieved papers
Database Filter Papers
ACM Digital Library None 933
Scopus Only conference papers and journal articles in English in the following subject areas:

computer science, engineering, business management and accounting
7997

IEEE Xplore Only conference papers and journal articles 5303
ISI Web of Science Only articles in the following research areas: engineering, computer science and telecom-

munications
5215

Science Direct Only conference papers and journal articles 1934
Total 21382

3.4. Primary study selection procedure
To screen the retrieved publications (steps 5 and 6, Fig.1)

we followed the process shown in Figure 2. Due to the high
number of publications found (21,382) and the inconsistency
between the meta-data format stored in different databases, we
decided to use the reference management system RefWorks12

that automated the task of aggregating papers into a consistent
list of candidate papers in a unified format. The selection pro-
cedure comprised the following steps:

First, two researchers together went through the list of 21,382
candidate publications in order to eliminate duplicate, non- En-
glish publications, non-relevant software engineering studies
and non-peer review scientific articles (exclusion criteria 2-6).
Non-relevant software engineering studies were identified by
checking the publication forum and the publication title. Ob-
viously non-scientific peer review publications, such as those
titled ’A call for...’ or ’Proceedings of...’ as well as introduc-
tions of workshops and editorials were also identified and re-
moved. At the end of this stage, the number of remaining papers
was 9,924. In the second stage, based on exclusion criterion
1, we screened candidate papers by conducting a conservative
in-depth review. We excluded papers only when it was clear
that they were not within the scope of our research. In unclear
cases, the paper was passed to the next screening phase. First,
two researchers (simultaneously) read the titles of the remain-
ing papers. Generally, it was difficult to identify whether the
focus of the study was on CD based only on its title. There-
fore, papers that clearly did not focus on CD were excluded in
this step; 7,217 papers were excluded. Then two researchers
(individually) went through the list of remaining publications
(2,707) to screen their abstracts. When they crosschecked the
outcome, they agreed to exclude 2,377 papers and include 16
papers. However, based on abstracts they could not decide on
314 papers, which were categorized as ’unsure’. Introduction,
conclusions and, when needed, the whole paper was read in or-
der to resolve ’unsure’ cases. In case of conflict between two
researchers a third researcher helped to resolve the conflict. Fi-
nally, 34 studies were added to the list of the 16 papers already
included (based on title). Therefore, 50 papers remained in the
final pool of primary studies. The primary studies (PS) are in-
cluded in the reference list at the end of this paper (identified
by the symbol *[PS]).

12http://www.refworks.com/

Figure 2: Screening of papers.

3.5. Data Extraction

Table 4 lists the properties collected during the data extrac-
tion phase. Based on the RQs and using the qualitative analysis
tool NVivo13, three categories of data were extracted from the
primary studies: 1) primary study properties (P1 to P6); 2) qual-
ity assessment information (P7 and P8); and 3) recurrent themes
(P9 to P12). The next subsections describe each extracted prop-
erty.

13http://www.qsrinternational.com/

7



Table 4: Data Extraction Form
ID Property Research question(s)
P1 General type of paper RQ1.1
P2 Research method RQ1.1
P3 Contribution RQ1.2
P4 Domain RQ1.2
P5 Pertinence RQ1.2
P6 Publication year and forum RQ1.3
P7 Quality - rigour RQ1.4
P8 Quality - relevance RQ1.4
P9 CD factor RQ2

P10 CD definition RQ2.1
P11 Benefit from using CD RQ3
P12 Challenge for adopting CD RQ3

3.5.1. Primary study properties: P1-P6
Six primary study properties, which are briefly described be-

low, were defined in order to answer RQ1.1 - RQ1.3. The de-
tailed definitions of these categories are presented in Appendix
A.

1. General type of paper: represents the type of research (em-
pirical, theoretical or both). Definitions of these values were
adapted from [42].

2. Research method: categorizes the studies according to the
applied research method. Ten categories were considered:
case study, industry report, experiment, survey, action re-
search, mixed methods, grounded theory, design science,
opinion paper and not stated. When possible, we used the
definitions provided by Unterkalmsteiner et al. [78]. Other-
wise we created our own definition14.

3. Contribution: maps different types of study outcomes (in-
spired by Paternoster et al. [65]). Seven categories of con-
tribution (adapted from [72]) were chosen: model, theory,
framework or method, guidelines, lessons learned, advice or
implications, and tools.

4. Domain: maps the different types of domain in which CD
is used. Four categories were used to classify the domains
of the primary studies: ’embedded systems’, ’web/internet
based applications or services’, ’desktop applications’ and
’not stated/not clear’ (to indicate that the domain was not
clearly stated in the paper).

5. Pertinence: this property (inspired by Paternoster et al. [65])
was designed to distinguish between studies entirely devoted
to CD and studies with a broader perspective. The values
of pertinence were defined as fully, partially or marginally
focused on CD.

6. Publication year and channel: categorizes primary studies
according to publication channel (conference or journal) and
provides the frequency distribution of the publication years.

14For those research methods that Unterkalmsteiner et al. [78] did not con-
sider in their classification.

3.5.2. Primary study quality assessment: P7 and P8

Primary study quality assessment (e.g. evaluating how reli-
able the study is) is critical in SLRs because the aim of SLRs is
to aggregate the results of primary studies in order to discover
whether the research outcomes are consistent or contradictory.
Therefore, ensuring that results are comparable and based on
the best evidence is critical in SLRs. However, analysing the
quality of the primary studies is not essential in the case of map-
ping studies, which aim to classify the relevant literature [44].
In our case, we analysed the quality of our primary studies as
one characteristic of the state of the art of CD (RQ1.4). There-
fore, the primary studies were not filtered (excluded) based on
their quality but all primary studies were considered in the anal-
ysis phase independently of the quality assessment results (i.e.,
categorizing the topic area according to their meta-data [RQ1],
counting the number of studies in those categories and identi-
fying and analysing the factors that characterize CD [RQ2 and
RQ3]).

To assess the quality of our primary studies (Fig.1, step 8),
we applied the method proposed by Ivarsson and Gorschek
[38]. Accordingly, we considered two perspectives: scientific
rigour and industrial relevance. Three aspects were used to
evaluate scientific rigour: 1) context description: to what degree
the context of the study is described so that it can be understood
and compared to another context, allowing the replication of the
study; 2) study design: to what degree the design of the study
is properly described and guarantees the rigour of the research;
and 3) validity discussion: to what extent the validity of the
study is considered and evaluated. Rigour was evaluated using
a three-point scale: strong description (1), medium description
(0.5) and weak description (0). Thus, the assessment of rigour
ranged from 3 to 0. On the other hand, industrial relevance
was evaluated according to four aspects: 1) subjects: whether
the subjects of the study were representative of CD practitioners
(i.e., they were not students or researchers); 2) context: whether
the study was performed in a representative setting (i.e., indus-
trial setting); 3) scale: whether the study size was realistic (i.e.,
not based on a ’toy’ example); and 4) research method: whether
the research method used in the study contributes to an investi-
gation of real situations (typically empirical research conducted
in representative settings contributes in this sense). In accor-
dance to Ivarsson and Gorschek’s method, relevance was mea-
sured using two values: 1 if the aspect contributed to industrial
relevance and 0 otherwise. Therefore, the assessments of in-
dustrial relevance ranged from 4 to 0. To analyse the quality of
theoretical papers, we adapted Ivarsson and Gorschek’s model
[38] to the characteristics of theoretical studies. Industrial rele-
vance was measured in the same way. Therefore, most theoret-
ical papers had low industrial relevance if they did not include
any empirical evaluation of their proposed model, framework
or tool. The criteria for rigour were adapted as follows: 1) con-
text description: description of the context in which the the-
ory or model could be applied; 2) study design: the degree to
which the theoretical contribution used sound theoretical bases
to guarantee the quality of the research; and 3) validity discus-
sion: the extent to which the limitations of the theoretical ap-

8



proach were discussed. For a detailed discussion of the criteria
used in Ivarsson and Gorschek’s model, the reader is referred to
their extensive study on this subject [38].

3.5.3. Continuous deployment factors: P9 and P12
We used the concept ’factor’ (P9) to identify and categorize

the recurrent themes in the literature related to CD and cre-
ate our classification schema (RQ2). During the primary study
coding process (see Section 3.6), we identified factors defining
aspects that, according to our primary studies, are relevant in
achieving CD. That is, aspects that are frequently considered in
the literature in order to implement CD in practice. The clas-
sification schema grew with the extraction of the data from the
primary studies, and it was consolidated in workshops attended
by the first seven authors. Similarly, we identified diverse defi-
nitions of CD (P10) and compared them in order to understand
what researchers mean when they refer to the concept of CD
(RQ2.1). Finally, in order to answer RQ3, we coded the ben-
efits that the studies claimed were gained from the use of CD
(P11), as well as challenges or aspects that were difficult to im-
plement in the context of CD (P12).

3.6. Data analysis and interpretation

Descriptive statistics were used to answer RQ1. Quantita-
tive descriptions of frequencies were used to analyse research
methods, types of contributions, publication channels, publica-
tion years, and quality of primary studies.

In addition, thematic synthesis [23] was used to answer RQ2
and RQ3. In order to identify CD factors and create a reliable
classification schema, we analysed each primary study in two
phases, adapting the five thematic synthesis steps recommended
by Cruzes and Dybå [23]. Both inductive and deductive coding
was used in the analysis. First, primary studies were coded us-
ing an inductive approach (Fig.1, step 9). The goal of this step
was to identify key CD aspects. Codes emerged from labelling
relevant segments of text that referred to factors important in the
context of CD. For example, many papers made reference to au-
tomating the deployment and a correspondent code was created.
Each primary study was coded by one researcher. Then two
full-day workshops were conducted in order to review the gen-
erated codes and the coding process itself. After a stable list of
’free-codes’ was created, the codes of all primary studies were
compared and then organized into higher-order interpretation
themes in order to form a high-level set of categories (descrip-
tive themes). For example, we found codes that referred to au-
tomating different activities in the development process such as
test automation, build automation, integration automation, de-
ployment automation, automation and configuration manage-
ment, and we created the theme automation in order to consider
this aspect of CD. Two full-day workshops were held in or-
der to translate the codes into themes. When the themes were
defined, the second coding phase, which was deductive, was
implemented (Fig. 2, step 10). The goal of this phase was to
check the themes back to the original primary study data. The
50 primary studies were read again and coded according to the
themes identified in order to ensure that each theme was taken

into account in the analysis of each primary study. During this
phase, the themes were consolidated and organized according to
the classification schema described in Section 4.5. The themes
then were synthesized (results presented in Sections 5 and 6). A
theme owner was nominated for each theme, which was the re-
searcher responsible for synthesizing the content of that theme.
A second researcher reviewed the synthesis of the theme to im-
prove its reliability. Definitions, benefits and challenges were
identified and analysed in a similarly deductive manner.

3.7. Validity threats and limitations of the study
A strength of this study is that a number of researchers were

closely involved allowing for triangulation in all phases of the
research. Seven researchers (the first seven authors) actively
participated in the review, and three researchers with experience
in conducting SLRs (the last three authors) acted as external re-
viewers to validate the research protocol and guide the research
process. Nonetheless, there are some potential threats to the
validity of this mapping study that need to be considered when
interpreting the results (Fig.1, step 11b). We next describe these
threats together with the strategies that were applied in order to
mitigate their effects.

3.7.1. Identification of primary studies
The process of identifying the primary studies that constitute

a mapping study is critical for the success of the research. The
search string was built on three main attributes: deployment,
continuity and speed in the context of the software industry (and
their closely related terms). Nonetheless, the threat of miss-
ing relevant articles remains. The attempt to identify the entire
body of knowledge in an emerging topic, such as CD, is very
challenging. Inconsistency or the use of different terminology
with respect to the search string (see Table 2) might have biased
the identification of primary studies. This, however, is a minor
threat because of the large volume of retrieved studies (21,382).
In addition, the search string was used to search in keywords,
titles and abstracts. We did not attempt to design a very precise
search string that avoided noise because of the blurred nature of
the phenomenon itself and because we were able to manage the
number of retrieved studies. Thus, our strategy focused on re-
trieving as many documents as possible that were related to CD.
For example, as explained in Section 3.2, we decided to sepa-
rate the terms deployment and continuous, which created noise
in the studies retrieved. From 15,062 publications (after the re-
moval of duplicates and non-English documents), only 50 were
selected as final primary studies. This low precision represents
a moderate threat to the validity of the mapping study because it
induced a significantly higher level of effort when selecting the
final primary studies. However, seven researchers actively par-
ticipated in the research, which minimizes the influence of this
threat. In addition, three researchers individually piloted the
inclusion and exclusion criteria in order to check their valid-
ity. Every step in the selection process was conducted by pairs
of researchers in order to minimize subjectivity. When opin-
ions within the pair conflicted, a third researcher helped to find
agreement. In unclear cases, we were conservative and always
included the paper in the next screening step.

9



3.7.2. Data extraction
When the primary studies were selected, they were subject

to in-depth analysis. The analysis phase also posed threats
to validity, which also need to be considered. These threats
are largely because of researcher bias. The main countermea-
sures taken to address this threat were researcher triangulation
and explicit definitions of the data to be extracted. Three as-
pects were analysed during the data extraction: study proper-
ties, quality assessment and factor analysis (including defini-
tions of CD, benefits and challenges). Regarding the proper-
ties, each property was explicitly defined in the protocol, as in-
dicated in Section 3.5. In addition, each paper was analysed by
one researcher and then reviewed by a second researcher, who
double-checked that the properties were properly collected. In
cases of disagreement, a third researcher worked to achieve a
resolution. The same process was applied in assessing both as-
pects of the study’s quality: industrial relevance and scientific
rigour. It is important to note that in the case of study qual-
ity, the evaluation depended on the reporting quality and not on
the intrinsic quality of the study itself. With regard to the fac-
tor analysis, different countermeasures were used in the induc-
tive coding, deductive coding and study synthesis. A single re-
searcher inductively coded each primary study. This phase was
deliberately unrestricted to produce’free-codes’. However, two
full-day workshops consolidated the inductive coding to gen-
erate a reliable classification schema (themes identification),
which involved seven researchers. Once themes were identi-
fied, they were formally defined for inclusion in the protocol
by two researchers in order to ensure that all researchers in-
volved had the same understanding of the themes. Based on the
themes identified, the primary studies were deductively coded
at the theme level. Deductive coding was conducted by a sin-
gle researcher, who was nominated as the owner of that specific
theme, with a second researcher reviewing the theme level cod-
ing. When the primary studies were coded at the theme level,
synthesis was carried out by the theme owner and then reviewed
by two other researchers. In addition, one researcher, who had
a global vision of the study, reviewed every step in the analysis
in order to consolidate the results and ensure consistency of the
analysis.

3.7.3. Publication bias
Publication bias refers to ’the problem that positive research

outcomes are more likely to be published than negative ones’
[78]. This problem occurs in any literature review or map-
ping study. In our case, its effect was moderate because our
study does not aim to compare research outcomes but to draw a
map of the state of the art of CD. Nonetheless, publication bias
may have affected our results regarding the benefits and chal-
lenges experienced when migrating to CD. The benefits may be
overemphasized, compared to the possible risks. In addition,
publication bias is affected by the sources of information con-
sidered in the study. However, we did not restrict publishers,
journals or conferences. We also used five electronic databases,
of which two were specialized in the field (ACM Digital Li-
brary and IEEE Xplore) and three that offered wide coverage
of diverse sciences (ISI Web of Science, Scopus and Science

Direct). Although our results were limited by scientific studies
published in these databases, they covered a wide range of the
software engineering literature. In addition, we excluded non-
peer reviewed scientific studies, book, book chapters and short
papers because we did not consider that they would provide re-
liable information for our study.

4. Results: Overview of the State-of-the-Art of CD

From the initial set of 21,382 publications (see Table 3), 50
studies were identified as contributing to the topic of CD in
the software domain. This section presents an overview of the
body of CD knowledge found from their review. We structure
the section according to the research questions presented in Ta-
ble 1. Sections 4.1 to 4.4 present the research methods used,
the kind of contributions provided, publications channels and
the results of the quality assessment. Section 4.5 then provides
a list of the main factors (i.e., recurrent themes in the literature)
that characterize CD (classification schema). Finally, Section
4.6 presents an overview of the benefits and challenges of CD
identified in the literature. The main factors, benefits and chal-
lenges are further elaborated in Sections 5 and 6, respectively.
Table B.10 in Appendix B presents a detailed overview of each
primary study.

4.1. RQ1.1: Research methods

The primary studies were classified according to the research
method used in the study, as defined in Appendix A. Figure
3 shows the distribution of the research methods. Most stud-
ies on the state-of-the-art of CD were empirical in nature (72
percent comprising industry report as well as case study, action
research, grounded theory, design science, mixed method and
experiment). However, theoretical studies (painted area in the
chart), mainly in the form of models and frameworks, and meth-
ods, were also significant (24 percent, from which 16 percent
were also empirically evaluated). Opinion papers completed the
distribution of the research methods (4 percent). Interestingly,
a high percentage of primary studies shared practitioners’ expe-
riences regarding the application of CD in the form of industry
reports (36 percent). Even so, 48 percent of the studies used
quite rigorous empirical research methods such as case studies,
action research, grounded theory, design science, experiments
and mixed methods. Case studies constituted a clear majority
of this group (36 percent, of which 70 percent were pure empir-
ical research that applied the case study research method, and
30 percent were combinations of theoretical research, mainly
frameworks and models, evaluated by case studies). Action
research (4 percent), mixed method, design science, grounded
theory and experimentation (2 percent each) completed the list
of empirical research methods. In general, the results showed
that from a scientific point of view, the body of CD knowledge
is still at an exploratory stage as a high percentage of the stud-
ies presented the views of practitioners regarding CD. This is
natural in a phenomenon that has been especially driven by in-
dustry instead of resulting from the context of a research lab.
However, as shown in Figure 4, the percentage of studies that

10



Figure 3: Publication distribution-research method.

Figure 4: Distribution of research method and publication year.

apply more rigorous research methods has been increasing dur-
ing recent years.

4.2. RQ1.2: Contributions
Figure 5 shows the distribution of the research contributions.

Many contributions were in the form of CD advice and impli-
cations (16 percent), lessons learned (27 percent) and guide-
lines (5 percent) when applying CD. Nonetheless, 48 percent
of the contributions provided concrete approaches that could be
used to support CD. These approaches included methods and
frameworks for implementing CD (21 percent) (e.g. continuous
Scrum [1] and methods for identifying risk areas in the context
of CD [22] [2]), models representing relevant concepts of CD
(20 percent) (e.g., models for continuous experimentation [30]
and [29]), and tools supporting the technical infrastructure of
CD (7 percent) (e.g. Gamma tool for assisting developers to
monitor deployed systems [63]). The complete list of frame-
works and methods, models and tools identified in the mapping
study is listed in Table B.11, Appendix B.

4.3. RQ1.3: Publication years’ frequency distribution and pub-
lication channels

As showed in Figure 6, the papers reviewed were published
between 2001 and 2014, which indicates the novelty of the phe-

Figure 5: Publication distribution-contribution.

Figure 6: Publication distribution by year.

nomenon. Hence, the research on CD is still in its infancy when
compared with the history of the software engineering disci-
pline. Although some studies were published between 2001
and 2011, most were published within the last three years (68
percent). The publication of the book on CD by Humble and
Farley in 2010 [36] has probably influenced the emergence of
scientific studies on the topic. Still, the large number of re-
cently published studies indicates an increasing interest in CD
and points to the relevance of the area.

An interesting result was the distribution of the study domain
by year (See Figure 7) which was categorized in embedded sys-
tems, web/Internet based applications or services, and desktop
applications. The category ’not stated’ (N/S) was used for cases
in which the domain was not clearly defined (see Section 3.5.1).
As shown in Figure 7, a clear majority of the primary studies
were conducted in the web applications/services domain (42
percent). Twenty four percent of the studies were in the em-
bedded systems and four studies (8 percent) were conducted in
the context of desktop applications (i.e. Firefox). Finally, a
high percentage of studies (26 percent) did not clearly describe
the domain in which the research was conducted. Interestingly,
the study domain and their frequency distribution by year in-
dicated that the first studies published in the area focused only
on web applications or services (primary studies published be-

11



Figure 7: Distribution by publication year and domain.

Figure 8: rigour-relevance overview.

tween 2001 and 2009). Thus, the first of our primary studies
in the embedded domain was not published until 2011. Fur-
thermore, the results of the pertinence of these studies (whether
the study was devoted to CD or had a broader perspective, see
Section 3.5.1), showed that 66 percent of studies conducted in
the web domain fully focused on CD (14 studies), whereas this
number decreased to 41 percent in the case of embedded sys-
tems (5 studies). These results indicate that apparently CD is
used more often in web-based applications. Some organiza-
tions in the area of web applications are currently able to deploy
many new versions per day (see the references to organizational
white papers and on-line blogs in Section 2.1). However, this
goal is still a challenge for systems in other domains and or-
ganizations, such as in the field of embedded systems. Hence,
primary studies in the embedded domain are more dedicated to
specific aspects of CD. The challenges encountered in applying
CD in embedded systems are further elaborated in Section 6.

Regarding publication channels, 84 percent of the primary
studies were published in conference proceedings (42 papers),
while 16 percent (8 papers) were published in journals or maga-
zines. Overall, journal publications are subject to a more rigor-
ous review process to ensure the quality of the research. How-
ever, they also take a longer time to publish papers and this
might discourage authors in a field that is developing rapidly
and is largely driven by industry. Although the publication
channels cannot be used to provide direct measure of the qual-

ity of the studies, it can be interpreted as an early indicator. The
next section further elaborates on the scientific quality of the
primary studies.

4.4. RQ1.4: Primary study quality

The assessment of the primary studies quality regarding sci-
entific rigour and industrial relevance, as described in Section
3.5.2, resulted in Figure 8. The two opinion papers ([67] and
[9]) were excluded from this analysis as they do not suit the
assessment dimensions considered in Ivarsson and Gorschek’s
approach [38]. The raw data for this figure is available in Table
B.10, Appendix B.

Regarding industry relevance, 37 primary studies (74 per-
cent) had a relevance rating higher than two. Accordingly,
most of the studies were conducted in industrial settings involv-
ing practitioners on an industrial scale. From these studies, 14
(28 percent) lie in the upper right quadrant of the chart (rigour
>= 2, relevance >= 3). However, 23 studies (46 percent) ex-
hibited high industry relevance (relevance >= 3) but showed
low scientific rigour (rigour < 2). In addition, theoretical con-
tributions without any empirical evaluation and research con-
ducted with students constituted most of the studies with low
relevance. Overall, it can be said that the topic of CD is highly
relevant from the perspective of the industry; therefore, CD ap-
pears to be a promising research area because in an applied re-
search field such as software engineering, it is the industry that
ultimately determines the relevance of the research results.

Regarding scientific rigour, as many as 28 of the 50 primary
studies have a rigour value of < 2 (56 percent). Consequently,
the global scientific evidence of the body of CD knowledge can
be considered as medium-low. With regard to context descrip-
tion, in the majority of the studies, the context in which the
research is performed is not described to a degree such that
it can be fully understood and compared with other contexts.
Study design, data collection and data analysis were, in general,
not well described, as many of the publications were industry
reports. In addition, only twelve primary studies included a
proper validity discussion, (i.e. issues of bias, validity and re-
liability), whilst four primary studies mentioned validity, it was
not described in detail. Thus, there is no description of threats
to validity in 34 of the primary studies. Thus, it can be con-
cluded that there are important limitations to the scientific qual-
ity of the studies we retrieved and this inevitably reduces the
reliability of the results.

4.5. RQ2: Continuous deployment factors

The 50 primary studies cover a wide range of research top-
ics. We categorised them into ten main themes, which to-
gether characterise the phenomenon of CD. A brief description
of each theme and the primary studies that make reference to
each theme are presented in Table 5. These factors are further
elaborated in Section 5.

4.6. RQ3: Benefits and challenges

The benefits and challenges reported in the primary studies
were identified and synthesised, as reported in Tables 6 and 7.

12



Table 5: Continuous deployment factors - Mapping study recurrent themes
Factor Description Frequency Primary studies
1. Fast and frequent re-
leases

Ability to release software whenever the organisa-
tion wants to (on demand or at will) based on need
and with preference given to shorter cycles or even
continuous flow (weekly or daily).

28 [8, 76, 75, 79, 58, 16, 17, 29,
1, 31, 32, 34, 2, 46, 47, 48, 50,
54, 59, 62, 67, 18, 22, 31, 40,
51, 57, 41, 49, 53, 74]

2. Flexible product de-
sign and architecture

CD requires evolutionary and robust software archi-
tecture with the aim of balancing speed and stability.

9 [2, 7, 8, 15, 51, 62, 79, 16, 17]

3. Continuous testing
and quality assurance

Ensuring the quality of the software at all times with-
out compromises despite the need for fast and con-
tinuous deployment.

31 [1, 2, 8, 10, 15, 22, 31, 32, 34,
37, 40, 47, 48, 51, 54, 57, 56,
59, 61, 75, 76, 3, 9, 16, 17, 41,
53, 60, 74, 49, 4]

4. Automation Automating the delivery pipeline from building and
testing to deployment and monitoring.

24 [1, 2, 10, 31, 32, 34, 37, 40, 47,
48, 51, 54, 57, 56, 59, 61, 62,
76, 75, 79, 9, 67, 3, 70]

5. Configuration man-
agement

Version control branching strategies and system con-
figuration management approaches to enable CD.

12 [34, 46, 47, 54, 59, 31, 56, 37,
40, 9, 51, 79]

6. Customer involve-
ment

Mechanisms to involve customers in the develop-
ment process and collect customer feedback from
deliveries as early as possible (even near real-time)
to drive design decisions and innovation.

12 [79, 29, 15, 31, 45, 46, 47, 51,
54, 62, 49, 82]

7. Continuous and rapid
experimentation

Systematical design and execution of small field ex-
periments to guide product development and accel-
erate innovation.

10 [15, 30, 31, 59, 61, 62, 9, 29,
67, 33]

8. Post-deployment ac-
tivities

Activities that are conducted once the product (or a
new feature or enhancement of the product) has been
deployed to support fast business and technical deci-
sion making.

12 [1, 24, 31, 32, 45, 46, 51, 59,
61, 63, 9, 33]

9. Agile and Lean Extending Agile and Lean software development to-
wards continuous flow to support CD.

22 [7, 8, 76, 75, 10, 16, 1, 30, 34,
35, 2, 46, 47, 54, 59, 62, 67, 3,
18, 31, 57, 18]

10. Organizational fac-
tors

Organizational factors that enable CD (integrated
corporative functions, transparency and innovative
and experimental organizational culture).

17 [7, 24, 31, 32, 35, 40, 46, 47,
50, 54, 57, 59, 62, 16, 67, 64,
74]

13



Table 6: Benefits of continuous deployment
Benefit PS
Shorter time-to-market [1, 10, 31, 34, 46, 50, 57,

61, 62, 59, 76, 75, 9, 48, 54,
59, 67, 30, 41, 49]

Continuous feedback [35, 46, 47, 50, 51, 59, 75,
62, 61, 24, 31, 32, 9, 41]

Improved release
reliability

[1, 37, 46, 59, 9]

Increased customer
satisfaction

[1, 10, 59, 76, 41]

Improved developer
productivity

[1, 35, 37, 9]

Rapid innovation [31, 34, 61, 62]
Narrower test focus [22, 31, 59, 41]

Table 7: Challenges of continuous deployment
Challenge PS
Transforming towards CD [16, 54, 10, 57, 59, 61, 64]
Customer unwillingness [62, 61, 10, 1, 63, 82]
Increased QA effort [1, 40, 46, 54, 56, 59, 41, 53]
CD in embedded domain [75, 3, 15, 49]

The benefits experienced when applying CD include shorter
time-to-market, instant feedback, especially from customers
when using proper monitoring and experimentation techniques,
improved release reliability, partially as a result of narrower test
focus, and improved customer satisfaction and developer pro-
ductivity. Overall, CD benefits are more often mentioned in pri-
mary studies than are the challenges; this may be a consequence
of authors and practitioners willingness to report positive rather
than negative results. Still, important challenges were identified
regarding the change that moving towards CD implies in to the
whole organisation. These include customers’ unwillingness to
receive continuous product updates, increased QA efforts and
difficulties applying CD in the embedded domain. CD benefits
and challenges are further elaborated in Section 6.

5. Analysis of Continuous Deployment Factors (RQ2)

First, we were interested in understanding what researchers
mean when they refer to the term ’CD’ (RQ2.1). Table 8 shows
descriptions of continuous deployment and continuous delivery
as they appear in the primary studies. We did not find any for-
mal definition of CD in any of the primary studies; however,
there appears to be some level of agreement amongst authors
that CD refers to the ability of an organisation to release soft-
ware functionality directly to customers on demand and at will
(deployment), faster and more frequently than traditional soft-
ware development. We observed that there exists a tendency to
use the two concepts interchangeably (except [32]).

In addition, the CD literature encompasses diverse recurrent
themes or factors, as listed in Section 4.5. In the remainder of
this section, we analyse each of the identified factors based on

a synthesis of the primary studies.

5.1. Fast and frequent releases
Several papers in the mapping study discuss fast and frequent

release as shown in Table 5. Fast release is the ability to re-
lease software whenever the organization wants to, based on
their need, which could be weekly or daily [59, 46]. Almost all
of our primary studies make reference in one way or another
to accelerating the release cycle by shortening the release ca-
dence and turning it into a continuous flow e.g. from months to
weeks [75, 76, 41, 49], or from six months [54] or eight-weeks
[59] to a continuous flow. However, achieving fast release in
the form of a continuous flow is not free of charge. For ex-
ample, Rally Software [59] began to shrink the release cycles
down to fortnightly, weekly, semi-weekly and finally at-will,
which took months of preparatory work to streamline and au-
tomate the deployment. In addition, a case study at Mozilla
Firefox [41] points out the question whether the quality of the
software product improves as the shorter release cycles results
in shorter testing periods. Also, Lavoie and Merlo [49], claim
that accelerating the release cycle can make it harder to perform
re-engineering activities.

5.1.1. Continuous planning
The CD literature emphasizes two aspects related to planning

fast and frequent releases: continuity (e.g. [32, 67]) and taking
a holistic view of planning [30, 58, 17, 8, 47]. Traditional plan-
ning tends be performed cyclically and is usually triggered by
the annual financial year. However, CD challenges and changes
traditional planning towards continuous planning in order to
achieve fast and frequent releases [32]. CD requires that plan-
ning activities are done more frequently to ensure alignment
between the needs of the business context and software de-
velopment, requiring tighter integration between planning and
execution. Fitzgerald and Stol [32] define plans as dynamic
open-ended artifacts that evolve in response to changes in the
business environment and require multiple stakeholders to be
involved both from business and software functions. Hence,
tighter integration between planning and execution is required
in order to achieve a more holistic view of planning. Pop-
pendieck and Cusumano [67] suggest considering software as
a flow system where software is designed, developed, and de-
livered with a steady flow of small changes. A view that is
fundamentally different from thinking of software development
as a completed project, or even thinking about software as a se-
ries of annual or semi-annual releases. Rapid delivery should
not be isolated to the software development alone, and the flow
should happen within the overall product development cycle, of
which software is just one aspect. Therefore, continuous plan-
ning includes all activities from strategic and business planning
to product, portfolio and release planning. Similarly, Fager-
holm et al. [30] point out that according to software develop-
ment based on continuous experimentation (common in CD, see
section 5.7), the experimental results should be continuously
linked with the product roadmap as well as managed within a
flexible business strategy in order to provide guidance for plan-
ning activities.

14



Table 8: Descriptions of continuous delivery and continuous deployment available in the primary studies
PS Description
[46] ’Continuous delivery is a set of practices and principles to release software faster and more frequently’.
[59] ’Officially, we describe continuous delivery as the ability to release software whenever we want. This could be weekly

or daily deployments to production; it could mean every check-in goes straight to production. The frequency is not our
deciding factor. It is the ability to deploy at will’.

[61] ’The concept of continuous deployment, i.e. the ability to deliver software functionality frequently to customers and
subsequently, the ability to continuously learn from real-time customer usage of software’.

[31] ’ . . . the practices that Internet companies use are known as continuous deployment. This reects the habit of deploying
new code as a series of small changes as soon as its ready’.

[62] ’Continuous deployment is the idea that you push out changes to the code all the time instead of doing large builds and
having planned releases of large chunks of functionality’.

[40] ’ . . . continuous delivery [1] that is, to continuously deploy the environment in a test environment that is reasonably
similar to the actual production environment as part of development and testing efforts and to promote it to production
when appropriate’.

[32] ’These concepts are related in that continuous deployment is a prerequisite for continuous delivery, but the reverse is not
necessarily the case. That is, continuous delivery refers to re- leasing valid software builds to users automatically, whereas
continuous deployment refers to the practice of deploying the software to some environment, but not automatically
delivering to customers’.

[1] ’SaaS products provide an opportunity to provide consumers with continuous deployment of new features, as opposed to
scheduled version upgrades as is the norm for products installed on-premise . . . continuous deployment of new versions
of a software product in production’.

5.1.2. Mechanisms for achieving fast and frequent release
Besides continuous planning, other mechanisms are pro-

posed in the literature to achieve fast and frequent release.
Many of these mechanisms are important enough to become
themes in their own right and are further developed in the
following sections. For example, most studies highlight au-
tomation as essential to achieving fast and frequent release
(e.g. [1, 59, 54, 79]). Close interaction with customers (e.g.
[75, 29, 58]), having a clear release process (e.g. [50, 47]),
a release management workflow [47] or a continuous delivery
workflow [46, 47] appear also in the literature as enablers of
CD. Staron et al. [74] present a release readiness indicator,
a mechanism to predict in which week the release would be
possible given the defect history. In addition, some studies
discuss fast release in the context of ASD. For example, Kr-
usche and Alperowitz [46] distinguish between time-based and
event-based delivery. They claim that fast release, as the teams’
ability to deliver a potentially shippable product increment at
any time in the project, is particularly useful at the end of the
sprint (time-based delivery) when delivering the increment to
the customer, but it also helps to obtain rapid feedback during
the sprint (event-based delivery). In a similar vein, Agarwal
[1] proposes Continuous Scrum as a mechanism to achieve and
sustain a rapid release cycle (one week product deployment)
through parallel development.

5.1.3. Effects of fast and frequent release on product quality
The effects of fast and frequent release on the quality of the

delivered software are also a focus in the literature. The CD lit-
erature highlights that a faster and more frequent release cycle
should not compromise quality (e.g. [1, 59, 31, 41]). Thus, it
is important for the engineering and QA teams to ensure back-

ward compatibility of enhancements, so that users perceive only
improvements rather than experience any loss of functionality
[1]. Thus, the ability to release quickly does not mean that the
development should be rushed into without a full understand-
ing of what is actually being done [59]. Neely and Stolt [59]
advises monitoring everything to know the exact state of the
system at every moment. Furthermore, based on a case study
conducted on the effect of rapid releases upon quality at Firefox
[41], Khomh et al. found that even though users do not expe-
rience significantly more post-release bugs in comparison with
the traditional release model, program crashes occur earlier and
users experience bugs earlier during execution. In another sim-
ilar empirical study in the context of Mozilla Firefox, the rapid
release model makes re-engineering activities harder to achieve
and even though the code changes are smaller, they become
a more important risk with a fast release cycle [49]. In addi-
tion, the authors found that code change activities tend to focus
more on bug fixing and maintenance than functionality expan-
sion. However, there is no significant difference concerning the
volume of changes among rapid release and a traditional model.

5.2. Flexible product design and architecture

Several primary studies make reference to product architec-
ture and design [2, 7, 8, 15, 51, 62, 79, 16, 17]. CD demands
a software architecture in which the product and its underly-
ing infrastructure continuously evolve and adapt to changing
requirements [16, 51]. Thus, it is essential that the underlying
architecture is flexible and is able to accommodate rapid feed-
back [7, 8, 51]. However, at the same time, the architecture
must be robust enough to allow the organization to invest its re-
sources in offensive initiatives (e.g. new functionality, product
enhancements and innovation) rather than defensive efforts (e.g.

15



bug fixes) [8, 7, 51, 16]. To achieve this, the software architec-
ture and design have to be highly modular and loosely coupled
[51, 62, 8]. In addition, what seems essential in the context
of CD is that the software architecture accommodates mecha-
nisms to rollback unsuccessful deployment [62], supports inde-
pendent deployment of a particular component rather than the
entire system [62, 79] and enables experimentation through run-
time variation of functionality as well as data collection mech-
anisms [15, 62].

The main challenge with regards to software design and ar-
chitecture, in the context of CD, is the ability to maintain the
right balance between speed (quickly delivering functionality
to the users) and stability (providing reliable and flexible archi-
tecture) [8, 17]. To overcome this challenge, some approaches
propose a focus on measuring and monitoring source code and
architectural quality. For instance, [8, 7] suggest extending
prototyping to include quality attributes, such as performance
or security-related issues (i.e. prototyping with a quality at-
tribute focus), as a method of incorporating both functional and
non-functional requirements in the context of CD. Rapid archi-
tecture trade-off analysis to accommodate rapid feedback and
evaluate design options [7], quantifying architectural depen-
dencies by combining Design Structure Matrix (DSM) and Do-
main Mapping Matrix (DMM) techniques [17] and identifying
and assessing risky areas of the source code based on diverse
metrics [2] are also mechanisms proposed to maintain speed
and stability. These mechanisms provide systematic feedback,
bring more visibility and awareness to stakeholders and finally
trigger re-factoring and re-architecture initiatives when needed
[8, 17, 2].

5.3. Continuous testing and quality assurance
Empirical evidence shows that most companies typically per-

form testing activities late in the development process causing
unpredictable additional development efforts [60] and signif-
icant delays in releases [74]. Many primary studies empha-
sise the importance of employing testing and quality assurance
(QA) practices throughout the whole development process in
the context of CD, as features are rolled out, and not just at the
end of the development (e.g. [1, 59, 10, 32, 75, 34, 54]. Thus,
continuous testing aims to bring testing practices as close as
possible to developers in order to avoid leaving testing activi-
ties only at the end of development [32].

In addition, a common problem in the testing activities is that
many individual developers do not have an end-to-end overview
of all the testing activities that are conducted during the soft-
ware development process, other than their own individual ac-
tivities [60, 4]. As a consequence several problems such as
duplication of test efforts and slow feedback loops are further
testing challenges. To help alleviate these problems in the par-
ticular context of CD, authors emphasise the need to make all
testing activities transparent to individual developers [4] and us-
ing different techniques that help to describe and give a holistic
overview of all testing activities such as CIViT - Continuous
Integration Visualization Technique [60].

An important observation from studies conducted in open
source software, particularly Firefox, was a slight increase on

the number of reported bugs observed during testing in rapid
release mode compared to traditional development [41, 53, 49].
The studies on Firefox’s transition to rapid releases also re-
vealed that CD allows less time for testing activities but enables
fast and thorough investigation of software features with the
highest regressions risk at a relatively narrower scope [41, 53].
The implication of the latter is that when transitioning to CD
tremendous changes in terms of testing resources and strategies
need to take place to make the testing process more sustain-
able in CD. Therefore, it remains crucial to assess whether such
changes have significant impacts to the quality of the product
[53].

On the other hand, improvements to existing testing practices
in terms of fast feedback of code changes to developers dur-
ing testing activities is expected in CD regardless of whether
the software is open source or not [4, 76]. Reported strategies
to continuously ensure the quality of the software in the con-
text of CD include not only testing strategies but also creating
a company culture of quality [31].

5.3.1. Test automation

Well-known testing techniques in ASD, such as test automa-
tion, are also crucial in CD in order to achieve continuous test-
ing [1, 31, 34, 54, 59, 61, 32, 37, 47, 56, 48, 76, 9, 60]. Accord-
ing to our primary studies, test automation ensures: (a) quality
of software through extensive test coverage [34, 54], (b) contin-
uous integration and release of quality software [59, 37, 47, 48]
and (c) provide early feedback to the development team [37]
so that issues are resolved and root causes eliminated [32]. In
test automation, a variety of test suites: unit, functional, integra-
tion, and performance tests are executed at different phases [37]
and with different scope: component, subsystem, partial prod-
uct, product, release and customer [60]. These test suites use
practices such as automated execution of test scripts on a build
server after each code commit to test and check the status of the
code or the build [1, 48, 54, 76], automating acceptance test-
ing [37, 57], automatic testing of the production environment
in non-embedded software [40] and simulation to demonstrate
and test the quality of software much earlier for embedded soft-
ware [3]. In addition, efficient prioritisation and the ordering of
automated test execution are emphasised in order to ensure fast
feedback to the development team as well as the proper use of
resources [32, 37].

Two primary approaches that facilitate test automation, code
driven testing (e.g. TDD and test planning [59]) and GUI test-
ing are discussed. Code driven testing practices are mostly pre-
ferred by practitioners working in CD [1, 8, 57, 10, 59, 16].
However, due to limitations such as high costs and the effort re-
quired to train and manage test-programs, Agarwal [1] recom-
mends the use of automated GUI testing. GUI testing is seen
as a lead indicator of bugs that typically appear in a production
environment [59]. More details on how GUI testing is imple-
mented in practice are given in the Automation theme (Section
5.4).

16



5.3.2. Testing with users
Testing new features while in real use and using a small frac-

tion of actual end users, is also emphasized when aiming to
CD [31, 48, 59, 15, 51, 41]. This approach provides immediate
feedback about the feature quality as perceived by users, allow-
ing developers to quickly discover new bugs to fix [48, 51, 41].
For example, Facebook reports testing new features internally
by employees and later by a subset of real world users [31], be-
fore making them available to all users. Similarly, in [48] test-
ing new features in real use is done with beta users who are also
actual users. When the result of testing features in real use is
satisfactory, features are deployed to the entire user base. Oth-
erwise, alternative mechanisms such as rollback are executed
[31, 59]. Furthermore, although this approach is mainly used
in web applications [31, 48], there is also evidence of testing
in real use in the embedded domain, but with the aim of es-
tablishing a proof-of-concept as the system is not intended for
mass production [15]. See Customer involvement (Section 5.6)
and post-deployment activities (Section 5.8) themes for more
details.

5.3.3. Creating a culture of quality
It is also suggested that continuous testing and QA embody

a culture of developer responsibility in which developers bear
the responsibility for writing good code, perform thorough tests
as well as support the operational use of their software [31, 54,
76]. As systems become larger and more complex, such culture
complements test automation systems and allows the quality of
the software to be maintained at scale.

5.3.4. Technical debt
Finally, another important aspect observed and related to

quality assurance in the context of CD is the concept of tech-
nical debt. It was noted that as a consequence of trade-offs be-
tween the fast deployment of software and poor development,
testing and quality assurance practices, organisations acquire
technical debt over time [57, 8, 17]. As technical debt causes
architecture quality degradation over time, organizations apply-
ing CD need to continuously monitor and measure the quality
of the degrading architecture [8, 17]. Interestingly, two authors
in our review have separately studied measurement techniques
to determine risky files in embedded software development [2]
and the risk associated with deploying certain features [22].
The method proposed by Antinyan et al. [2] is based on mea-
suring a set of code properties, such as McCabes cyclomatic
complexity, in order to identify areas of source code that may
be faulty and difficult to maintain and provide quick feedback
to developers. Risk assessment scoring heuristics for software
deployment is another method proposed by Comas et al. [22].
The method proposes decomposing web application into differ-
ent functionality tiers to identify changes and the requirements
needed to implement the changes. Each change implemented in
the software is analysed along with risk. The result of the anal-
ysis is used to provide information to system integrators about
the risky areas on which to focus their efforts e.g. testing in
appropriate places.

5.4. Automation

In the context of CD, the focus is on automating the entire de-
livery pipeline. Prior to CD only parts of the pipeline were au-
tomated. However, the CD literature highlights the importance
of eliminating all manual steps from build to deploy [34, 59],
extending continuous integration with release and deploy au-
tomation, and automated configuration management of deploy-
ment environments. Humble et al. [37] recommend automating
build, testing, and deployment in the early stage of the project
and to evolve the automation along with the application. Fur-
thermore, automation is also needed for measuring and improv-
ing the work, which concerns the whole delivery pipeline.

5.4.1. Continuous Integration
Continuous integration (CI) is one of the main enablers of

CD [61, 62, 34, 32, 75, 3, 1, 37, 47, 48, 54]. The main advantage
of CI is that it automates tasks such as compiling code, running
unit and acceptance tests, monitoring and validating code cov-
erage, checking compliance with coding standards, static code
analysis, automatic code review and building deployment pack-
ages [32, 1, 54, 76, 3]. Therefore, CI provides mechanisms to
ensure that there is always a shippable product that has passed
all of the testing phases [32, 62]. Fitzgerald and Stol [32] report
that the frequency of integration is as important as automation
itself. Thus, the frequency should be high enough to ensure
quick feedback to developers. CI is usually coupled with feed-
back mechanisms (e.g. dashboards) [34, 37, 48, 54] that enable
rapid feedback on source code and triggers for immediate prob-
lem resolutions [32, 51]. Regarding the application domain, the
main challenge of using CD in embedded systems is that phys-
ical assets and hardware equipment should also support CI in
order to benefit from CD as a whole. To overcome this prob-
lem, in the avionics domain, Ard et al. [3] propose a simulated
integrated system that facilitates CI of embedded systems.

The level of automation of CI system varies depending on the
primary study [76, 75, 10, 1, 34, 37, 48, 54, 59, 31, 57, 9, 67].
Guidance and working practices on structuring the CI pipeline
and what possible stages and tools can be used in the pipeline
are reported in several primary studies [34, 37, 31, 76, 75, 48, 1,
2]. Goodmand and Elbaz [34] suggests automating quick builds
in order to provide developers with instant feedback. [76, 34]
perform nightly builds. In [75, 48], the CI system automatically
closes the source control repository from further commits in
case of a build failure. [37] suggests using several testing stages
in which different types of testing should be independent from
each other. Facebook [31] integrates a code review stage as part
of the build process using the tool Phabricator. Antinyan et al.
[2] develop an automatic measurement system to identify risky
files that may need refactoring.

Automated GUI-testing seems to be a popular practice in
our primary studies [1, 75, 76, 31, 59]. In GUI testing ’test-
automation software is used to record mouse movements and
key-presses, and replay these when needed’ [1]. However, im-
plementing automated GUI testing in practice is challenging [1]
because it needs to be flexible enough to test different scenarios
[76] and do so at a fast-pace [59]. Agarwal [1] also notes the

17



need for manual observation during automatic GUI testing be-
cause the testing software is not able to identify the occurrence
of (unexpected) errors due to difficulties in identifying errors
automatically. Watir and Webdriver are used in Facebook for
automated GUI testing [31].

5.4.2. Release and deploy automation
Many of our primary studies extend their system beyond tra-

ditional CI into release and deploy automation [1, 34, 37, 59,
31, 79]. As an example Agarwal [1] suggests an automation
system to integrate the configuration management, build, re-
lease and testing processes. The system provides developers
with a means to migrate changes from one environment to an-
other (e.g. development to production). Thus, the system would
allow a release manager to perform a release with selected con-
tent, and to upgrade the software in the target environment. In a
similar vein, Facebook [31] has a tool (Gatekeeper) for deploy-
ment that allows the developers to turn features on and off in
the code, and to select which user groups see which features.

Various types of guidance, working practices, and tools
for automated deployment and monitoring are provided in
[37, 40, 56, 31, 59, 70]. [37, 40, 56] support automated deploy-
ment to all types of environments (development, test, staging,
production). Feitelson et al. [31] report on how Facebook per-
forms multi-stage deployment where internal testing and per-
formance testing are performed before deployment to produc-
tion. [59] reports the experiences of Rally Software when mim-
icking test environments to production environment. This low-
ers the risk in deployment and provides advice to identify the
barriers that prevent delivery from a commit. DevOps also pro-
vided practices for automatically linking operations with devel-
opment and QA functions. For example, with DevOps config-
uration management becomes another form of source code that
can be automatically managed using standard source develop-
ment techniques [56]. In addition, deployment monitoring tools
for global deployment are discussed in [59, 31] (e.g. [31] uses
BitTorrent). Although most of the primary studies acknowl-
edge the benefits that automation brings in the context of CD,
there were also studies that noted the possible limitations that
automation might imply in terms of flexibility for adapting and
configuring systems to particular organizations or development
contexts [70].

5.4.3. Automation of configuration management for deploy-
ment environments

The configuration management system (CM) is also auto-
mated in CD, which enables automated provisioning and de-
ployment to various target environments. Meyer et al. [56]
describe automated CM tools that specify configuration ac-
tions using a high-level declarative language stored on a cen-
tral server. Using this tool, client machines compare their con-
figuration state to the central configuration specifications after
which configuration actions are applied as necessary to bridge
the gap between the current configuration and the desired con-
figuration. [40, 37, 9] also describe automated CM systems.
For example, Kalantar et al. [40] developed Weaver, a sys-
tem to manage the configuration of an entire environment, in-

cluding software components that span systems, and the infras-
tructure elements that are needed to support them. To do this,
they defined a Domain Specific Language to specify blueprints
environments, and at runtime execute the blueprints to cre-
ate or modify environments. The system allows validation of
blueprints at design, deployment, and runtime. However, it is
not intended to replace low level automation building blocks
to install and configure individual software components (e.g.
scripting languages, Chef, Puppet). Benefield [9] suggests a
similar system to [40] in which they can manage configuration
and deployment to a system. In addition, [37, 40, 56] treat de-
ployment scripts (or blueprints) as code which is stored under
version control and can also be subject to automated tests as
noted in [56].

5.5. Configuration Management

Besides automating CM, two main topics emerge in the re-
view regarding CM and CD: version control branching strate-
gies and system configuration management.

5.5.1. Version control branching strategies
Version control branching strategies aim for regular and in-

cremental delivery, lower integration risk (due to more frequent
merges) and improved coordination between teams. [34, 46,
47, 54, 59, 31] discuss version control branching strategies that
are suitable for CD. Using a single branch, without any pri-
vate branches, in order to keep the continuous deployment of
new functionality simple is reported in [34, 59]. However, most
studies in the review report as using both main (or master) and
separate branches. For example, [54, 31] report the use of a
main branch that is kept releasable all the time. In addition,
separate branches are used for each user story that are merged
into the main branch after passing quality gates. In a similar
vein, [46, 47] report experiences with a branching model called
git-flow15. In their variation of git-flow, features are developed
in separate feature branches, after which they are merged into
the development branch to be shared with other developers.
Internal releases are triggered when developers merge feature
branches into the main development branch (under the release
manager’s supervision). Neely and Stolt [59] describe the use
of a master branch, which encourages small size stories in order
to make merges easier. Thus, long running branches or feature
branches are rarely employed in this case. However, instead of
feature branches the organization uses feature toggle through
an administration interface to switch the toggles and clean them
after a story is completed.

5.5.2. System configuration
As described in Section 5.4.3, CD bases CM on automation

[56, 37, 40]. In addition, different strategies are proposed in the
literature to manage system configuration in CD.

In order to make system CM easier, Humble et al. [37] sug-
gest deploying the same software binaries in every environment

15http://nvie.com/posts/a-successful-git-branching-model/

18



and maintaining runtime configuration separately from bina-
ries. To facilitate the identification of problems and solutions,
frequent deployments, where each deployment introduces only
a limited amount of new code, characterise the software devel-
opment process at Facebook [31]. In case of problems they
roll back single commits and any of their dependencies, or if
that is not possible, they revert the whole binary (consisting
of possibly multiple commits) to the previous working version
[31]. They also suggest reverting back commits of develop-
ers who are not present during the delivery in order to min-
imize deployment problems. In a similar vein, MacCormack
[51] highlights the importance of being able to trace feedback
from a release to a particular revision of software. Benefield
[9] suggests an atomic packaging scheme where versioned self-
contained packages can be independently released and rolled
back. Finally, [79] develops a theoretical model for upgrading
component-based software in which every release references all
of its dependencies, and where releases can be tracked back to
source code.

5.6. Customer involvement
One characteristic of CD is collecting customer feedback

from deliveries as early as possible (even near real-time) in or-
der to base design decisions on real customer usage and thus
use customer input as the main driver for innovation [62, 29].
The importance of customer feedback is highlighted not only
in requirements elicitation, prioritisation, definition of user sto-
ries and ’definition of done’ (DoD) [47, 15, 31] but also in
other phases of the product development such as acceptance
testing. For example, Marschall [54] suggests developing cus-
tomer tests in a way that the customer is required to sign off on
each user story (or product feature) before it can be considered
complete.

Customer involvement in CD concerns the following tasks:
1) determining from whom feedback is collected, 2) what is-
sue feedback addresses, 3) how feedback is collected and in
which format, 4) how feedback is processed and 5) how feed-
back is taken into account in the development process. Some
approaches can be found in the CD literature regarding the three
first items; however, approaches for processing feedback and
taking it into account are scarce.

Determining from whom feedback is collected depends on
the kind of feedback that is required or interesting to gather.
Olsson et al. [62] propose locating lead customers who serve
as role models for other customers. MacCormack [51] suggests
that a valuable avenue for identifying lead (beta) customers is
through exploring the company’s customer-support database.
Ko et al. [45] also warn about the importance of selecting a
sample of customers that is representative of the user commu-
nity and discusses challenges when using a vocal minority of
existing users.

The second and third tasks refer to how to get customer feed-
back and limit it so that it targets only the specific issue at hand.
Regarding getting feedback for bug fixes, van der Storm [79] in-
troduces a component-based system in which specific compo-
nents are automatically delivered after fixing the bug and cus-
tomer feedback is accurately collected. This allows for getting

fast feedback for a specific issue on which a developer is fo-
cused at the time [46, 47]. In Facebook, Gatekeeper is used to
control which parts of the code are actually active for customers
[31]. With Gatekeeper, engineers can turn tests on and off at
will and also apply them to selected user groups. In this way,
the feedback is collected only from the active parts of the code.
Gatekeeper can also be used to turn off new code that is caus-
ing problems, thereby reducing the need to immediately deploy
a correction [31]. Moreover, automated tools such as a deliv-
ery server or deployment pipeline allow customers to give feed-
back directly within the software in a structured way [46, 47].
In addition, monitoring customer usage scenarios (even without
the user knowing about it) [15]; A/B testing as an experimen-
tal approach to find out what users want [31]; and prototypes
and mock-ups as the first visualisation of user interface [51]
are useful for collecting feedback and helping with an accurate
understanding of customer expectations.

However, the literature does not provide significant solutions
for tasks four and five, i.e., how the feedback is processed and
how the feedback is taken into account in the development pro-
cess. When collecting customer feedback, especially when us-
ing structured feedback channels, there needs to be mechanisms
in place to process incoming feedback and to interpret the in-
formation quickly. Excepting [51], which proposes a procedure
where the first thing that developers have to do in the morn-
ing is to check if there are problems in their latest submission
regarding feedback for daily builds, mechanisms for systemat-
ically processing feedback were not elaborated in the primary
studies. Nevertheless, the literature does emphasise close col-
laboration with the customer, especially during requirements
elicitation, prioritisation and the definition of user stories and
DoD [47, 15]. Moreover, there are warnings about the ef-
fects that continuous changes in a product might have upon
customers. For example, [49] notes that when doing fast re-
leases, how much and what to change between releases must be
seriously considered, as this has a direct impact on the interac-
tions between users and developers. In the same vein, Zade and
Choppella [82] highlight that in fast releases, changes in user
interfaces need to be provided with serious attention. If the
way a user interacts with the software changes considerably be-
tween releases, then a negative impact on customer experience
is likely.

5.7. Continuous and rapid experimentation

Ten primary studies, published during recent years, make ref-
erence to continuous and rapid experimentation [31, 29, 15, 67,
61, 62, 9, 30, 59, 33]. Although the literature lacks a unified
definition, continuous and rapid experimentation in the context
of CD refers to systematically designing and executing small
field experiments to guide product development and accelerate
innovation; thus, it aims to base the business and design deci-
sions of product enhancements and new functionality on data
rather than on stakeholder opinions, even if they are experts in
the area [29].

The ’Stairway to Heaven’ model suggested R&D as an ex-
perimental system as the last step of its evolutionary path of

19



software organisations from traditional methods to CD and be-
yond [62, 61]. It describes a situation where the organisation
constantly conducts experiments to guide product development
and accelerate innovation and decision-making. To achieve this
objective, companies need to adopt a short-cycle innovation
process centred on customer feedback and usage data [62, 61].
This information is used to guide the evolution of the sys-
tem and the actual deployment of new software functionality
[62, 61]. For example, Facebook uses A/B (split) testing as an
experimental approach to immediately identify user needs and
values rather than trying to elicit requirements following the tra-
ditional requirements engineering approach [31]. When using
A/B testing, randomized experiments are conducted over two or
more variants of an enhancement (or similar feature) in order to
compare how they are perceived by end-users through statisti-
cal hypothesis testing [31, 9]. This experimental approach is
largely facilitated by the fact that CD significantly reduces the
gap between the company and its customers (see customer in-
volvement theme, Section 5.6) [9, 31].

In order to enable continuous and rapid experimentation, ar-
chitectural infrastructure for runtime variability of functional-
ity, mechanisms for data collection and rollback mechanisms to
revert changes are required [62]. For instance, Rally Software
[59] suggested A/B testing with Feature Toggle as a technique
to manage and support run-time variability of functionality.
Goel et al. [33] describe the development of an infrastructure
for fast upgrade of database systems which enabled Facebook
to deploy experimental software builds and improvements on a
large scale of machines without degrading the systems uptime
and availability. Apart from technological requirements, organ-
isational functions, which includes release and product man-
agement as well as innovation and R&D, must be well aligned
and tightly integrated [62, 61].

It is interesting to observe that continuous experimentation
has been proposed not only in the context of web applications
in companies such as Facebook or Rally Software, where in-
novation cycles are naturally shorter, but also in the context of
embedded systems. For example, [29] and [15], in the automo-
tive industry, present the innovation experiment system (IES).
IES is an evolution of current R&D practices moving from con-
sidering innovation as a process internally guided and assessed
by the original system manufacturer to a process in which in-
novation is actually evaluated by real users at scale. However,
the literature also recognises the limitations of applying the ex-
perimental paradigm in the context of safety critical or other
systems that require certification and heavy verification and val-
idation processes [15, 30].

Regarding how continuous and rapid experiments are actu-
ally conducted, the CD literature is quite scarce. Fagerholm
et al. [30] present an initial model for continuous experimen-
tation composed of an experimentation cycle based on build-
measure-learn blocks and their underlying infrastructure. The
build-measure-learn blocks structure the activity of conducting
experiments and connect product vision, business strategy and
technological product development through experimentation.
On the other hand, the underlying infrastructure of the model
comprises three layers, including roles involved in running the

experiment, enabling technical infrastructure and information
artefacts that are needed for conducting the experiments.

5.8. Post-Deployment activities

The theme of post-deployment activities refers to those ac-
tivities that are conducted once the product (or a new feature
or enhancement of the product) has been deployed [61]. CD
has created a large number of new opportunities not just for ob-
serving user behaviours and monitoring how systems and ser-
vices are being used [24, 9], but also for identifying unexpected
patterns and runtime issues [24, 46], monitoring system qual-
ity attributes [24, 31, 32] and collecting real-time data to feed
both business and technical planning [9]. For instance, Orso
et al. [63] proposed an approach to perform different monitor-
ing tasks and collect useful information on their software’s be-
haviour. In addition, continuous monitoring might also aim to
monitor metrics related to service-level agreements and system
quality attributes, including performance, system availability
and operational infrastructure. Goel et al. [33] reports on a very
fast, distributed, in-memory database at the heart of Facebook
that is extensively used for post deployment activities including
advertisement revenue monitoring, performance debugging, as
well as real-time analysis of user behaviour and service logs.

As acknowledged by various studies [24, 31, 32, 9], the main
objective of continuous monitoring is to constantly monitor
and measure both business indicators and infrastructure-related
metrics in order to facilitate and improve business and techni-
cal decision-making. More importantly, continuous monitoring
must always be unobtrusive to users, thought it needs to be vis-
ible and accessible to all relevant stakeholders, including de-
velopment, operation and business people [24, 9]. One of the
most significant activities in this sense is post-release testing to
ensure successful deployment [1] and also performing critical
validation and testing on real users at scale [31]. Dark deploy-
ment is used where enterprises deliver new features or services
that are invisible to customers and have no impact on the run-
ning system. This technique can be used to test system quality
attributes and examine them under simulated workload in a real
production environment [31, 59]. Another relevant practice, ca-
nary deployment, allows enterprises to deliver a new version to
a limited user population to test the system under real produc-
tion traffic and use. The new version is then delivered to the
whole user population once it reaches a high enough level of
quality [31, 59].

5.9. Agile and lean software development

CD goes beyond agile and lean software development; thus,
agile and lean software development methods and practices are
the first steps the organisation can take toward CD, e.g. [32, 74].
Hence, ASD methods and practices can be considered as an en-
abler for CD. However, CD scales ASD practices throughout
the whole organisation instead of focusing only on team-level
activities. For example, this is noticed in the continuous ex-
perimentation approach, in which software is developed based
on field experiments with relevant stakeholders, i.e. customers
or users [30]. The experimental results are linked throughout

20



the organisation with a product roadmap as well as managed
within a flexible business strategy [30]. Along the same lines,
lean software development promotes the consideration of the
whole organisation as part of CD: ’If you deliver daily, waste is
exposed almost immediately . . . optimizing just a part of the
system simply is not an option with daily deployment’ [67]. To
accelerate continuous software delivery and achieve agility at
scale, Cantor and Royce [18] describe the IBM transformation
from conventional engineering governance to economic gover-
nance and Bayesian analytics, which integrate governance with
agility aspects.

Most of the primary studies discuss in one way or another as-
pects related to ASD. For example, [9, 67, 57] explain that lean
software development supports delivery of a continuous flow
of small features into production, as is the aim of CD. Bene-
field [9] focuses on lean techniques for the SaaS delivery model.
Using specific Agile and Lean software development methods
appears frequently in the primary studies as well (e.g. using
Scrum [7], continuous Scrum [1], pair programming [10], eX-
treme Programming [35], or Rugby which is an agile process
model including workflows for the continuous delivery of soft-
ware [47]).

CD also changes the traditional ASD practices and methods
into a continuous flow. Continuous ways of working are de-
scribed in the ASD literature as follows: continuous improve-
ment and employee empowerment, e.g. [57]; CI, e.g. [8] and
[47]; continuous delivery, e.g. [47, 46, 59]; continuous delivery
of features, e.g. [7]; or the transforming of a release cycle into
a continuous flow, e.g. [54] and [1]. For instance, Agarwal [1]
reports results from continuous scrum in which bug fixes, mi-
nor enhancements and major features are released continuously
on a weekly basis by a single development team. Each sprint
has three phases, creating a triple-sprint overlap pattern: plan-
ning, development and QA. The development team is divided
into team members who are responsible and capable of execut-
ing each of these phases; hence, there are sub-teams each with
a different function, i.e. planning, development and QA. Each
sprint is time-boxed into a three-week period. During the first
week of a sprint, the product owner and scrum master together
with the inputs from the development team formulate a plan
for the remainder of the sprint. Thereafter, the planning sub-
team starts planning the next sprints and the development team
starts development on the sprint that was planned by the sub-
team in the prior week. Similarly, the QA team performs QA
on what was developed by the development team in the prior
week. Thus, sequential sprints overlap with a phase-lag of a
one-week release cycle [1].

5.10. Organizational factors
Many factors related to organisational aspects were also

highlighted in the CD literature. We classified these aspects
into three groups: integrated corporate functions, transparency
and innovative and experimental organisational culture.

5.10.1. Integrated corporate functions
Both empirical and non-empirical studies stressed the inte-

gration of the R&D organisation with other corporate func-

tions such as sales, marketing, product management, QA, re-
lease and operations. This integration is crucial for fast delivery
and deployment. It enables transparency and understanding of
the whole picture of product development activities and over-
comes corporate constraints that often cause delays in prod-
uct deliveries, e.g. hand-over delays and communication gaps
[35, 7, 50, 67, 40, 31, 32]. A flat R&D organisational structure
is common when applying ASD [35, 59]. However, CD de-
mands a greater alignment of the R&D organisation with other
corporate functions [62]. For instance, integration of R&D with
the operations/maintenance team, also referred to as DevOps, is
noted in several studies [31, 16, 32, 46]. Similar to DevOps is
the emphasis on the integration between software development
and business strategy, termed BizDev [32]. Both DevOps and
BizDev focus on achieving a shorter cycle time with increased
feedback loops [24, 32].

Several strategies describing how to integrate corporate func-
tions are depicted in the CD literature; however, they are mostly
initial proposals. For instance, Neely and Stolt [59] describe the
journey that Rally Software followed for tracking the status of
work in real time to sales and marketing teams in order to in-
tegrate them with R&D. One challenge here is that in addition,
marketing strategy needs to be adapted to the CD approach.
Using cross-domain competences amongst team members to
ensure effective communication and integration with other cor-
porate functions has also been stressed by studies conducted in
non-embedded domains [31, 24]. Feitelson et al. [31] high-
light that at Facebook, software developers are trained to pos-
sess multiple skills, such as abilities in testing and operations,
in order to ensure good-quality software all the time without
the need for a supporting QA function [31]. Similarly, in [24],
software developers also perform activities related to operations
functions, in addition to performing QA function activities.
However, cross-domain competence may be more challeng-
ing in the embedded domain, where extensive knowledge of
hardware-related aspects is needed. Additionally, several stud-
ies have proposed the use of common practices and platforms
for software development and maintenance/operation/release as
mechanisms to integrate corporate functions with the R&D or-
ganisation [16, 32, 35]. Using shared models such as roadmaps
and a feature dependency matrix has also been identified as a
mechanism that facilitates effective coordination and interrela-
tionships between solution designers and release managers of
complex services [50].

5.10.2. Transparency
Organisational transparency, which is mentioned above as

one of the main targets of integrated corporate functions, is a
predecessor for building CD into an organisation. Organisa-
tional transparency intends to show the bigger picture of scat-
tered development activities in different parts of the organi-
sation, building a common understanding among stakeholders
about the development progress and goals [46, 47, 35, 7, 50,
67, 40, 31, 32]. In CD, transparency has an important role in
creating the ability to foresee, trace and understand important
aspects of product development in real time [47, 59]. Thus,
transparency is also an enabler for identifying early risks that

21



may harm product delivery and for reacting proactively to these
risks. For example, it is important to provide mechanisms for
visibility in the sales and marketing activities so that it is pos-
sible to track the status of the work in real time allowing for
appropriate planning activities [59]. As described in Section
5.3, the importance of visualizing testing activities from end to
end is highlighted in the literature [60].

In addition, it is noted that making the development progress
transparent enables better awareness for team members of their
contribution on the delivery of value [74] as well as allowing
them to decide what is needed [57] and to take personal respon-
sibility [54]. An important way for build transparency in the
context of CD is the use of key performance indicators (KPIs)
as metrics to visualise the performance of the organisation. For
instance, Staron et al. [74] conducted a case study on a large
agile and lean software development project at Ericsson in Swe-
den, in which KPIs were used to visualise the release readiness
across the distributed teams in order to predict the time in weeks
to release the product. Visualising the quality of the outcomes
by KPIs provided a way to build common awareness of the sta-
tus among all stakeholders, from designers to unit managers
[74]. Therefore, it is important to identify useful metrics in the
context of CD when building transparency. Other approaches
for building transparency into an organisation are proposed in
the CD literature, e.g. traffic lights visualisation is commonly
used to display the status of production at any time [46]. More-
over, information radiators and Kanban boards are often used
around the work space to ensure that daily progress on a project
is completely transparent and available for all to see [57].

5.10.3. Innovative and experimental organizational culture
Many primary studies stress the importance of people-driven

development and the need to create an innovative and experi-
mental organisational culture to enable CD. According to the
primary studies, learning from experience is more important
and benecial than chastising those responsible for a failure. Be-
cause humans make errors, some distrust is natural, but atten-
tion should be focused on honest communication and learning
from mistakes; this improves trust among stakeholders, which
enables greater efficiency and also innovativeness. In CD, fail-
ures are treated as opportunities for improvement rather than as
occasions for assigning blame [31]. Marschall [54] emphasises
the importance of the role of individuals in taking responsibil-
ity for completing their tasks when producing value to a cus-
tomer. Personal responsibilities can be used even to substitute
specialisation, methodology and formalised procedures created
for blaming and self-protection, which have no place in a team
of engineers willing to take responsibility for the entire system
[31].

The study by Papatheocharous et al. [64] highlights the im-
portance of human factors as a basis for increasing the capa-
bilities of continuous software engineering. In their study they
identified that providing tools for developers to improve them-
selves, and designing and assigning work tasks based on per-
sonal qualities may lead to situations where team members are
willing to accept more responsibility in managing themselves,
and, thus, take responsibility for the project outcome.

Regarding innovation, innovations should be encouraged by
breaking the routine with frequent activities aimed toward new
innovations. There should be flexibility and breakout times in
the daily routines. For instance, hackathons are commonly used
in Facebook in order to encourage interaction among different
organizational functions from engineers to financial, legal and
other departments [31].

6. Analysis of Reported Benefits and Challenges for Con-
tinuous Deployment (RQ3)

6.1. Benefits
The literature highlights several benefits from applying CD.

The most referenced benefits are shorter time-to-market, in-
creased customer satisfaction, continuous feedback, rapid in-
novation, narrower test focus, improved release reliability and
quality and, improved developer productivity. However, the
strength and quality of evidence for these benefits is limited
as many claims are based on industry reports (i.e. practition-
ers’ perceptions) or discussed in non-empirical studies. Fur-
thermore, in many cases, benefits are claimed, but no rational
or more detailed explanation of the reasons for these benefits
is provided in the papers. Nonetheless, the benefits found in
primary studies are detailed in the following paragraphs.

The most immediate benefit of applying CD is shorter time-
to-market through fast and frequent releases [1, 10, 31, 34, 46,
50, 57, 61, 62, 76, 75, 9, 48, 54, 59, 67, 41, 49]. For instance,
[31, 54, 59] shortened their delivery cycles from months or
weeks to continuous flow or daily deliveries. Similarly, in the
context of embedded systems, [76, 75] reduced their release
cycles significantly from three months to three weeks. Shorter
release cycles enable companies to constantly develop, learn
and improve their offerings based on instant customer feedback
[62, 48, 59, 67, 41] and thus, companies can quickly learn what
customers value and focus on deploying relevant functionali-
ties that meet customers’ expectations [67, 62, 61]. Shorter re-
lease cycles enable faster feedback about new features and bug
fixes, which makes release planning slightly easier (short term
v.s long term planning) [41]. Moreover, a higher number of
releases provides more marketing opportunities for companies
[41].

CD has also been found to increase customer satisfaction
and enable continuous customer feedback. CD allows contin-
ual product enhancement and immediate access to new fea-
tures and bug fixes, which increases customer satisfaction
[1, 10, 59, 76, 41]. For example, Neely and Stolt [59] reported,
’We received an email from a customer saying that they had no-
ticed the defect fix and wanted to say a huge thank you for re-
solving a pain point in the application’. According to Khomh et
al. [41], under a rapid release model, users can adopt new ver-
sions of the product faster, bugs are fixed faster and users do not
experience significantly more post-release bugs in comparison
with the traditional release model.

In addition, customers can evaluate the enhancements and
provide feedback immediately and in a continuous way (i.e.
continuous customer feedback), which improves communica-
tion between the company and its customers [35, 46, 47, 50, 51,

22



59, 75, 62, 61]. Furthermore, closer interaction with customers
enables enterprises to monitor and collect instant field data on
their customers and the software’s behaviour [24, 31, 32, 9].
The main advantage is that companies have the chance to
rapidly sense, understand and improve their offerings based on
actionable metrics and data [45, 51].

Apart from customer feedback, continuous and immediate
feedback from CI and an automated infrastructure helps to iden-
tify and resolve issues more rapidly [31, 34, 37, 51, 59, 32]. For
instance, Goodman and Elbaz [34] observed that the CI process
shortens the feedback cycle time substantially. Similarly, Hum-
ble et al. [37] also reported that build and deployment scripts
accelerate rapid feedback not just on the integration of mod-
ules of source code but also on problems integrating with the
deployment environment and its external dependencies.

Closer relationships with customers further can facilitate
rapid innovation. Continuous and instant customer feedback
allows companies to invest their resources in developing rele-
vant functionalities and innovation initiatives [31, 34]. [61, 62]
observed that faster feedback means cheaper development since
the R&D organisation can then spend time developing the right
things rather than correcting mistakes in functionality.

Narrower test focus appears also in our primary studies [22,
31, 59, 53]. From a technical point of view, CD implies that
each deployment introduces only limited amounts of new code.
From this perspective, frequent releases with a smaller scope
reduces risk [59, 31] and provides a narrower test focus, which
more accurately guides quality assurance activities [22, 31, 59,
53]. A narrow scope further allows deeper investigation of the
product’s active parts and makes issues easier to fix and debug
[22, 31, 59, 53].

Several studies [1, 37, 46, 59, 9] also reported that the de-
ployment infrastructure, coupled with intensive automated test-
ing and fast rollback mechanisms, improves release reliability
and quality. Neely and Stolt [59] reported that automated de-
ployment along with scrutiny of monitoring systems provided
safer environments for shipping code. Furthermore, intensive
automated tests ensure that new improvements pass all qual-
ity assurance procedures, thus leading to a higher quality of
releases [1, 9, 59]. Finally, automated deployment processes
are reported as also leading to improve developer productiv-
ity since they allow a single engineer to develop and deploy a
new improvement instantly to several services, to verify imme-
diately and rollback to the previous stable version, if required
[1, 35, 37, 9].

6.2. Challenges

Regarding challenges in CD, the process of transformation
towards CD, customers’ unwillingness to receive continuous
product updates, increased QA efforts and the challenges of ap-
plying CD in embedded domains were often referenced in the
literature.

Transforming towards CD is an evolutionary process and re-
quires investment in deployment processes, as well as changes
in people’s mindset and the general organisation way of work-
ing. For example, Neely and Stolt [59] describes how months

of preparatory work were needed to get the deployment pro-
cess streamlined and automated. [59, 16] observed that, if an
organisation is not experienced in ASD, a direct transition to
CD requires too many changes to handle at one time. Fur-
thermore, this transition requires a change in mindset as people
may be afraid to release the new code directly into production
environments [54, 59]. One company manager in [54] noted,
’When the release team and I confronted the developers with
our new process, releasing a story as soon as it is signed off it
scared the hell out of them’. Moving to CD requires a change
in organisational culture, buy-in from all key stakeholders and
transparency in the organisation [10, 57, 59, 61]. Lavoie and
Merlo [49] point out that fast release cycles might stress third-
party developers because of the risk of non-compatibility of ex-
tension modules. Thus, human factors, including personality
and cognitive aspects, plays a fundamental role in truly achiev-
ing continuous delivery. As acknowledged by Papatheocharous
et al. [64], in the context of continuous software engineering
where organizations are required to develop, deliver and learn
in fast and parallel cycles, it is profoundly important to estab-
lish an agile thinking culture from the individuals, to teams as
well as upper management levels.

Even though customers seem to be more satisfied (see the
previous section on benefits), the literature notes customer un-
willingness to accept CD as another challenge [62, 61, 10, 1,
63]. According to Agarwal [1], typically, customers are reluc-
tant to accept new functionalities mainly because of poor qual-
ity of releases. Orso et al. [63] also identified privacy and se-
curity concerns about information collected from customers as
inhibitors of CD. To address privacy concerns, which also suits
monitoring purposes, they suggested that organisations should
seek permission from users to gather information. One other
inhibitor from a customer point of view is the learning curve
that continuous changes (either to the functionality or to the
user interface) request from the end-user perspective. Zade and
Choppella [82] empirically investigated the impact of changes
on end-users. Their results suggest that the learning gap that
changes in user interfaces may produce is a crucial factor to
be considered when changes are continuously delivered to end-
users.

Several studies [1, 40, 46, 54, 56, 59] reported increased QA
efforts due to difficulties in managing the test automation in-
frastructure. Similarly, a case study conducted on Mozilla Fire-
fox [53] found that while rapid release has numerous benefits
and strongly supports shorter release times, at the same time it
increases the test efforts. This stems from the fact that more
specialized testers are required to sustain the testing effort in a
rapid release model. In addition, CD requires establishing an
effective QA process and new mechanisms to ensure backward
compatibility of enhancements.

In addition, in the context of the embedded domain, Ard et
al. [3] reported that physical assets and hardware equipment
should also support automation, in general, and CI, in particu-
lar, to get benefits from CD as a whole. Bosch and Eklund [15]
reported challenges concerning experimentation in software-
intensive embedded systems. In particular, the architecture
of embedded devices must support mechanisms to add or ex-

23



change applications when running experiments with minimal
impact on the rest of the system. More importantly, the mem-
ory and processing footprint, as well as connectivity aspects,
need to be considered carefully. Infrastructure requires the sup-
port of rollback mechanisms and immediate reversion to safe
versions. Furthermore, since, in experimental scenarios, the in-
frastructure needed to keep track of individual devices, secu-
rity and privacy issues require extra consideration [15]. Finally,
Trimble and Webster [75] elaborated in the domain of mission
critical systems. Safety issues require updates be planned and
this prevents near real-time value delivery (e.g. users need to
be notified and trained for new capabilities beforehand, to use
them in mission-operation environments).

Finally, other challenges found in the literature, although
they do not appear very frequently, include: lack of trust in
software quality [62], difficulty in managing various config-
urations and run-time environments [40, 56] and natural ten-
sions between the desire to deliver functionalities quickly and
the need for reliable products [8, 17]. In addition, further diffi-
culties exist in release planning and managing the roadmap in
a fast-paced environment [50] and risks associated with gather-
ing user feedback from a limited population (i.e. minority) that
may constrain the software’s evolution or even mislead product
development [45].

7. Research Gaps and Opportunities for Future Research
(RQ4)

The topic of CD appears to be highly relevant to the indus-
try. Practitioners have contributed heavily to its body of knowl-
edge, and the results of the quality assessment demonstrate the
great significance of CD to the industry. However, with regard
to empirical rigor, the quality assessment’s results are low (see
section 4.4). In addition, looking at the pertinence facet (see Ta-
ble B.9, Appendix B), less than half of the studies (22 papers)
are entirely dedicated to CD. Six of these produced contribu-
tions in the form of advice and implications, and three in the
form of lessons learned. This is not necessarily negative as CD
encompasses many different aspects. Still, more research that
fully focused on CD is needed. In general, although the topic
appears to be very promising, research on CD seems to be still
in its infancy, which promises a range of new opportunities for
researchers.

Each of the 10 identified themes represents opportunities for
future research. However, the themes are explored at different
levels, offering different research opportunities. The research
to date has tended to focus on factors such as continuous test-
ing and QA (31 papers), fast and frequent release (28 papers),
automation (24 papers, mainly in CI), and agile and lean soft-
ware development (22 papers). However, only a small number
of studies have dealt with aspects such as flexible design and ar-
chitecture (9 papers), continuous and rapid experimentation (10
papers), and customer involvement (12 papers) in the context of
CD. More concrete opportunities for future research include:

• Continuous and rapid experimentation is an emerging re-
search topic with many possibilities for future work. Most

papers in this area offer theoretical proposals that have yet
to be adequately validated (e.g. [15, 30]). In particular,
technical challenges [15], challenges with large scale ex-
perimentation [15, 30], business implications of continu-
ous and rapid experimentation [15], privacy issues when
running experiments with customers [15], and the process
of transforming towards continuous experimentation itself
[61] are identified as areas for future research.

• Technical infrastructure for supporting CD. Incremental
deployment is referred to in some of the industry reports
in companies such as Facebook [33] and Rally [59]. How-
ever, how it is done in practice is unclear. Although some
techniques and tools are mentioned in the literature, such
as canary deployment and dark deployment [31, 59], they
are briefly introduced without going into much detail on
how they are actually used in practice. This topic is es-
pecially relevant when considering the importance of sys-
tem availability and quality aspects related to the version
of the system that is deployed at any given moment. An-
other example is Scuba as a solution to support monitoring
of post-deployment user behaviour at Facebook [33]. Al-
though, the Scuba database is briefly introduced, the kind
of data that is collected as well as mechanisms to analyse
it and feed it back to the development process are not de-
scribed. Moreover, why certain technologies are selected
over other similar existing solutions in the market has not
been analysed. Thus, which are the most suitable tech-
nologies under certain conditions is unclear.

• Although customer involvement is emphasised in many
primary studies, we discovered that the tasks required for
making continuous and effective use of customer feed-
back are underdeveloped. Besides the need for mecha-
nisms to identify representative customers and infrastruc-
ture for collecting customer data, a clear research gap ap-
pears in solutions for processing incoming feedback and
quickly interpreting the information. Further investiga-
tion is needed on new approaches to express and validate
assumptions from user feedback, as the software evolves
[45], and privacy and security concerns that may inhibit
customer feedback collection [63].

• Regarding flexible and robust software architectures, some
mechanisms for balancing stability and speed have been
proposed in the literature (e.g. continuous assessment
of quality attributes through prototyping or automated
approaches and rapid architecture trade-off analysis).
Nonetheless, the natural tension between the desire to de-
liver functionalities quickly and the need for reliable prod-
ucts is still a challenge for CD [8, 17]. Investigating mea-
surement systems for managing technical debt [8], risk
assessment methods for CD [22], and stability-triggers-
speed scenarios (i.e. stability causes a refocus on speed)
[8] are areas proposed by the primary studies for future
research.

• Continuous planning also seems to play an important role

24



in achieving CD. Based on our results, continuous plan-
ning is not commonly adopted and applied throughout
the entire organisation. It is currently connected to pri-
oritisation [76] or involves only a certain level of plan-
ning, mainly release planning (e.g. Continuous Scrum
[1]). Fitzgerald and Stol [32] found that the current focus
of continuous planning in CD is mainly on what emerges
from ASD, which it is related to sprint iterations or, at
best, software releases. Thus, empirical research rarely de-
scribes how continuous planning is conducted at different
organizational levels and how the information from plans
is visible at different levels of planning.

• Similarly, despite the identified need for, and importance
of, integrating R&D with other corporate functions, there
is very little empirical research that evaluates emerging ap-
proaches such as DevOps and BizDez [32]. Research is
needed to identify and empirically evaluate mechanisms
to facilitate collaboration between different organizational
functions, not just at the organisational level but also at the
technical level.

• We also believe that automation is an important area for
future research. The goal of automation is to eliminate
all manual steps from build to deployment processes. The
literature shows different research gaps regarding automa-
tion. For example, GUI testing [1] is identified as a lead
indicator of bugs that typically appear in production en-
vironments. However, GUI testing still requires manual
observation because of difficulties in automatically identi-
fying errors. This is an area for possible future research. In
particular, Agarwal [1] pointed out the possibility of utilis-
ing advanced techniques in video analytics to enable fully
automated GUI testing. Similarly, dealing with variability
is considered an area that calls for future work, particularly
when automating the deployment of software components
[79].

• The application of CD in contexts that are different from
web applications (i.e. embedded systems) presents a clear
opportunity for future research as different domains have
different constraints when applying CD. As identified in
Section 4, when reviewing at the study domain, the ma-
jority of studies have been conducted in the web applica-
tion domain. Organisations in the area of web applications
are currently able to implement CD and even deploy many
new versions per day (e.g. [31, 54, 59]). However, this
goal is still a formidable challenge for domains such as
in embedded systems. Although the application of CD in
embedded systems has attracted significant interest over
the last four years (see Figure 7), many challenges are still
apparent for CD in embedded systems. For example, in
the area of post-deployment activities, those primary stud-
ies that have used or discussed post-deployment activities
focus on cloud- or web-based domains. However, unlike
web-based companies, not all software development com-
panies have access to a huge amount of customers. An-
other example is the case of software ecosystems, which

are becoming increasingly popular. The implications of
using CD with different contributors or when interdepen-
dent systems need to be coordinated are not clear.

• The implications of human aspects with CD are also un-
derdeveloped. With the adoption of CD, individuals are
given more responsibility for systems under development.
For example, in an optimal situation, an individual devel-
oper could deploy a new version of the system directly to
customers in just a couple of automated steps. However,
the individual should be also ready to take on that respon-
sibility. Papatheocharous et al. [64] argue, ’models con-
sidering the individuals personal traits to accommodate
the objective of holistic continuous software engineering’
are scarce. Models such as Stairway to Heaven [61] pro-
vide guidance on organizational levels, but how CD relates
to personality and cognitive factors remains an unexplored
research area.

To conclude, besides specific areas that require future re-
search, we find that CD needs an increase in both the number
and rigour of empirical studies. Recent case studies, such as
those that focus on Mozilla Firefox [4, 41, 49, 53] or the exper-
iment conducted by Zade and Choppella [82], provide rigorous
contributions to illustrate the impact of CD on product/process
quality as well as on the end customer. However, these stud-
ies explicitly mention limitations in generalizing results. Thus,
similar studies are needed. Industry participation is essential
in order to obtain the right data set that allows to produce reli-
able results (particularly in research aspects that are the hardest
to research in terms of data availability such as those that in-
volve customers). Moreover, although several benefits related
to CD are mentioned in the literature, they are mainly referred
to in industry reports and non-empirical research. Thus, empir-
ical studies and scientific evidence that confirm or refute these
benefits as well as studies that analyse cause-effect relationship
between identified factors might be investigated in future work.
Similarly, emerging approaches for implementing CD require
more rigorously empirical evaluations that can help to gener-
alize results where possible. In particular, the lack of context
descriptions in the primary studies makes comparing different
studies and providing more generalizable results difficult.

8. Comparison to Related Reviews

In order to put the findings of this work into the context of
literature and highlight the contributions made by the present
work, we compare our results with related literature reviews as
presented in Section 2.2. Since ASD and specific agile prac-
tices are not the center of our work, the comparison focuses
mainly on our findings and the findings of the semi-systematic
literature study conducted by Mäntylä et al. [52].

Both studies differ slightly in terms of focus and scope. Still,
the benefits and challenges of CD, are at the heart of both re-
views. The focus of Mäntylä et al. [52] is mainly on the impact
of rapid releases on testing processes; additionally, the results

25



are extended with a semi-systematic literature review, which in-
cludes 24 primary studies, to investigate the prevalence of rapid
release, spanning its origination, enablers, benefits and prob-
lems. Our study, on the other hand, seeks to collect and syn-
thesize all relevant studies on the topic of CD in a systematic
manner in order to characterize this phenomenon by identifying
recurrent themes and exploring the multifaceted nature of CD.
We found 50 primary studies relevant in the context of CD. Our
study extends Mäntylä et al.’s semi-systematic literature review
in that its focus is entirely on CD and its recurrent themes; it
includes scientific studies published up to June 2014 (compris-
ing theoretical studies as well), and takes into account all the
aspects of the systematic literature review method in order to
ensure reliable results, such as peer reviews of each research
step, systematic data extraction and data synthesis, and quality
assessment of primary studies. These aspects are absent in the
study conducted by Mäntylä et al. [52].

In a similar vein to Mäntylä et al. [52], we found that CD
has had an important impact on the software industry in re-
cent years (see Figure 8). Indeed, many of our primary stud-
ies, especially those published in recent years, discuss specific
cases of real companies, such as Facebook [33, 31], Firefox
[4, 41, 49, 53], IBM [18, 35, 40, 50, 16], Rally Corporation
[59], Ericsson [74, 2], Volvo [2] or NASA [76, 75]. The fact
that CD has been adopted in such a diverse set of companies
provides testimony that CD is being applied in many different
domains. Our primary studies include evidence of CD being
adopted even in domains such as safety critical (e.g., [76, 75, 3])
and science systems [81]. Thus, our results confirm the claim
made by Mäntylä et al. [52] that CD can be part of any soft-
ware development domain. In addition, our study presents an
overview of the state-of-the-art of CD (Section 4), which, as
presented in Section 7, reveals that the body of knowledge of
CD is in an exploratory stage and its scientific evidence must
be improve.

Mäntylä et al. [52] also discuss enablers as ’accelerating fac-
tors that facilitate the adoption of rapid releases.’ We did not
specifically focus on enablers as preconditions of CD, as we
had a wider scope to investigate recurrent factors in the litera-
ture related to CD. Mäntylä et al. [52] found that ’parallel de-
velopment with tools enabling easy automatic deployment and
testing, and with proactive customers and product managers’
are enablers of rapid releases. However, the actual mechanisms
to achieve frequent releases, tools employed to support automa-
tion, and strategies for involving customers in the product de-
velopment process were not further elaborated. Our study ex-
tends Mäntylä et al.’s preliminary identification of important
aspects enabling rapid software releases by creating a schema
that classifies recurrent aspects in the CD literature and identi-
fies concrete frameworks, methods and tools that support CD in
practice.

Our classification schema comprises 10 underpinning fac-
tors that define CD. Factors already identified in the study by
Mäntylä et al. remain in our classification schema under the fol-
lowing themes: fast and frequent releases, automation, contin-
uous testing and quality assurance, and customer involvement.
However, we also found other aspects that are relevant in the

context of CD, such as flexible product design and architec-
ture, configuration management, continuous and rapid experi-
mentation, post-deployment activities, agile and lean software
development and organizational factors, such as integrated cor-
porative functions, transparency, and the need of creating an in-
novative and experimental organizational culture. Indeed, these
factors are not independent of each other, but have overlaps and
synergies between them that help support CD in practice. For
example, continuous testing and quality assurance is critical in
CD because the product is continuously deployed to the end
customer. Thus, mechanisms that assure quality, such as auto-
mated testing, are essential in the context of CD. However, au-
tomation is much more than just automating the testing process;
it also aims to minimise the manual overhead by automating the
entire end-to-end workflow, including aspects such as automa-
tion of the delivery process, configuration management, etc. In
a similar vein, experimentation, as a way of making decisions
based on objective data rather than ’gurus’ opinions that may
lead to incorrect interpretations of the reality, is emphasized in
the CD body of knowledge. Moreover, it is considered to be a
common-sense approach to proactively involve customers and
customers’ views in the development process.

Similar to the findings of Mäntylä et al., we found that tool
support is very important. Table B11 in Appendix B summa-
rizes the concrete tools and methods that, according to our pri-
mary studies, software intensive companies use to apply CD.
Moreover, our findings are aligned with the claim that ’re-
lease length simply appeared as a variable in the release mod-
els without providing insights regarding rapid releases’ [52].
Thus, the release length in our primary studies varied from a
few hours to a few weeks, depending mainly on the application
domain.

With regard to the benefits and challenges of using CD, our
findings are well aligned with the results already reported by
Mäntylä et al. [52]. Shorter time-to-market, increased customer
satisfaction, continuous rapid feedback, and narrower test focus
were among the benefits identified in both reviews. According
to the primary studies in our review, developers are more pro-
ductive when using CD as a direct consequence of the automa-
tion of deployment processes. According to the review con-
ducted by Mäntylä et al., efficiency also increases, but as a re-
sult of time-pressure. In addition, we found that the deployment
infrastructure supporting automation and fast rollback mecha-
nisms improves release reliability and quality. Mäntylä et al.
note that using CD makes it easier to monitor progress and qual-
ity.

Finally, with regard to the challenges of using CD, we found
four main aspects were reported in the literature: the process of
transforming towards CD, customers’ unwillingness to accept
continuous updates, increased QA efforts, and the application
of CD in the embedded domain. Although Mäntylä et al. found
customer unwillingness to be a challenge with rapid releases,
the challenges identified in their review mainly focus on test-
ing areas, such as conflicting goals between rapid release and
achieving high reliability and test coverage. Still, as described
above, these findings need to be confirmed through more rigor-
ous scientific studies as, at the moment, they are mainly based

26



on practitioner perceptions.

9. Conclusion

This study provides a structured understanding of the body
of CD knowledge, together with a systematically collected list
of references relevant to CD. By using the systematic mapping
method, we identified, classified and analysed primary studies
related to CD based on a survey of the literature conducted in
June 2014. The most important findings of this review, which
are organized according to the study’s research questions, are
summarised below.

• RQ1: What is the current state of the research pertaining
to CD in the context of software intensive products and ser-
vices? From the 21,382 retrieved documents, we identified
50 primary studies relevant to CD. Most of these primary
studies are industry reports (36 percent) and case studies
(24 percent). Other research methods that were used in-
clude action research (4 percent), and grounded theory,
mixed method, design science and experiment, each with
just two percent of the studies. Overall, 42 percent of
the primary studies contributed to CD in the context of
web/Internet-based services and applications, and 24 per-
cent were related to embedded systems. 8 percent of the
studies focused on desktop applications and the domains
of the remaining 26 percent of the primary studies were
not clearly described. In addition, 8 percent of primary
studies contributed to CD theoretically (without empirical
evidence). A rigour and relevance analysis indicated that
37 primary studies exhibited high relevance; however, of
these, only 14 studies showed high rigour and 23 studies
had less than moderate rigour. This provides clear evi-
dence that scientific contributions in the literature on CD
are currently of high relevance but medium-low rigour,
which calls for more meticulous research.

• RQ2: What are the main factors that characterise CD
in the context of software intensive products and services
(sub: what do researchers mean when they refer to CD)? A
general consensus exists among most authors of the litera-
ture surveyed that CD refers to the ability of organisations
to release software functionalities to customers quickly
and frequently, soon after each new functionality is de-
veloped. However, these authors tended to use the concept
interchangeably with continuous delivery (although as it is
described in Section 2.1, they have different meanings).

As a result of our analysis of the 50 primary stud-
ies, we identified 10 recurrent themes or factors related
to CD. Each of the 10 factors was analysed and pre-
sented in detail in Section 5. The factors include: (1)
fast and frequent release, (2) flexible product design
and architecture, (3) continuous testing and quality as-
surance, (4) automation (of build and test (CI), deploy-
ment/delivery/release processes and configuration of de-
ployment environments), (5) configuration management,

(6) customer involvement, (7) continuous and rapid exper-
imentation, (8) post-deployment activities, (9) agile and
lean software development and (10) organisational factors,
including integrated corporate functions, transparency and
an innovative and experimental organisational culture.

• RQ3. What are the reported benefits and challenges in
association with CD in the context of software intensive
products and services? A number of benefits and chal-
lenges related to CD were identified. Transforming to-
wards CD is identified as challenging, requiring significant
investment in deployment processes, as well as in changes
in people’s mindsets and organisations’ general way of
working. In addition, an unwillingness by some customers
to accept new functionality, a need to increase efforts in
QA and the application of CD in the context of embedded
systems were identified as significant challenges. How-
ever, CD also poses potential benefits for organisations,
such as shortening their time-to-market by reinforcing the
organisations’ capabilities to release software functionali-
ties to customers more quickly and frequently, an increase
in customer satisfaction with the continual deployment
of valuable product enhancements and obtaining immedi-
ate feedback during the development process, particularly
from customers, which helps to guide software develop-
ment activities and quickly identifies potential problems.
In addition, CD also appears to facilitate rapid innova-
tion through experimentation and continuous and instant
customer feedback and to improve release reliability and
quality, in part, due to a narrower test focus and the exten-
sive use of automation. However, these findings have to be
carefully interpreted, as the empirical evidence is limited
mainly to practitioners’ perceptions.

• RQ4. What are the research gaps in the area of CD in the
context of software intensive products and services? Fi-
nally, a plethora of venues for future research, due to the
topic’s freshness and its industrial relevance were identi-
fied. Rigorous scientific contributions are clearly needed,
particularly those based on empirical evidence evaluating
the benefits of CD. In addition, we identified a number of
research gaps within the 10 themes identified. Continuous
and rapid experimentation is an emerging research topic
with many avenues for future work. Similarly, a clear re-
search gap exists for mechanisms to use customer feed-
back in the most appropriate way so that information can
be quickly interpreted. In continuous testing and QA, re-
search contributions on mechanisms for implementing au-
tomated GUI testing are required, as well as investigations
assessing technical debt in the context of CD. In addition,
topics such as continuous planning, automation and inte-
grated corporate functions (e.g. DevOps and BizDez), all
appear to be especially relevant. In addition to the above
specific areas of future research, CD research needs to in-
crease in both number and, especially, rigour of empirical
studies.

27



This research has been carried out within the Digile Need for
Speed program, and it has been partially funded by Tekes (the
Finnish Funding Agency for Technology and Innovation).

10. References

[1] Agarwal, P., 2011. Continuous scrum: agile management of saas prod-
ucts. In: Proceedings of the 4th India Software Engineering Conference.
ACM, pp. 51–60. *[PS1].

[2] Antinyan, V., Staron, M., Meding, W., Osterstrom, P., Wikstrom, E.,
Wranker, J., Henriksson, A., Hansson, J., 2014. Identifying risky areas
of software code in agile/lean software development: An industrial expe-
rience report. In: Software Maintenance, Reengineering and Reverse En-
gineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Con-
ference on. IEEE, pp. 154–163. *[PS2].

[3] Ard, J., Davidsen, K., Hurst, T., 2014. Simulation-based embedded agile
development. Software, IEEE 31 (2), 97–101. *[PS3].

[4] Baysal, O., Kononenko, O., Holmes, R., Godfrey, M. W., 2012. The secret
life of patches: A firefox case study. In: Reverse Engineering (WCRE),
2012 19th Working Conference on. IEEE, pp. 447–455. *[PS4].

[5] Beck, K., 2000. Extreme programming explained: embrace change.
Addison-Wesley Professional.

[6] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham,
W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.,
2001. The agile manifesto.

[7] Bellomo, S., Nord, R. L., Ozkaya, I., 2013. Elaboration on an integrated
architecture and requirement practice: Prototyping with quality attribute
focus. In: Twin Peaks of Requirements and Architecture (TwinPeaks),
2013 2nd International Workshop on the. IEEE, pp. 8–13. *[PS5].

[8] Bellomo, S., Nord, R. L., Ozkaya, I., 2013. A study of enabling factors for
rapid fielding combined practices to balance speed and stability. In: Soft-
ware Engineering (ICSE), 2013 35th International Conference on. IEEE,
pp. 982–991. *[PS6].

[9] Benefield, R., 2009. Agile deployment: Lean service management and
deployment strategies for the saas enterprise. In: System Sciences, 2009.
HICSS’09. 42nd Hawaii International Conference on. IEEE, pp. 1–5.
*[PS7].

[10] Blotner, J. A., 2002. Agile techniques to avoid firefighting at a start-up.
In: OOPSLA 2002 Practitioners Reports. ACM, pp. 1–ff. *[PS8].

[11] Boehm, B., 2002. Get ready for agile methods, with care. Computer
35 (1), 64–69.

[12] Boehm, B., 2006. A view of 20th and 21st century software engineering.
In: Proceedings of the 28th international conference on Software engi-
neering. ACM, pp. 12–29.

[13] Boehm, B. W., 1988. A spiral model of software development and en-
hancement. Computer 21 (5), 61–72.

[14] Bosch, J., 2012. Building products as innovation experiment systems. In:
Software Business. Springer, pp. 27–39.

[15] Bosch, J., Eklund, U., 2012. Eternal embedded software: Towards inno-
vation experiment systems. In: Leveraging Applications of Formal Meth-
ods, Verification and Validation. Technologies for Mastering Change. Vol.
7609. Springer Berlin Heidelberg, pp. 19–31. *[PS9].

[16] Brown, A. W., Ambler, S., Royce, W., 2013. Agility at scale: economic
governance, measured improvement, and disciplined delivery. In: Pro-
ceedings of the 2013 International Conference on Software Engineering.
IEEE Press, pp. 873–881. *[PS10].

[17] Brown, N., Nord, R. L., Ozkaya, I., Pais, M., 2011. Analysis and man-
agement of architectural dependencies in iterative release planning. In:
Software Architecture (WICSA), 2011 9th Working IEEE/IFIP Confer-
ence on. IEEE, pp. 103–112.*[PS11].

[18] Cantor, M., Royce, W., Jan 2014. Economic governance of software de-
livery. Software, IEEE 31 (1), 54–61. *[PS12].

[19] Castells, M., 2011. The rise of the network society: The information age:
Economy, society, and culture. Vol. 1. John Wiley & Sons.

[20] Causevic, A., Sundmark, D., Punnekkat, S., 2011. Factors limiting in-
dustrial adoption of test driven development: A systematic review. In:
Software Testing, Verification and Validation (ICST), 2011 IEEE Fourth
International Conference on. IEEE, pp. 337–346.

[21] Claps, G. G., Svensson, R. B., Aurum, A., 2015. On the journey to con-
tinuous deployment: Technical and social challenges along the way. In-
formation and Software Technology 57, 21–31.

[22] Comas, J., Mostashari, A., Mansouri, M., Turner, R., 2011. A soft-
ware deployment risk assessment heuristic for use in a rapidly-changing
business-to-consumer web environment. International Journal of Soft-
ware Engineering & Its Applications 5 (4), *[PS13].

[23] Cruzes, D. S., Dyba, T., 2011. Recommended steps for thematic synthesis
in software engineering. In: Empirical Software Engineering and Mea-
surement (ESEM), 2011 International Symposium on. IEEE, pp. 275–
284.

[24] Cukier, D., 2013. Devops patterns to scale web applications using cloud
services. In: Proceedings of the 2013 companion publication for confer-
ence on Systems, programming, & applications: software for humanity.
ACM, pp. 143–152. *[PS14].

[25] Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N. B., 2012. A decade of ag-
ile methodologies: Towards explaining agile software development. Jour-
nal of Systems and Software 85 (6), 1213–1221.

[26] Dybå, T., Dingsøyr, T., 2008. Empirical studies of agile software develop-
ment: A systematic review. Information and software technology 50 (9),
833–859.

[27] Eck, A., Uebernickel, F., Brenner, W., 2014. Fit for continuous integra-
tion: How organizations assimilate an agile practice.

[28] Eisenhardt, K. M., Martin, J. A., 2000. Dynamic capabilities: what are
they? Strategic management journal 21 (10-11), 1105–1121.

[29] Eklund, U., Bosch, J., 2012. Architecture for large-scale innovation
experiment systems. In: Software Architecture (WICSA) and Euro-
pean Conference on Software Architecture (ECSA), 2012 Joint Working
IEEE/IFIP Conference on. IEEE, pp. 244–248. *[PS15].

[30] Fagerholm, F., Guinea, A. S., Mäenpää, H., Münch, J., 2014. Building
blocks for continuous experimentation. In: Proceedings of the 1st Inter-
national Workshop on Rapid Continuous Software Engineering (RCoSE
2014), Hyderabad, India. *[PS16].

[31] Feitelson, D., Frachtenberg, E., Beck, K., 2013. Development and de-
ployment at facebook. IEEE Internet Computing, 1. *[PS17].

[32] Fitzgerald, B., Stol, K.-J., 2014. Continuous software engineering and
beyond: trends and challenges. In: Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering. ACM, pp. 1–9.
*[PS18].

[33] Goel, A., Chopra, B., Gerea, C., Mátáni, D., Metzler, J., Ul Haq, F.,
Wiener, J., 2014. Fast database restarts at facebook. In: Proceedings of the
2014 ACM SIGMOD international conference on Management of data.
ACM, pp. 541–549. *[PS19].

[34] Goodman, D., Elbaz, M., 2008. ” it’s not the pants, it’s the people in the
pants” learnings from the gap agile transformation what worked, how we
did it, and what still puzzles us. In: Agile, 2008. AGILE’08. Conference.
IEEE, pp. 112–115. *[PS20].

[35] Gotel, O., Leip, D., 2007. Agile software development meets corporate
deployment procedures: stretching the agile envelope. In: Agile Pro-
cesses in Software Engineering and Extreme Programming. Springer, pp.
24–27. *[PS21].

[36] Humble, J., Farley, D., 2010. Continuous delivery: reliable software re-
leases through build, test, and deployment automation. Pearson Educa-
tion.

[37] Humble, J., Read, C., North, D., 2006. The deployment production line.
In: Agile Conference, 2006. IEEE, pp. 6–pp. *[PS22].

[38] Ivarsson, M., Gorschek, T., 2011. A method for evaluating rigor and in-
dustrial relevance of technology evaluations. Empirical Software Engi-
neering 16 (3), 365–395.

[39] Järvinen, J., Huomo, T., Mikkonen, T., Tyrväinen, P., 2014. From agile
software development to mercury business. In: Software Business. To-
wards Continuous Value Delivery. Springer, pp. 58–71.

[40] Kalantar, M., Rosenberg, F., Doran, J., Eilam, T., Elder, M., Oliveira, F.,
Snible, E., Roth, T., 2014. Weaver: Language and runtime for software
defined environments. IBM Journal of Research and Development 58 (2),
1–12. *[PS23].

[41] Khomh, F., Dhaliwal, T., Zou, Y., Adams, B., 2012. Do faster releases
improve software quality? an empirical case study of mozilla firefox. In:
Mining Software Repositories (MSR), 2012 9th IEEE Working Confer-
ence on. IEEE, pp. 179–188. *[PS24].

[42] Kitchenham, B., 2010. Whats up with software metrics?–a preliminary

28



mapping study. Journal of systems and software 83 (1), 37–51.
[43] Kitchenham, B., Charters, S., 2007. Guidelines for performing systematic

literature reviews in software engineering. Tech. rep., Technical report,
EBSE Technical Report EBSE-2007-01.

[44] Kitchenham, B. A., Budgen, D., Pearl Brereton, O., 2011. Using mapping
studies as the basis for further research–a participant-observer case study.
Information and Software Technology 53 (6), 638–651.

[45] Ko, A. J., Lee, M. J., Ferrari, V., Ip, S., Tran, C., 2011. A case study
of post-deployment user feedback triage. In: Proceedings of the 4th In-
ternational Workshop on Cooperative and Human Aspects of Software
Engineering. ACM, pp. 1–8. *[PS25].

[46] Krusche, S., Alperowitz, L., 2014. Introduction of continuous delivery in
multi-customer project courses. In: Companion Proceedings of the 36th
International Conference on Software Engineering. ACM, pp. 335–343.
*[PS26].

[47] Krusche, S., Alperowitz, L., Bruegge, B., Wagner, M. O., 2014. Rugby:
an agile process model based on continuous delivery. In: Proceedings of
the 1st International Workshop on Rapid Continuous Software Engineer-
ing. ACM, pp. 42–50. *[PS27].

[48] Lacoste, F. J., 2009. Killing the gatekeeper: Introducing a continuous
integration system. In: Agile Conference, 2009. AGILE’09. IEEE, pp.
387–392. *[PS28].

[49] Lavoie, T., Merlo, E., 2013. How much really changes?: a case study of
firefox version evolution using a clone detector. In: Proceedings of the
7th International Workshop on Software Clones. IEEE Press, pp. 83–89.
*[PS29].

[50] Ludwig, H., Cappi, J., Becker, V., Stewart, B., Meade, S., 2014. In-
tegrating service release management with service solution design. In:
Service-Oriented Computing–ICSOC 2013 Workshops. Springer, pp. 28–
39. *[PS30].

[51] MacCormack, A., 2001. How internet companies build software. MIT
Sloan Management Review 42 (2), 75–84. *[PS31].

[52] Mäntylä, M. V., Adams, B., Khomh, F., Engström, E., Petersen, K., 2014.
On rapid releases and software testing: a case study and a semi-systematic
literature review. Empirical Software Engineering, 1–42.

[53] Mantyla, M. V., Khomh, F., Adams, B., Engstrom, E., Petersen, K.,
2013. On rapid releases and software testing. In: Software Maintenance
(ICSM), 2013 29th IEEE International Conference on. IEEE, pp. 20–29.
*[PS32].

[54] Marschall, M., 2007. Transforming a six month release cycle to contin-
uous flow. In: Agile Conference (AGILE), 2007. IEEE, pp. 395–400.
*[PS33].

[55] Merisalo-Rantanen, H., Tuunanen, T., Rossi, M., 2005. Is extreme pro-
gramming just old wine in new bottles: A comparison of two cases. Jour-
nal of Database Management (JDM) 16 (4), 41–61.

[56] Meyer, S., Healy, P., Lynn, T., Morrison, J., 2013. Quality assurance for
open source software configuration management. In: Symbolic and Nu-
meric Algorithms for Scientific Computing (SYNASC), 2013 15th Inter-
national Symposium on. IEEE, pp. 454–461. *[PS34].

[57] Middleton, P., Joyce, D., 2012. Lean software management: Bbc world-
wide case study. Engineering Management, IEEE Transactions on 59 (1),
20–32. *[PS35].

[58] Nagy, A., Njima, M., Mkrtchyan, L., 2010. A bayesian based method
for agile software development release planning and project health mon-
itoring. In: Intelligent Networking and Collaborative Systems (INCOS),
2010 2nd International Conference on. IEEE, pp. 192–199. *[PS36].

[59] Neely, S., Stolt, S., 2013. Continuous delivery? easy! just change every-
thing (well, maybe it is not that easy). In: Agile Conference (AGILE),
2013. IEEE, pp. 121–128. *[PS37].

[60] Nilsson, A., Bosch, J., Berger, C., 2014. Visualizing testing activities to
support continuous integration: A multiple case study. In: Agile Pro-
cesses in Software Engineering and Extreme Programming. Springer, pp.
171–186. *[PS38].

[61] Olsson, H. H., Alahyari, H., Bosch, J., 2012. Climbing the” stairway to
heaven”–a mulitiple-case study exploring barriers in the transition from
agile development towards continuous deployment of software. In: Soft-
ware Engineering and Advanced Applications (SEAA), 2012 38th EU-
ROMICRO Conference on. IEEE, pp. 392–399 *[PS39].

[62] Olsson, H. H., Bosch, J., Alahyari, H., 2013. Towards r&d as innovation
experiment systems: A framework for moving beyond agile software de-
velopment. In: IASTED Multiconferences-Proceedings of the IASTED

International Conference on Software Engineering, SE 2013. pp. 798–
805. *[PS40].

[63] Orso, A., Liang, D., Harrold, M. J., Lipton, R., 2002. Gamma system:
Continuous evolution of software after deployment. In: Proceedings of
the 2002 ACM SIGSOFT International Symposium on Software Testing
and Analysis. ISSTA ’02. pp. 65–69. *[PS41].

[64] Papatheocharous, E., Belk, M., Nyfjord, J., Germanakos, P., Samaras, G.,
2014. Personalised continuous software engineering. In: Proceedings of
the 1st International Workshop on Rapid Continuous Software Engineer-
ing. ACM, pp. 57–62. *[PS42].

[65] Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abra-
hamsson, P., 2014. Software development in startup companies: A sys-
tematic mapping study. Information and Software Technology.

[66] Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic map-
ping studies in software engineering. In: Proceedings of the 12th Interna-
tional Conference on Evaluation and Assessment in Software Engineer-
ing. EASE’08. British Computer Society, Swinton, UK, UK, pp. 68–77.

[67] Poppendieck, M., Cusumano, M. A., 2012. Lean software development:
A tutorial. Software, IEEE 29 (5), 26–32. *[PS43].

[68] Ries, E., 2011. The lean startup: How today’s entrepreneurs use continu-
ous innovation to create radically successful businesses. Random House
LLC.

[69] Rodrı́guez, P., Markkula, J., Oivo, M., Turula, K., 2012. Survey on ag-
ile and lean usage in finnish software industry. In: Proceedings of the
ACM-IEEE international symposium on Empirical software engineering
and measurement. ACM, pp. 139–148.

[70] Scacchi, W., Alspaugh, T. A., 2013. Processes in securing open architec-
ture software systems. In: Proceedings of the 2013 International Confer-
ence on Software and System Process. ACM, pp. 126–135. *[PS44].

[71] Schwaber, K., 2004. Agile project management with Scrum. Vol. 7. Mi-
crosoft press Redmond.

[72] Shaw, M., 2003. Writing good software engineering research papers:
minitutorial. In: Proceedings of the 25th international conference on soft-
ware engineering. IEEE Computer Society, pp. 726–736.

[73] Ståhl, D., Bosch, J., 2014. Modeling continuous integration practice dif-
ferences in industry software development. Journal of Systems and Soft-
ware 87, 48–59.

[74] Staron, M., Meding, W., Palm, K., 2012. Release readiness indicator for
mature agile and lean software development projects. In: Agile Processes
in Software Engineering and Extreme Programming. Springer, pp. 93–
107. *[PS45].

[75] Trimble, J., Webster, C., 2012. Agile development methods for space op-
erations. In: The 12th International Conference on Space Operations. p.
*[PS46].

[76] Trimble, J., Webster, C., 2013. From traditional, to lean, to agile devel-
opment: Finding the optimal software engineering cycle. In: System Sci-
ences (HICSS), 2013 46th Hawaii International Conference on. IEEE, pp.
4826–4833. *[PS47].

[77] Turhan, B., Layman, L., Diep, M., Erdogmus, H., Shull, F., 2010. How ef-
fective is test-driven development. Making Software: What Really Works,
and Why We Believe It, 207–217.

[78] Unterkalmsteiner, M., Gorschek, T., Islam, A. M., Cheng, C. K., Permadi,
R. B., Feldt, R., 2012. Evaluation and measurement of software process
improvementa systematic literature review. Software Engineering, IEEE
Transactions on 38 (2), 398–424.

[79] Van Der Storm, T., 2005. Continuous release and upgrade of component-
based software. In: Proceedings of the 12th international workshop on
Software configuration management. ACM, pp. 43–57. *[PS48].

[80] Vitalari, N., Shaughnessy, H., 2012. The Elastic Enterprise: the new man-
ifesto for business revolution. Olivet Publishing.

[81] Wicenec, A., Parsons, R., Kitaeff, S., Vinsen, K., Wu, C., Nelson, P.,
Reed, D., 2012. Distributed agile software development for the ska. In:
SPIE Astronomical Telescopes+ Instrumentation. International Society
for Optics and Photonics, pp. 845106–845106. *[PS49].

[82] Zade, H., Choppella, V., 2012. Functionality or user interface: Which
is easier to learn when changed? In: Intelligent Human Computer In-
teraction (IHCI), 2012 4th International Conference on. IEEE, pp. 1–6.
*[PS50].

[83] Zhang, H., Ali Babar, M., 2013. Systematic reviews in software engineer-
ing: An empirical investigation. Information and Software Technology
55 (7), 1341–1354.

29



Table A.9: Extracted Data - Primary Study Properties
Category Description
P1: General type of paper (adapted from [42]).
Empirical If the paper bases its findings on empirical evidence (exploration of the phenomenon of CD, explanation of some aspect

related to CD, evaluation of a CD technique, etc.). Therefore, the source of knowledge of the paper is acquired by
means of observation or experimentation. Observations can be carried out by using different data collection methods
such as direct observation of the phenomenon or interviews, surveys, focus groups, etc.

Theoretical If the paper is descriptive and discusses some issue (theories, frameworks, or underlying concepts) and may (but not
always) consider some theoretical issues concerning CD. It does not include an empirical study of the issue being
discussed. Typically tools and framework that at not empirically validated as well as conceptual and mathematical
analyses are included in this category.

Both The paper is a mixed theoretical and empirical paper. Typically papers that develop techniques or frameworks with the
intention of CD and provide some empirical evaluation or demonstration of the technique are included in this category.

P2: Research method (adapted from [78]).
Case study If one of the following criteria applies: 1) The study declares one or more research questions which are answered

(completely or partially) by applying a case study. 2) The study empirically evaluates a theoretical concept by applying
it in a case study (without necessarily explicitly stating research questions, but having a clearly defined goal).

Industry report If the focus of the study is directed toward reporting industrial experiences without stating research questions or a
theoretical concept which is then evaluated empirically. Usually these studies do not mention any research method
explicitly.

Experiment If the study conducts an experiment and clearly defines its design (variables, control group, treatment, etc.).
Survey If the study collects quantitative and/or qualitative data by means of a questionnaire or interviews. In a survey study

a sample that is representative of the population is studied in order to generalize results from the sample to the whole
population (opposite to a case study in which only one or a limited number of cases is considered).

Action research If the study states this research method explicitly.
Design science If the study states this research method explicitly.
Grounded theory If the study states this research method explicitly.
Mixed method If the study uses multiple methods for data collection.
Not stated If the study does not define the applied research method and it cannot be derived or interpreted from reading the paper.
Opinion paper If the paper expresses the personal opinion of an author about CD or whether a certain aspect of CD is good or bad, or

how it should be applied. The paper does not rely on related work and research methodologies and does not explicitly
describe industrial experiences.

P3: Contribution (adapted from [65] and [72]).
Model Representation of an observed reality by concepts or related concepts after a conceptualization process.
Theory Construct of cause-effect relationships of determined results.
Framework/Method Method or technique related to constructing software or managing development processes. Commonly it involves better

ways to do some task.
Guidelines List of advises, synthesis of the obtained research results.
Lessons learned Set of outcomes, directly analysed from the obtained research results.
Advice/Implications Discursive and generic recommendation, deemed from personal opinions.
Tool Technology, program or application used to create, debug, maintain or support software development processes.
P5: Pertinence (inspired by [65]).
Full The main focus of the study is CD. The three characteristic of CD are noticeable in the study (deployment, continuity

and speed).
Partial The study is partially related to CD. The study supports CD or focuses on an aspect that is important in the context of

CD but CD as a whole is not its main focus.
Marginal The study is marginally related to CD. CD is mentioned in the study but the main research focus of the study is different

from CD.

30



Appendix A. Extracted Data - Primary Study Properties

Appendix B. Systematic Map Overview

31



Table B.10: Systematic map overview
PS Research Method Contribution Domain Pertinence Rigour Relev.
[1] Industry report Framework/method Web/services Full 1.5 4
[8] Grounded theory Theory Multiple domains Partial 2.5 4
[18] Industry report Framework/method N/S Marginal 1 4
[22] Theoretical Framework/method Web/services Partial 2 0
[24] Industry report Guidelines Web/service Full 1.5 4
[31] Industry report Advice/implications Web/Service Full 1.5 4
[46] Case study Lesson learned N/S Full 3 0
[50] Theoretical + industry report Framework/method Web/service Partial 0.5 3
[51] Mixed methods Lesson learned Web/service Full 2 4
[54] Industry report Advice/implications Web/service Full 1.5 4
[59] Industry report Lesson learned Web/service Full 1 4
[75] Industry report Lesson learned Embedded, safety critical Partial 0.5 4
[76] Industry report Lesson learned Embedded, safety critical Partial 1 4
[79] Theoretical + case study Framework/method N/S Partial 1 0
[16] Industry report Framework/method N/S Full 1 4
[17] Theoretical + case study Framework/method Embedded Partial 1 2
[7] Industry report Guidelines Web/service Partial 1.5 4
[67] Opinion paper Advice/implications N/S Partial N/A N/A
[2] Action research Framework/method Embedded Partial 3 4
[10] Industry report Advice/implication Web/service Marginal 1 4
[15] Theoretical + case study Model Embedded Full 1 3
[30] Design science Model Web/service Full 2 3
[32] Theoretical Model N/S Full 2 0
[34] Industry report Advice/implications Web/service Full 0.5 4
[35] Industry report Advice/implications Web/service Full 1.5 4
[37] Industry report Guidelines Web/service Full 1 4
[40] Industry report Tool Web/service Full 1 4
[45] Case study Lesson learned Web/service Partial 2.5 4
[47] Theoretical + mixed methods Model N/S Full 3 0
[48] Industry report Advice/implications Web/service Partial 1.5 4
[56] Theoretical Tool N/S, open source Partial 1.5 0
[57] Case study Lesson learned Web/service Partial 3 4
[61] Case study Model, lesson learned Embedded Full 3 4
[62] Case study Model, lesson learned Embedded and web/services Full 3 4
[63] Theoretical + case study Tool N/S Partial 1 1
[70] Case study Lesson learned N/S Marginal 1 1
[81] Industry report Advice/implications Embedded Full 0.5 3
[29] Theoretical + case study Model Embedded Full 1 3
[3] Theoretical + industry report Lesson learned, model Embedded Partial 1 4
[58] Theoretical Model N/S Partial 2 0
[9] Opinion paper Advice/implications Web/service Full N/A N/A
[41] Case study Lesson learned Desktop application Partial 3 4
[33] Industry report Framework/method Web/service Full 1.5 4
[49] Case study Lesson learned Desktop application Partial 2 4
[53] Case study Model Desktop application Partial 3 4
[74] Action research Lesson learned, framework/method Embedded Partial 3 4
[60] Case study Framework/method Embedded Partial 2.5 4
[64] Case study Framework/method N/S Partial 1.5 4
[4] Case study Lesson learned, model Desktop application Partial 3 4
[82] Experiment Theory N/S Marginal 3 1

32



Table B.11: Frameworks and Methods, Models and Tools
Primary study Description Pertinence

Frameworks and Methods
[1] Continuous SCRUM, an approach based on Scrum to achieve fast-paced continuous product evolution

and deployment.
Full

[33] Solution applied at Facebook to enable frequent software upgrades. Full
[16] and [18] Economic governance, Measured improvement and Disciplined agile delivery frameworks to accelerate

software delivery at an enterprise scale.
Full and marginal

[22] Risk assessment heuristic approach to quantify software deployment risks in context of fast-paced con-
tinuous release environment.

Partial

[2] Method to identify risky areas of source code and assess risks in the context of fast and incremental
delivery.

Partial

[17] Approach to quantify architecture quality with measurable criteria to guide continuous and iterative
release planning.

Partial

[79] Approach to continuous release and upgrade of component-based software. Partial
[60] Visualization technique of the testing activities involved from unit and component level to product and

release level that support the identification of improvement areas.
Partial

[64] Two level approach of how human factors can influence continuous software engineering. Partial
[74] Release readiness indicator to predict the time in weeks to release the product. Partial
[50] Approach to manage dependences between service design and release management. Partial

Models
[61] and [62] Stairway to Heaven model. Full
[30] Continuous experimentation model. Full
[15] and [29] Architecture for large-scale innovation experiment system. Full
[32] Continuous software engineering model. Full
[47] Rugby: Agile process model for continuous delivery. Full
[58] Project health measurement model based on Bayesian networks. Partial
[53] Model explaining the relationship between release model, release length and test effort. Partial
[4] Model of the Mozilla’s patch lifecycle for rapid releases. Partial
[3] Software in Simulation (SiS) architecture to practice continuous integration and continuous deployment

in the embedded domain.
Partial

Tools
[40] Weaver. A domain-specific language for continuous validation of the deployed environment. Full
[56] Automated quality assurance service to validate configuration management scripts across a range of

environments.
Partial

[63] GAMMA. Tool for remotely monitoring the deployed software. Partial
[49] Clone detector as a tool to understand differences between releases such as how many changes were

done between releases, how many bugs were made, etc.
Partial

33


