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In this paper, power control in the uplink for two-tier small-cell networks is investigated. We formulate the power control problem
as a Stackelberg game, where the macrocell user equipment (MUE) acts as the leader and the small-cell user equipment (SUE) acts
as the follower. To reduce the cross-tier and cotier interferences and the power consumption of both theMUE and SUE, we propose
optimizing not only the transmit rate but also the transmit power. The corresponding optimization problems are solved through a
two-layer iteration. In the inner iteration, the SUE items (SUEs) compete with each other, and their optimal transmit powers are
obtained through iterative computations. In the outer iteration, the optimal transmit power of the MUE is obtained in a closed
form based on the transmit powers of the SUEs through proper mathematical manipulations. We prove the convergence of the
proposed power control scheme, and we also theoretically show the existence and uniqueness of the Stackelberg equilibrium (SE)
in the formulated Stackelberg game. The simulation results show that the proposed power control scheme provides considerable
improvements, particularly for the MUE.

1. Introduction

With the rapid development of the global communications
industry, the problem of high energy consumption of com-
munications systems is becoming increasingly more serious,
and determining how to effectively improve the energy effi-
ciency of the entire network is becoming increasingly more
urgent. The introduction of small cells can greatly reduce
the energy consumption of the entire network. Furthermore,
because small cells have small-cell radii with small base
stations (SBSs) deployed closer to users and because short-
distance transmissions have smaller path loss and fading
compared to long-distance transmissions, the throughput of
the entire network can be increased. Therefore, the energy
efficiency of the entire two-tier small-cell network, which
is composed of macrocells and a large number of small
cells, can be greatly improved [1]. To improve the spectral
efficiency, small cells can share the spectrumwith macrocells;
however, the cotier and cross-tier interferences will seriously

degrade the system performance due to the sharing of the
spectrum. In this regard, proper power control in small-cell
networks is required to reduce the interference and the power
consumption.

Power control is an important research topic that has
been widely investigated in the literature [2–5]. In two-tier
small-cell networks, small cells can be deployed randomly
and freely, and game theory has increasingly been used
to achieve distributed power control [6, 7]. In [8], the
interference dynamics caused by time-varying environment
was considered and a robust mean field game was proposed
to control the transmit power of SBSs. In [9–11], it was shown
that a Stackelberg game can provide a suitable framework for
modeling the competition in two-tier networks. Specifically,
a power control problemwas formulated to maximize energy
efficiency with minimal information exchange in [9]. In
[10], both uniform and nonuniform pricing schemes were
proposed to obtain the optimal resource allocation with a
tolerable interference power constraint. In [11], a network
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interference controller was proposed to minimize the sum
interference by pricing the power consumption. However,
most of the existing literature only addressed power control
in the downlink and ignored power control of both small-
cell user equipment (SUE) and macrocell user equipment
(MUE) in the uplink. (Note that the UE served by an SBS is
called SUE, and the UE served by an MBS is called MUE.)
Moreover, because most of the existing literature addressed
power control through a price-based Stackelberg game, they
can determine the optimal price and power control for only
one type of device. Therefore, if we formulate the power
control problem through a Stackelberg game without pricing,
the optimal power control for the two types of UEs in the
considered two-tier small-cell networks can be determined
simultaneously.

Motivated by the aforementioned discussions, we develop
a power control scheme taking both SUEs and MUE into
account. First, the power control problem of the considered
two-tier small-cell networks is mathematically formulated
as a Stackelberg game that consists of one leader and mul-
tiple followers. Second, the optimization problem is solved
through a two-layer iteration. In the inner iteration, the
followers competewith each other, and their optimal transmit
powers are obtained through iterative computations. In the
outer iteration, the optimal transmit power of the leader is
calculated based on the transmit powers of the followers.
Then, we theoretically show the convergence of the proposed
scheme and the existence and uniqueness of the Stackelberg
equilibrium (SE) in the Stackelberg game. Finally, our pro-
posed power control scheme is verified through simulations,
showing that it greatly improves the performance of theMUE.

The remainder of this paper is organized as follows.
In Section 2, the system model of the considered two-tier
small-cell networks is presented. In Section 3, the proposed
power control scheme via a Stackelberg game is developed.
The simulation results are presented in Section 4. Final
conclusions are drawn in Section 5.

2. System Model

Consider the two-tier small-cell network shown in Figure 1,
which consists of one macrocell and 𝐾 small cells. Assume
that the macro base station (MBS) and SBSs share the same
spectrum and that only one UE communicates with each
BS at any time. In the uplink, each SBS will experience
interference from the MUE and its nearby SUEs, and the
MBS will experience interference from its nearby SUEs. Let𝑃0 denote the transmit power of the MUE served by the
MBS, 𝑃𝑘 denote the transmit power of the 𝑘th SUE, and 𝑝 =[𝑃1, 𝑃2, . . . , 𝑃𝑘, . . . , 𝑃𝐾]𝑇 denote the transmit power vector of
the considered 𝐾 SUEs. Then, the transmit rate of the MUE
served by the MBS can be expressed as follows:

𝑅0 (𝑃0,𝑝) = ln(1 + 𝐻00𝑃0𝑁0 + ∑𝐾𝑘=1𝐻0𝑘𝑃𝑘) , (1)

where 𝐻00 denotes the channel gain from the MUE to its
corresponding MBS, 𝐻0𝑘 is the interference channel gain
from the 𝑘th SUE to the MBS, and 𝑁0 is the noise power.
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Figure 1: The schematic of the considered two-tier small-cell
network.

The transmit rate of the SUE served by the 𝑘th SBS can be
expressed as follows:𝑅𝑘 (𝑃𝑘,𝑝−𝑘, 𝑃0)

= ln(1 + 𝐻𝑘𝑘𝑃𝑘𝑁0 + 𝐻𝑘0𝑃0 + ∑𝐾𝑘󸀠 ̸=𝑘,𝑘󸀠=1𝐻𝑘𝑘󸀠𝑃𝑘󸀠) ,
(2)

where 𝑝−𝑘 denotes the transmit power vector of the 𝐾 − 1
other SUEs and 𝑝−𝑘 = [𝑃1, 𝑃2, . . . , 𝑃𝑘−1, 𝑃𝑘+1, . . . , 𝑃𝐾]𝑇,𝐻𝑘𝑘 is
the channel gain from the 𝑘th SUE to its corresponding SBS,𝐻𝑘0 is the interference channel gain from the MUE to the 𝑘th
SBS, and 𝐻𝑘𝑘󸀠 is the interference channel gain from the 𝑘󸀠th
SUE to the 𝑘th SBS.

The design objective of this paper is to develop a power
control scheme that can increase the transmit rate with
reduced cotier and cross-tier interferences and power con-
sumption. Moreover, this paper aims to achieve the above
design objective for two-tier small-cell networks where there
are two types of UEs, i.e., MUE and SUE, and two different
cell types, i.e., macrocell and small cell.

3. The Proposed Power Control Scheme via
Stackelberg Game

In this section, we propose a power control scheme for two-
tier small-cell networks based on a Stackelberg game, which
has one leader and multiple followers. In the formulated
Stackelberg game, the MUE, acting as the leader, is supposed
to make its own decision and maximize its utility with the
best responses of the followers, and the SUEs acting as the
followers will respond to the leader’s action and maximize
their utilities through a subgame [12–14]. Note that the
transmit power of the MUE or SUE is controlled by its
corresponding MBS or SBS and the MBS can control its
corresponding SBSs in the considered two-tier small-cell
network. When the transmit power of the MUE has been
determined by theMBS, this transmit power information will
be sent from the MBS to its corresponding SBSs. Therefore,
the MUE controlled by the MBS acts as the leader, and
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the SUEs controlled by its corresponding SBSs act as the
followers.

3.1. Stackelberg Game Formulation. From (1) and (2), we
find that the transmit rate of the MUE can be improved by
increasing the transmit power of the MUE but at the cost
of increased cross-tier interference to the SUEs. Likewise,
the transmit rate of the SUEs can be improved by increasing
the transmit power of the corresponding SUE but at the
cost of increased cross-tier interference to the MUE and
increased cotier interference to the other 𝐾 − 1 SUEs.
To reduce the cross-tier and cotier interferences and the
power consumption of both the MUE and SUEs, we propose
optimizing not only the transmit rate but also the power
consumption. First, the leader MUE moves and determines
its transmit power. Subsequently, the follower SUEs move
and update their power control strategies to maximize their
individual utilities based on the MUE’s transmit power.

We define the utility function of the MUE as follows:

𝑈0 (𝑃0,𝑝) = 𝑅0 (𝑃0,𝑝) − 𝜆0𝑃0, (3)

where 𝜆0 denotes the coefficient characterizing the influence
of per unit transmission power for MUE [15]. Then, the
optimization problem of the MUE can be expressed as
follows:

max
𝑃0

𝑈0 (𝑃0,𝑝) ,
s.t. 0 ≤ 𝑃0 ≤ 𝑃𝑇, (4)

where 𝑃𝑇 denotes the maximum transmit power of the MUE
or SUEs.

We define the utility function of the 𝑘th SUE as follows:

𝑈𝑘 (𝑃𝑘,𝑝−𝑘, 𝑃0) = 𝑅𝑘 (𝑃𝑘,𝑝−𝑘, 𝑃0) − 𝜆𝑘𝑃𝑘, (5)

where 𝜆𝑘 denotes the coefficient characterizing the influence
of per unit transmission power for SUE. Then, the optimiza-
tion problem of the 𝑘th SUE can be expressed as follows:

max
𝑃𝑘

𝑈𝑘 (𝑃𝑘,𝑝−𝑘, 𝑃0) ,
s.t. 0 ≤ 𝑃𝑘 ≤ 𝑃𝑇, ∀𝑘 ∈ {1, 2, . . . , 𝐾} . (6)

The optimization problems in (4) and (6) lead to a
Stackelberg game. In this game, the objective is to find the SE
point from which neither the leader nor the followers have
incentives to deviate. Just similar to the definition in [10], we
define the SE as follows.

Definition 1. Let 𝑃∗0 and 𝑃∗𝑘 denote the two solutions for
the optimization problems in (4) and (6), respectively. Let
𝑝∗ = [𝑃∗1 , 𝑃∗2 , . . . , 𝑃∗𝑘 , . . . , 𝑃∗𝐾]𝑇 and 𝑝∗−𝑘 = [𝑃∗1 , 𝑃∗2 , . . . , 𝑃∗𝑘−1,𝑃∗𝑘+1, . . . , 𝑃∗𝐾]𝑇.Then, (𝑃∗0 ,𝑝∗) is an SE point for the proposed
Stackelberg game if the following conditions are satisfied:

𝑈0 (𝑃∗0 ,𝑝∗) ≥ 𝑈0 (𝑃0,𝑝∗) , (7)

𝑈𝑘 (𝑃∗𝑘 ,𝑝∗−𝑘, 𝑃∗0 ) ≥ 𝑈𝑘 (𝑃𝑘,𝑝∗−𝑘, 𝑃∗0 ) . (8)

Generally, the SE for a Stackelberg game can be obtained
by finding its subgameperfectNash equilibrium (NE) [10, 16].
In our proposed Stackelberg game, it can be readily seen that
the SUEs compete in a noncooperative fashion. Therefore, a
noncooperative power control subgame is formulated, where
the corresponding NE is defined as the operating point at
which no player can improve utility by changing its strategy
unilaterally [10].

To obtain the SE of the proposed Stackelberg game, we
propose exploiting the backward induction method [17] to
solve the above optimization problems. Generally, the follow-
ers’ best responses can be obtained with the fixed value given
by the leader, and then the optimal strategy of the leader can
be achieved according to the followers’ best responses. Cor-
respondingly, we can first solve the followers’ optimization
problem in (6). Then, by using the obtained solution, we can
solve the leader’s optimization problem in (4).

3.2. The Optimal Solution of the Followers’ Optimization
Problem. We have the following theorem for the optimal
solution of the optimization problem in (6) for the followers.

Theorem 2. Given the transmit power of the MUE, the
optimization problem in (6) has a globally optimal solution, as
follows:

𝑃̃∗𝑘 = {{{{{{{{{
𝑃𝑇, 𝑃tmp

𝑘
> 𝑃𝑇,𝑃tmp

𝑘
, 0 < 𝑃tmp

𝑘
≤ 𝑃𝑇,0, 𝑃tmp

𝑘
≤ 0, (9)

or

𝑃̃∗𝑘 = 𝑃𝑇 − [𝑃𝑇 − (𝑃tmp
𝑘
)+]+ , (10)

where (⋅)+ ≜ max(⋅, 0),
𝑃tmp
𝑘
= 1𝜆𝑘 − 𝑁0 + 𝐻𝑘0𝑃0 + ∑

𝐾
𝑘󸀠 ̸=𝑘,𝑘󸀠=1𝐻𝑘𝑘󸀠𝑃𝑘󸀠𝐻𝑘𝑘 , (11)

and 𝑃tmp
𝑘

denotes the temporary value of the optimal transmit
power of the 𝑘th SUE.
Proof. As shown, the utility function𝑈𝑘(𝑃𝑘,𝑝−𝑘, 𝑃0) is strictly
concave. Furthermore, it can be verified that the SUEs’
strategy space is a nonempty and close-bounded convex set in
Euclidean space. Correspondingly, the optimization problem
in (6) can readily be proven to be convex; thus, it has a
globally optimal solution. By setting the first-order derivative
of 𝑈𝑘(𝑃𝑘,𝑝−𝑘, 𝑃0) with respect to 𝑃𝑘 to zero, 𝑃tmp

𝑘
can readily

be calculated as shown in (11). By considering the constraint0 ≤ 𝑃𝑘 ≤ 𝑃𝑇, the optimal solution of the optimization
problem in (6) can readily be obtained as shown in (9) or (10).
This completes the proof.

3.3. The Optimal Solution of the Leader’s Optimization Prob-
lem. After some mathematical manipulations, we can obtain
the refined constraint for 𝑃0 according to (9) as follows:𝑃min

0 ≤ 𝑃0 ≤ 𝑃max
0 , (12)
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where

𝑃min
0 = max

𝑘∈{1,2,...,𝐾}
𝑃min
0,𝑘 , (13)

𝑃max
0 = min

𝑘∈{1,2,...,𝐾}
𝑃max
0,𝑘 , (14)

and 𝑃min
0,𝑘 and 𝑃max

0,𝑘 are shown in (15) and (16), respectively.

𝑃min
0,𝑘 =

{{{{{{{{{{{{{{{{{

0, 𝑃tmp
𝑘
> 𝑃𝑇,

max{0, (1/𝜆𝑘 − 𝑃𝑇)𝐻𝑘𝑘 − 𝑁0 − ∑𝐾𝑘󸀠 ̸=𝑘,𝑘󸀠=1𝐻𝑘𝑘󸀠𝑃̃∗𝑘󸀠𝐻𝑘0 } , 0 < 𝑃tmp
𝑘
≤ 𝑃𝑇,

max{0, (1/𝜆𝑘)𝐻𝑘𝑘 − 𝑁0 − ∑𝐾𝑘󸀠 ̸=𝑘,𝑘󸀠=1𝐻𝑘𝑘󸀠𝑃̃∗𝑘󸀠𝐻𝑘0 } , 𝑃tmp
𝑘
≤ 0,

(15)

𝑃max
0,𝑘 =

{{{{{{{{{{{{{{{

min{𝑃𝑇, (1/𝜆𝑘 − 𝑃𝑇)𝐻𝑘𝑘 − 𝑁0 − ∑𝐾𝑘󸀠 ̸=𝑘,𝑘󸀠=1𝐻𝑘𝑘󸀠𝑃̃∗𝑘󸀠𝐻𝑘0 } , 𝑃tmp
𝑘
> 𝑃𝑇,

min{𝑃𝑇, (1/𝜆𝑘)𝐻𝑘𝑘 − 𝑁0 − ∑𝐾𝑘󸀠 ̸=𝑘,𝑘󸀠=1𝐻𝑘𝑘󸀠𝑃̃∗𝑘󸀠𝐻𝑘0 } , 0 < 𝑃tmp
𝑘
≤ 𝑃𝑇,𝑃𝑇, 𝑃tmp

𝑘
≤ 0.

(16)

Define 𝑝̃∗ = [𝑃̃∗1 , 𝑃̃∗2 , . . . , 𝑃̃∗𝑘 , . . . , 𝑃̃∗𝐾]𝑇. Substituting (10)
into (3) and after some mathematical manipulations, we
obtain

𝑈0 (𝑃0, 𝑝̃∗) = ln(1 + 𝐻00𝑃0𝑁0 + ∑𝐾𝑘=1𝐻0𝑘𝑃̃∗𝑘 ) − 𝜆0𝑃0,
= ln(1

+ 𝐻00𝑃0𝑁0 + ∑𝐾𝑘=1𝐻0𝑘 {𝑃𝑇 − [𝑃𝑇 − (𝑃tmp
𝑘
)+]+})

− 𝜆0𝑃0,
= ln(1
+ 𝐻00𝑃0𝑁0 + ∑𝐾𝑘=1𝐻0𝑘 [𝑃𝑇 − 𝜀󸀠𝑘 ⋅ (𝑃𝑇 − 𝜀𝑘 ⋅ 𝑃tmp

𝑘
)])

− 𝜆0𝑃0,

(17)

where 𝜀𝑘 denotes the indicator function with 𝜀𝑘 = 1 if 𝑃tmp
𝑘
>0 and 𝜀𝑘 = 0 otherwise, and 𝜀󸀠𝑘 is the indicator function with

𝜀󸀠𝑘 = 1 if 𝑃𝑇 − (𝑃tmp
𝑘
)+ > 0 and 𝜀󸀠𝑘 = 0 otherwise. After

some further manipulations, the optimization problem for
the leader in (4) can be reformulated as follows:

max
𝑃0

𝑈0 (𝑃0, 𝑝̃∗)
= max
𝑃0

{ln(1 + 𝐻00𝑃0𝐴 − 𝐵𝑃0) − 𝜆0𝑃0} ,
s.t. 𝑃min

0 ≤ 𝑃0 ≤ 𝑃max
0 ,

(18)

where

𝐴 = 𝑁0 + 𝐾∑
𝑘=1

𝐻0𝑘 [𝑃𝑇 − 𝜀󸀠𝑘𝑃𝑇
+ 𝜀󸀠𝑘𝜀𝑘 ( 1𝜆𝑘 − 𝑁0 + ∑

𝐾
𝑘󸀠 ̸=𝑘,𝑘󸀠=1𝐻𝑘𝑘󸀠𝑃̃∗𝑘󸀠𝐻𝑘𝑘 )] , (19)

𝐵 = 𝐾∑
𝑘=1

𝜀󸀠𝑘𝜀𝑘𝐻0𝑘𝐻𝑘0𝐻𝑘𝑘 . (20)

Then, we have the following theorem.

Theorem 3. If ∑𝐾𝑘=1 𝜀𝑘𝜀󸀠𝑘 ̸= 0, then the optimization problem
in (18) has an optimal solution as shown in (21), where

𝑃̃∗0 = {{{
argmax {𝑈0 (𝑃max

0 , 𝑝̃∗) , 𝑈0 (𝑃min
0 , 𝑝̃∗)} , 𝐶22 − 4𝐶1𝐶3 < 0,

argmax {𝑈0 (𝑃max
0 , 𝑝̃∗) , 𝑈0 (𝑃min

0 , 𝑝̃∗) , 𝑈0 (𝑃10 , 𝑝̃∗) , 𝑈0 (𝑃20 , 𝑝̃∗)} , 𝐶22 − 4𝐶1𝐶3 ≥ 0, (21)

𝐶1 = 𝜆0𝐵 (𝐻00 − 𝐵) , (22)

𝐶2 = 𝜆0𝐴 (2𝐵 − 𝐻00) , (23)
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𝐶3 = 𝐴𝐻00 − 𝜆0𝐴2, (24)

𝑃10 = −𝐶2 + √𝐶22 − 4𝐶1𝐶32𝐶1 , (25)

𝑃20 = −𝐶2 − √𝐶22 − 4𝐶1𝐶32𝐶1 . (26)

Proof. If ∑𝐾𝑘=1 𝜀𝑘𝜀󸀠𝑘 ̸= 0, then 𝐵 ̸= 0. Take the first-order
derivative of 𝑈0(𝑃0, 𝑝̃∗) with respect to 𝑃0. Then, we have

𝜕𝑈0 (𝑃0, 𝑝̃∗)𝜕𝑃0 = 𝐴𝐻00(𝐴 − 𝐵𝑃0)2 + 𝐻00𝑃0 (𝐴 − 𝐵𝑃0) − 𝜆0. (27)

Set the above expression to zero. Then, we have

𝜆0𝐵 (𝐻00 − 𝐵) 𝑃20 + 𝜆0𝐴 (2𝐵 − 𝐻00) 𝑃0 + 𝐴𝐻00− 𝜆0𝐴2 = 𝐶1𝑃20 + 𝐶2𝑃0 + 𝐶3 = 0. (28)

If 𝐶22 − 4𝐶1𝐶3 < 0, then (28) has no solution. Correspond-
ingly, the objective function of the optimization problem in
(18) is definitely a monotonic function, and its solution must
be one of the two endpoints. Then, we have

𝑃̃∗0 = argmax {𝑈0 (𝑃max
0 , 𝑝̃∗) , 𝑈0 (𝑃min

0 , 𝑝̃∗)} . (29)

If 𝐶22 − 4𝐶1𝐶3 ≥ 0, then we can obtain the two solu-
tions of (28), i.e., 𝑃10 , 𝑃20 . Since the objective function of
the optimization problem in (18) is a continuous function,
its solution must be among the extreme points and the
endpoints. Correspondingly, we have

𝑃̃∗0 = argmax {𝑈0 (𝑃max
0 , 𝑝̃∗) , 𝑈0 (𝑃min

0 , 𝑝̃∗) ,
𝑈0 (𝑃10 , 𝑝̃∗) , 𝑈0 (𝑃20 , 𝑝̃∗)} . (30)

This completes the proof.

3.4. The Proposed Power Control Scheme via Stackelberg
Game. We are now ready to develop the proposed power
control scheme based on the Stackelberg game described
in Algorithm 1. (Note that our proposed scheme can always
achieve the optimal solution for any initial point. On the one
hand, we analyze theoretically in Section 3.4 that the conver-
gence of the proposed scheme can always be guaranteed. On
the other hand, we will prove in Section 3.5 that one and only
one SE point exists for the proposed Stackelberg game.) In the
proposed scheme, the MUE acts as the leader, the SUEs act as
the followers, and the Stackelberg game is formed through the
two-layer iteration. In the inner iteration, the SUEs compete
with each other, and their own transmit powers are updated
iteratively based on the transmit power of theMUE, as shown
inTheorem 2. In the outer iteration, theMUEupdates its own
transmit power based on the transmit powers of the SUEs, as
shown inTheorem 3. In the proposed power control scheme,

each user plays the best response strategy and maximizes
its own utility function in each iteration given the chosen
transmit powers of the other users in the previous iteration.

Let𝑊 denote a 𝐾 × 𝐾 matrix whose elements are given
by

𝑊𝑘𝑘󸀠 = {{{
𝐻𝑘𝑘󸀠𝐻𝑘𝑘 , 𝑘 ̸= 𝑘󸀠, 1 ≤ 𝑘, 𝑘󸀠 ≤ 𝐾,0, 𝑘 = 𝑘󸀠, 1 ≤ 𝑘, 𝑘󸀠 ≤ 𝐾. (31)

Then, we can establish the following theorem for the conver-
gence of the inner iteration of the proposed scheme.

Theorem 4. If the matrix norm of 𝑊 is not larger than 1,
i.e., ‖𝑊‖ ≤ 1, then the inner iteration of the proposed power
control scheme via a Stackelberg game as shown in Algorithm 1
converges.

Proof. Define

𝜙𝑘 = 𝑃tmp
𝑘
, (32)

𝜙 (𝑝) = [𝜙1, 𝜙2, . . . , 𝜙𝑘, . . . , 𝜙𝐾]𝑇 , (33)

𝜇 = [ 1𝜆1 , 1𝜆2 , . . . , 1𝜆𝑘 , . . . , 1𝜆𝐾]
𝑇 , (34)

^ = [𝑁0 + 𝐻10𝑃0𝐻11 , 𝑁0 + 𝐻20𝑃0𝐻22 , . . . ,
𝑁0 + 𝐻𝑘0𝑃0𝐻𝑘𝑘 , . . . , 𝑁0 + 𝐻𝐾0𝑃0𝐻𝐾𝐾 ]𝑇 . (35)

Then, 𝜙(𝑝) can be expressed in a vector-matrix form as
follows:

𝜙 (𝑝) = 𝜇 − ^ −𝑊𝑝. (36)

Assume that ‖𝑊‖ ≤ 1. Then, we can obtain the following
relationship. 󵄩󵄩󵄩󵄩󵄩𝜙 (𝑝) − 𝜙 (𝑝󸀠)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩𝑊(𝑝 − 𝑝󸀠)󵄩󵄩󵄩󵄩󵄩 (37)

≤ ‖𝑊‖ ⋅ 󵄩󵄩󵄩󵄩󵄩𝑝 − 𝑝󸀠󵄩󵄩󵄩󵄩󵄩 (38)

≤ 󵄩󵄩󵄩󵄩󵄩𝑝 − 𝑝󸀠󵄩󵄩󵄩󵄩󵄩 (39)

According to [18], we know that 𝜙(𝑝) is a contraction. Then,
according to the Banach contraction theorem introduced
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(i) Step 1: Initialization: 𝑚 = 1, 𝑛 = 1, 𝑃0(1), 𝑃̂𝑘(1) for 1 ≤ 𝑘 ≤ 𝐾.
(ii) Step 2: Update 𝑃̂𝑘(𝑚) as follows:𝑃̂𝑘(𝑚 + 1) = 1𝜆𝑘 − 𝑁0 + 𝐻𝑘0𝑃0(𝑛) + ∑

𝐾

𝑘󸀠 ≠𝑘,𝑘󸀠=1𝐻𝑘𝑘󸀠 𝑃̂𝑘󸀠 (𝑚)𝐻𝑘𝑘 ,

and set𝑚 = 𝑚 + 1.
(iii) Step 3: Repeat Step 2 until the inner iteration converges.
(iv) Step 4: According to (10), calculate the transmit power of each SUE, 𝑃̃∗𝑘 , as follows:𝑃̃∗𝑘 = 𝑃𝑇 − {𝑃𝑇 − [𝑃̂𝑘(𝑚)]+}+.
(v) Step 5: According to (21), calculate the transmit power of the MUE, 𝑃̃∗0 (𝑛 + 1), and set 𝑛 = 𝑛 + 1.
(vi) Step 6: Repeat Steps 2 ∼ 5 until the outer iteration converges.

Algorithm 1: The proposed power control scheme via Stackelberg game.

in [18], 𝜙(𝑝) has a unique fixed point that is globally
asymptotically stable. Correspondingly, the inner iteration
of the proposed power control scheme via the Stackelberg
game as shown in Algorithm 1 converges. This completes the
proof.

Note that we can always find a matrix norm of 𝑊 to
satisfy ‖𝑊‖ ≤ 1. Therefore, the convergence of the inner
iteration of the proposed power control scheme can always
be guaranteed.

In the following, we briefly analyze the convergence of
the outer iteration of the proposed scheme.We know that the
utility function 𝑈𝑘 is concave with respect to 𝑝𝑘. Therefore,
the SUEs can gradually increase their transmit powers from
an arbitrary small number to their optima.Then, the obtained
transmit power of the SUEs can be used to determine the
transmit power of the MUE. When the transmit powers of
the SUEs have been increased to their optima, the optimal
transmit power of the MUE can then be determined accord-
ingly [19]. For the practical implementation of the proposed
Stackelberg game, the SUEs can find their optimal transmit
powers by gradually increasing the transmit power until the
utility function 𝑈𝑘 reaches its maximum due to its concave
property. Correspondingly, the MUE can always achieve its
SE, i.e., the convergence of the outer iteration of the proposed
scheme can always be guaranteed.

3.5. The Existence and Uniqueness of the SE. SE offers a
predictable and stable outcome about the transmit power
strategies that the MUE and each SUE will choose. For the
proposed Stackelberg game, we have the following theorem.

Theorem 5. One and only one SE point exists for the proposed
Stackelberg game.

Proof. Generally, we can obtain the SE for the proposed
Stackelberg game by finding the NE of its subgame. For
the proposed Stackelberg game, there is only one leader.
Therefore, the best response of the leader can readily be
obtained by solving the optimization problem in (4). At the
followers’ side, the best response can be achieved by solving
the optimization problem in (6). Correspondingly, to prove
this theorem, we only need to prove that a unique NE point
exists for the subgame at the followers’ side.

It can be verified that the SUEs’ strategy space is a
nonempty and closed-bounded convex set in the Euclidean
space. Moreover, it can also be verified that the utility
function 𝑈𝑘(𝑃𝑘,𝑝−𝑘, 𝑃0) is continuous with respect to 𝑃𝑘.
In addition, the utility function 𝑈𝑘(𝑃𝑘,𝑝−𝑘, 𝑃0) is concave.
According to [20, 21], we know that the NE exists if the
players’ strategy space is a nonempty and closed-bounded set
in the Euclidean space and the utility function is continuous
and concave in its strategy space. Correspondingly, the
existence of the NE of the subgame at the followers’ side can
be proven.

Regarding the uniqueness of the NE, we first state the
following lemma [22].

Lemma 6. For a game, if its feasible region is convex and each
players’ utility function is strictly convex, then the NE of the
game is unique.

Then, according to the above-mentioned discussions and
the proof of Theorem 2, we can easily verify the uniqueness
of the subgame at the followers’ side.

This completes the proof.

4. Simulation Results

In this section, the performance of the proposed power
control scheme via a Stackelberg game is evaluated via
simulations. In the simulations, the radii of the macrocell
and small cells are set to be 1000m and 100m, respectively.
The noise spectral density is set to −174 dBm/Hz. Unless
otherwise stated, we set 𝜆 = 𝜆0 = 𝜆𝑘, ∀𝑘. In the following,
for description convenience, we use𝑈𝐾, 𝑅𝐾, and𝑃𝐾 to denote
the average utility, the average transmit rate, and the average
transmit power of the considered SUEs, respectively, and we
use 𝑅 to denote the average transmit rate of the considered
MUE and SUEs.

In Figures 2 and 3, we show the utility of the MUE and
the average utility of the SUEs of the proposed scheme versus
the number of iterations with different 𝐾 for 𝜆 = 103 and𝑃𝑇 = 0 dBm. As shown, the proposed scheme can converge
to a stable state quickly, which verifies that the proposed
scheme can converge to the SE. Moreover, both the utility of
the MUE and the average utility of the SUEs are observed to
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Figure 2: The utility of the MUE versus the number of iterations
with different𝐾.
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Figure 3: The average utility of the SUEs versus the number of
iterations with different𝐾.
decrease with the increased number of the SUEs, which can
be attributed to the increased cross-tier or cotier interference.

In Figure 4, we show the performance comparison
between our proposed scheme and the noncooperative power
control scheme in [23] with 𝜆 = 103, 𝑃𝑇 = 0 dBm, and 𝐾 =4. For description convenience, the utility of the MUE and
the average utility of the SUEs of the proposed Stackelberg-
game-based power control scheme are referred to as SG-
MUE and SG-SUE, respectively. The utility of the MUE and
the average utility of the SUEs of the noncooperative game-
based power control scheme in [23] are referred to as NCG-
MUE and NCG-SUE, respectively. As shown, the SG-MUE
is close to and slightly larger than the SG-SUE, and the
NCG-MUE is approximately zero and clearly smaller than
the NCG-SUE. This result verifies that the proposed scheme
can significantly improve the performance of theMUE. (Note
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Figure 4: The utility versus the number of iterations for different
schemes.
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Figure 5: The transmit rate of the MUE versus 𝑃𝑇 with different𝐾.
here that the performance improvement is not absolutely free.
There is some system overhead between the leader and the
followers in order to realize the Stackelberg game in our
proposed scheme. However, the quick convergent property
of our proposed scheme as illustrated in Figures 2 and 3
indicates that the corresponding system overhead will be
affordable.)

In Figures 5 and 6, we show the transmit rate of the MUE
and the average transmit rate of the SUEs of the proposed
scheme versus 𝑃𝑇 with different 𝐾 for 𝜆 = 103. As shown,
the transmit rate first increases with 𝑃𝑇 when 𝑃𝑇 is smaller
than a certain threshold value, and then it approaches a
steady value. When 𝑃𝑇 is sufficiently small, the MUE and
the SUEs are constrained by the maximum transmit power.
Correspondingly, their transmit rates are relatively small. As𝑃𝑇 increases, their transmit rates increase due to the larger
transmit power constraint. When 𝑃𝑇 is larger than a certain
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Figure 6: The average transmit rate of the SUEs versus 𝑃𝑇 with
different𝐾.
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Figure 7: The transmit rate versus 𝑃𝑇 with different 𝜆0 and 𝜆𝐾.
threshold value, the transmit power will increase, but it will
also simultaneously cause more interference. Therefore, the
transmit rate of the MUE and that of the SUEs will both stop
increasing.

In Figure 7, we show the transmit rate of the MUE and
the average transmit rate of the SUEs versus 𝑃𝑇 with different𝜆0 and 𝜆𝐾 for 𝐾 = 4. As shown, the transmit rate of
the MUE (the average transmit rate of the SUEs) is larger
when 𝜆0 (𝜆𝐾) is relatively small. The reason for this result
is that a smaller cost of the transmit power will stimulate
the corresponding player to employ a relatively large transmit
power, subsequently resulting in a larger transmit rate.

In Figure 8, we show the average transmit rate of theMUE
and SUEs of the proposed scheme versus 𝜆 for 𝐾 = 4 and𝑃𝑇 = 0 dBm. As shown, the average transmit rate remains at a
high value when 𝜆 is smaller than 30 dB, decreases gradually
with the increased 𝜆, and finally remains at a small value.The

K=3
K=4
K=5
K=6

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

−10

 (dB)

R
(b

it/
s/

H
z)

Figure 8: The average transmit rate versus 𝜆 with different𝐾.
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Figure 9: The transmit power of the MUE versus 𝑃𝑇 with different𝜆.
reason for this behavior is that the MUE or SUE will choose
to decrease the transmit power and also the corresponding
transmit rate with the increased 𝜆.

In Figures 9 and 10, we show the transmit power of the
MUE and the average transmit power of the SUEs versus𝑃𝑇 with different 𝜆 for 𝐾 = 4. As shown, the transmit
power decreases with 𝜆. Moreover, the transmit power
increases with 𝑃𝑇 when𝑃𝑇 is smaller than 0 dBm and remains
approximately constant when 𝑃𝑇 is larger than 0 dBm. The
reason for this result is that the maximum transmit power
constraint will have no influence on the power control with a
sufficiently large 𝑃𝑇.
5. Conclusions

In this paper, we have formulated a power control Stackelberg
game for two-tier small-cell networks by considering both
the transmit rate and cost. The optimal transmit powers
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Figure 10: The average transmit power of the SUEs versus 𝑃𝑇 with
different 𝜆.
of the MUE and SUEs have been obtained based on the
backward induction method. We have developed a two-layer
iterative power control scheme and proven the convergence
of this scheme. We have also shown the existence and
uniqueness of the SE in the formulated Stackelberg game.
Numerical results have been presented to demonstrate the
desirable performance of the proposed scheme. For future
work, wewould like to explore power control with incomplete
information for two-tier small-cell networks.
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