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Abstract—This paper studies content caching in cloud-aided
wireless networks where small cell base stations with limited
storage are connected to the cloud via limited capacity fronthaul
links. By formulating a utility (inverse of service delay) maxi-
mization problem, we propose a cache update algorithm based on
spatio-temporal traffic demands. To account for the large number
of contents, we propose a content clustering algorithm to group
similar contents. Subsequently, with the aid of regret learning
at small cell base stations and the cloud, each base station
caches contents based on the learned content popularity subject
to its storage constraints. The performance of the proposed
caching algorithm is evaluated for sparse and dense environments
while investigating the tradeoff between global and local class
popularity. Simulation results show 15% and 40% gains in the
proposed method compared to various baselines.

I. INTRODUCTION

Edge caching represents a viable solution to overcome chal-

lenges associated with network densification by intelligently

caching contents at the network edge [1]. Besides reducing

latency, edge caching also offloads the backhaul traffic load

[2]. Existing literature investigates the potential benefits of

caching in terms of backhaul offloading gains and latency [3]–

[5]. While these works show improved network performance

through caching, they neglect the intrinsic user behavior by

considering a fixed caching policy. Due to the spatio-temporal

requests, small cell base stations (SBSs) often need to update

their cache following their local request distribution to mini-

mize latency [6]. In such scenarios, optimal content placement

becomes a challenging and non-trivial problem. To serve user

requests, the works in [7]–[9] proposed dynamic caching algo-

rithms based on fixed content popularity. However, these works

assume a small content library with fixed content popularities.

With the growing library size, determining popularity and

content caching becomes computationally expensive. Recently,

grouping contents based on their popularity was proposed in

[10]. However, how to group contents and cache accordingly

based on time-varying popularity was not studied.

The main contribution of this paper is to revisit the fun-

damental problem of content caching under spatio-temporal

traffic demands in cloud-aided wireless networks and explore

the tradeoffs between global and local content popularity. By

considering a random deployment of SBSs and users, the

objective is to determine what contents need to be cached

locally by every SBS so as to maximize the cache hit rate.

Based on the instantaneous content requests, each SBS locally

learns the time-varying content popularity with the aid of

regret learning [11]. Simultaneously, the cloud learns the

global content popularity. By randomizing its caching strategy,

each SBS optimizes the caching policy in a decentralized

manner and updates its cache.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink transmission of a small cell network

comprised of randomly deployed SBSs, S = {1, ..., S} with

intensity λSBS. Let Ys represent the location of the s-th

SBS. Each SBS serves a set of user equipment(s) (UEs),

U = {1, ..., U}, deployed randomly with intensity λUE.

The location of the u-th UE is denoted by Zu. Each SBS

serves UEs’ requests over a common pool of spectrum with

bandwidth ω. Accordingly, the instantaneous data rate of UE

u served by SBS s is:

Rsu(t) = ωlog2

(

1 +
ps‖Ψsu(t)‖

2

σ2 +
∑

s′∈S\s ps′‖Ψs′u(t)‖2

)

, (1)

where σ2 represents the variance of noise, ps denotes the

transmit power of SBS s and Ψsu(t) denotes the channel gain

between UE u and SBS s.

Each SBS is equipped with a cache of size d where it stores

contents from a content library F = {1, ..., F} as shown in

Fig. 1. Let 1/µ be the size of all contents. In addition, let

Ξ(t) = [Ξs(t)]s∈S represent the vector of SBSs cache at

time t where Ξs(t) ⊆ F represents the contents cached by

SBS s ∈ S at time t such that |Ξs(t)| ≤ d. We assume

that SBSs partition the content library into popularity classes

such that each content in a class is equally popular i.e., multi-

class model [10]. Let the set of contents be partitioned into

popularity classes K = {1, 2, ...,K}, where Fk = {1, ..., Fk}
such that Fk ⊂ F , Fk ∩ Fk′ = ∅, k 6= k′. Due to the

constrained cache size and lack of coordination among SBSs,

each SBS is connected to the cloud via a fixed capacity

fronthaul link Cf to obtain the global content popularity and

update its cache accordingly.

Each UE requests contents from the library following the

dynamic popularity model i.e., spatio-temporal model [12].

Let the content demanded by the u-th UE at time t is denoted

by qu(t) such that qu(t) ∈ {0, 1, 2, ..., F} where qu(t) = 0
denotes no request by user u at time t. For simplicity, we

assume that each UE requests one content at a time. Let the

content demand vector at SBS s be Ds(t) = [Dsf (t)]f∈F

such that Dsf (t) =
∑

u∈Ns
1qu(t)=f where 1x is the indicator

function and Ns denotes the users in the coverage of SBS s.

The instantaneous reward of a SBS depends on the instan-

taneous cache hits and service rate. Absence of a requested

content from a SBS incurs a cache miss. If the content is

cached by multiple SBSs in UE’s coverage, the user associates

to the nearest SBS caching the requested content. In this

regard, the reward of SBS s for serving UE u is given by:

gsqu(t,Ξs(t)) = 1{qu(t)∈Ξs(t)}Rsu(t). (2)

A. Utility Maximization Problem

The objective of SBSs is to determine a caching policy that

maximizes their reward while ensuring UEs QoS. From (2),

http://arxiv.org/abs/1710.00506v1
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Fig. 1. System Model

it can be observed that the reward of a SBS depends on the

achievable rate and caching policy, i.e., SBS is rewarded if

and only if it caches the requested content. For simplicity,

fronthaul links are assumed to be used only for cache update

and service rate is considered to be zero if the SBS has not

cached the content. One of the challenges associated with

cache update is when the number of most popular contents is

larger than the cache size. In this case, SBSs must update their

caching decisions carefully as caching less popular contents

may decrease the SBS’s reward.

For a few UE requests, content popularity at SBSs may

not be determined accurately, resulting in poor caching policy

yielding lower reward. Hence, it is important that enough

statistics are available to better learn the content popularity.

To overcome this issue, the cloud estimates the global content

popularity gathered from all SBSs. However, acquiring global

demand and cache update incurs additional cost given by:

εs = 1−
τs
T2

(3)

where τs < T2 is the time required for cache update and

T2 represents the time during which the users’ requests are

observed. Assume Cs is the fronthaul capacity for SBS s, the

time required to update the cache of SBS s is:

τs = lp
N

µCs

, (4)

where lp > 0 is a constant and N represents the number of

new contents. Let Ξs be the vector of caching policies at SBS s

over time t = {0, 1, 2, ...}, i.e. Ξs = [Ξ(0),Ξ(1),Ξ(2), ...] and

ḡsu(Ξs) = limt→∞
1
t

∑t−1
τ=0 gsqu(τ,Ξs(τ)) be the limiting

time-average reward at SBS s.Then, for each SBS s ∈ S,

the average per-SBS utility is the aggregate utility of the

associated UEs i.e.,
Υs(Ξs) = εs

∑

∀u∈Ns

Υsu(ḡsu(Ξs)), (5)

where Υsu(ḡsu) = (1/µ)−1ḡsu. The network utility maxi-

mization problem is:
maximize

Ξs

∑
∀s∈S

Υs(Ξs) (6a)

subject to |Ξs| ≤ d, ∀s ∈ S (6b)

gsqu(t) > gmin, ∀u ∈ U , ∀t (6c)
∑

∀s∈S Cs ≤ Cf , (6d)

|Ys(u) − Zu| <|Ys′ − Zu|, ∀u ∈ U , s′ ∈ S \ s(u), (6e)
where (6c) is the minimum QoS threshold, (6e) represents

a nearest UE-SBS association, (6d) is the fronthaul capacity

constraint and s(u) represents the serving SBS of user u.

III. DEMAND-BASED CONTENT CLUSTERING

The problem in (6) is trivial when F ≈ d. With the increas-

ing library size, the problem becomes non-trivial. Moreover,

due to time-varying popularity of contents, the complexity

of (6) increases manifolds, making the problem extremely

challenging to solve. It has been observed that in a real system,

there exists a correlation among contents requests i.e., request

of a content is nearly similar to one or more contents [4].

This suggests grouping contents based on their demands as

a solution to improve caching decisions. By observing the

content demand over a finite time period, contents are clustered

into different classes where contents in the same class have

similar popularity. Thus, (6) is solved over classes rather than

contents. In this work, a similarity measure between demand

vectors is used to cluster contents into classes. Since, content

similarity varies slowly over time, content clustering is a

slower process than cache update. In other words, the content

clustering remains fixed for a period T1 > T2 where T2 is

the cache update time. To define the similarity measure, let

M(t) = [Mff ′(t)]f,f ′∈F be the similarity matrix at time t
with:

Mff ′(t) = exp

(

−
|Df (t)πf (t) −Df ′(t)πf ′ (t)|2

2σ2
l

)

∀f ′ ∈ F , (7)

where πf (t) is the popularity of file f at time t, Df (t) is the

instantaneous request of file f and σ2
l controls the impact of

popularity on similarity. In order to find the content demand

vector over the network, all the SBSs upload their demand

vectors Ds(t) to the cloud which computes the network wide

demand vector D′(t) =
∑

s∈S Ds(t) and broadcasts it to all

SBSs. Thereafter, SBSs perform content clustering based on

the following demand vector:

D
′

s(t) = αD′(t) + (1− α)Ds(t) 0 ≤ α ≤ 1, (8)

where α is a tunable parameter that captures local vs. global

demand. In this work, spectral clustering technique is used to

perform content clustering [13] that exploits the frequency of

content requests from the users in the coverage of SBSs and

the variance of the similarity matrix to form content classes.

The content clustering algorithm at each SBS is explained in

Algorithm 1.
IV. CACHING VIA REINFORCEMENT LEARNING

The main objective of an efficient caching strategy is to

maximize the cache hits while minimizing the service delay

and fronthaul cost. However, designing an efficient caching

strategy is extremely challenging without a prior knowledge

of user demands. Since the demand vector at each SBS varies

from other SBSs due to their spatial location, it is necessary

to devise adaptive decentralized algorithms to determine the

caching strategy. In this respect, each SBS leverages reinforce-

ment learning (RL) to accurately estimate the caching strategy

that maximizes the payoff.

To employ RL, each SBS implicitly learns the class popu-

larity based on instantaneous user demands. As per (6b), the

SBSs cache a subset of library contents. At each time, the SBS

determines the set of library content to cache which defines

the actions of SBSs. Hence, the action space comprises of

caching content/contents of class/classes. Let As denotes the



Algorithm 1: Content Clustering and Cache Update

Input: Observed local content demand vector Ds(t) and Global/local
tradeoff parameter β.

Result: Content cluster at SBSs Ks = {1, ...Ks}, ∀s ∈ S .
Algorithm:

Phase I - Similarity Matrix Computation;

• Transmit the local demand vector Ds(t) to the cloud.
• Compute the similarity matrix M(t) based on (7).

Phase II - Spectral Clustering Algorithm;

• Compute the diagonal degree matrix X where Xi =
∑

∀f∈F mij .

• Compute the graph laplacian matrix L = X −M(t).

• Normalize the graph laplacian matrix Lnorm = X
− 1

2 LX
1

2 .
• Select a number of kmax eigenvalues of Lnorm such that

λ1 ≤ ... ≤ λimax
where kmax is the maximum number of clusters

and λi is the i− th smallest value of L.
• Choose k = maxi=kmin,...,kmax

∆i where ∆i = λi+1 − λi.
• Calculate k smallest eigenvectors and apply k-means clustering to

cluster rows of eigenvectors.

Phase III - Regret Learning and Cache Update;

• Each SBS learns the probability distribution vector πs based on (11).
• The cloud learns the probability distribution vector πc based on (11).
• Each SBS updates its cache based on the mixed distribution

π′ = (1 − β)πs + βπc.

action space of SBS s where As = [Ξks

s ]ks∈Ks
where Ks

represents the set of popularity classes at SBS s. Here, the

action Ξks

s = 1 indicates that SBS s caches content(s) of class

ks. Thus (5) can be rewritten as:

Υs(Ξ
ks

s ) = εs
∑

∀u∈s(u)

Υsu(Ξ
ks

s ). (9)

Since, the requests of users change over time, it is nec-

essary to adapt the caching strategy accordingly. As a re-

sult, the caching decision corresponding to content(s) of a

class becomes a random variable. Let the probability dis-

tribution of the caching strategy at SBS s be πs(t) =
[πs,Ξ1

s
(t), ..., π

s,Ξks
s

(t)] where π
s,Ξks

s

(t) = P(Ξs(t) = Ξ
ks

s )
such that

∑
Ξ

ks
s ∈As

π
s,Ξ

ks
s

(t) = 1.

Let Υ̃s(t) = (Υ̃s,Ξ1
s
(t), ..., Υ̃

s,Ξ
|Ks|
s

(t)) denote the vector of

estimated utilities for all actions of SBS s where Υ̃
s,Ξks

s

(t) is

the estimated utility for action Ξks

s at time t. Further, let Υ̂s(t)
be the feedback of the utilities from all associated users. Due to

the time-varying content demands, each SBS needs to update

its cache to maximize the utility. For this, each SBS uses

regret learning mechanism to determine the caching strategy.

The regret learning mechanism iteratively allows players to

explores all possible actions and learn optimal strategies [11].

As a result, the main objective of utility maximization recast

as a regret minimization problem. Here, the objective is to

exploit the actions that yield higher rewards while exploring

other actions with lower regrets. This behavior is captured by

the Boltzmann-Gibbs (BG) distribution given as [7]:

G
s,Ξ

ks
s

(r̃s(t)) =
exp( 1

ξs
r̃+
s,Ξ

ks
s

(t))

∑

∀Ξ
′
s
∈As

exp( 1
ξs

r̃+
s,Ξ

′
s

(t))
, ∀Ξks

s ∈ As, (10)

where ξs > 0 is a temperature coefficient, and r̃+
s,Ξ

ks
s

(t) =

max(0, r̃
s,Ξ

ks
s

(t)). A small value of ξs maximizes the sum

of regrets which results in a mixed strategy where SBSs

expolits the actions with higher regrets at time period t. On the

contrary, a higher value of ξs results in uniform distribution

over the action set. At each time instant, the estimation of the

utility, regret and probability distribution over the action space

As, ∀s ∈ S is given as:

Υ̃
s,Ξ

ks
s

(t) = Υ̃
s,Ξ

ks
s

(t− 1) + Γ1
s(t)1{Ξs(t)=Ξ

ks
s }

[

Υ̂s(t) − Υ̃
s,Ξ

ks
s

(t − 1)

]

r̃
s,Ξ

ks
s

(t) = r̃
s,Ξ

ks
s

(t− 1) + Γ2
s(t)

(

Υ̃
s,Ξ

ks
s

(t) − Υ̂s(t)−

r̃
s,Ξ

ks
s

(t − 1)

)

(11)

π
s,Ξ

ks
s

(t) = π
s,Ξ

ks
s

(t − 1) + Γ3
s(t)

(

G
s,Ξ

ks
s

(r̃s(t)) − π
s,Ξ

ks
s

(t− 1)

)

,

where the learning rates Γi
s(t)∀i ∈ {1, 2, 3} satisfy [11]:

(i) limt→∞

t
∑

τ=1

Γi
s(τ) = +∞, limt→∞

t
∑

τ=1

(Γi
s(τ))

2 < +∞

(ii) limt→∞

t
∑

τ=1

Γ2
s(t)

Γ1
s(t)

= 0, limt→∞

t
∑

τ=1

Γ3
s(t)

Γ2
s(t)

= 0.

Unlike SBSs, the cloud has the knowledge on the demands

over the whole network. Based on this global knowledge,

cloud learns the caching strategy πc using the steps of (11)

by modifying the action vector to Ac = [As]s∈S , the corre-

sponding utilities to Υc(Ac) =
∑S

s=1 Υs(Ξ
ks

s , ḡs) and regret

estimations to r̃c(Ac) =
∑S

s=1 r̃s,Ξks
s

.

A. Cache Eviction Algorithm

To update the SBSs cache, existing contents need to be

evicted due to the constrained cache size. For simplicity, we

assume only a single content is evicted at time t. At every time

T2, each SBS observes the request for the cached contents.

Based on the number of requests, each SBS builds the Gibbs-

Sampling based distribution as:

Gsf (t) =
exp(−

∑t−1
τ=1 πsf (τ))∑

∀f ′∈Ξs
exp(−

∑t−1
τ=1 πsf ′(τ))

, ∀f ∈ Ξs. (12)

From the above equation, the content with least popularity

will be evicted from the cache. Using the Gibbs-Sampling

based probability distribution, each SBS evicts the content and

caches new content based on π′ given by:

π′ = (1− β)πs + βπc, (13)

where πs and πc represents the caching strategy at SBS s
and cloud respectively and β captures the local/global tradeoff.

Note that due to the assumption of time scale separation over

three phases therein, the proposed solution does not assure

global optimality of the network utility maximization.
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V. SIMULATION RESULTS

In this section, we analyze the performance of the proposed

mechanism and examine insights of the local/global tradeoff

(β) under several deployment and caching scenarios. By as-

suming a system bandwidth of 1.4MHz, the performance of the

proposed scheme is compared against two baseline schemes:

random caching (B1) and time-average content popularity

based caching (B2). Both baselines and proposed solution uses

random RBs to serve users’ requests. Further, λSBS

λUE
= 0.1

denotes a sparse network while λSBS

λUE
= 1 denotes a dense net-

work. Fig. 2 shows the per-SBS utility as a function of the ratio

of SBS density to user density. With increased λSBS/λUE, the

gains of the proposed scheme (β = 0) vary from 6%-10% and

8%-40% compared to B1 and B2, respectively. Meanwhile,

the proposed scheme with clustering (α = {0, 0.5}) achieves

23%, 6% gains over the proposed scheme without clustering.

Fig. 3 shows the variation of the per-SBS utility as a

function of cache size. For a small cache size, the proposed

scheme (β = 0) achieves {10%, 13%} and {25%, 56%} gains

over baselines B1 and B2, respectively for {sparse, dense}
scenarios. With the increasing cache size, the proposed scheme

(β = 0) achieves 7% and 28% gains over baselines B1 and

B2 for both scenarios.

Fig. 4 and 5 shows the tradeoff between local and global

learning. It can be observed that the local clustering always

performs better than no clustering approach for sparse and

dense scenarios. At β = 0.8 for dense scenario, both schemes

yield the same utility for small cache size. Further increasing

β makes the no clustering approach better than the local

clustering. In addition, decreasing the fronthaul capacity has

no impact of local/global tradeoff parameter. When the cache

size increases, clustering approach is slightly better than non-
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clustering for dense scenario as shown in Fig. 5. Furthermore,

at β = 0.7 for dense scenario, both schemes yield the utility.

By increasing β further makes the no clustering approach

better than the local clustering. Furthermore, there is no impact

of fronthaul capacity on β.
VI. CONCLUSION

In this letter, we investigated content caching in cloud-aided

wireless networks, where SBSs store contents from a large

content library. We proposed a clustering algorithm based on

Gaussian similarity. Using the regret learning mechanism at

the SBSs and the cloud, we proposed a per-SBS caching

strategy that minimizes the service delay in serving users’

requests. In addition, we investigated the tradeoff between

local and global content popularity on the proposed algorithm

for sparse and dense deployments.
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