
Abstract—We model the problem of infrastructure sharing
among mobile network operators (MNOs) as a multiple-seller
single-buyer market where the MNOs are able to share their
own base stations (BSs) with each other. First, we use techniques
from stochastic geometry to find the coverage probability of the
infrastructure sharing system and analyze the trade-off between
increasing the transmit power of a BS and the BS intensity
of a buyer MNO required to achieve a given quality-of-service
(QoS) in terms of the coverage probability. We show that when
the transmit power of the BSs and/or the BS intensity of a
network increases, the system becomes interference limited and
the coverage probability tends to saturate at a certain value.
As such, when the required QoS is set above this bound, an
MNO can improve its coverage by buying infrastructure from
other MNOs. Subsequently, we analyze the strategy of a buyer
MNO on choosing how many MNOs and which MNOs to buy the
infrastructure from. The optimal strategy of the buyer is given by
greedy fractional knapsack algorithm. On the sellers’ side, the
pricing problem and the problem of determining the fraction
of infrastructure to be sold are formulated using a Cournot
oligopoly game.

Index Terms—Infrastructure sharing, stochastic geometry, cov-
erage probability, areal power, oligopoly market, Cournot game.

I. INTRODUCTION

In recent years, the concept of network infrastructure shar-
ing has been investigated to address two kinds of concerns. On
the one hand, with the growing demand for mobile services,
the under utilization of dedicated spectrum auctioned off to the
mobile network operators (MNOs) has become a bottleneck
for the future growth of the industry [1]. While on the other
hand, in areas or time periods where demand can be low, such
as in rural areas or developing countries, or during night time,
the high cost of network infrastructure forces the operators to
charge high prices from their customers, making the mobile
services unaffordable to most people, hence further driving
down the demand [2], [3].

One possible paradigm to address these issues is to allow
the MNOs to share their infrastructures in order to maximize
the use of existing network resources while simultaneously
minimizing the cost and resources [2], [4]. It also allows
for a faster deployment of network services. Such sharing of
infrastructure can be passive or active: Passive sharing refers
to the sharing of physical space, such as buildings, sites, and
masts. In active sharing, active elements of the network such
as antennas, spectrum, entire base stations, or even elements
of core network are shared. Thus, such active sharing allows

mobile roaming, which allows an MNO to make use of another
network in a place where it has no coverage or infrastructure
of its own.

There has been a growing number of work dedicated to
investigate this issue. In [5], hardware demonstration of the
benefit of inter-operator spectrum sharing was demonstrated.
In [6], infrastructure sharing was studied with full and partial
coverage provisioning. A real-world multi-operator mobile
network with infrastructure sharing was also shown to reduce
significantly the number of base stations required to provide
mobile service and improve coverage. In [7], stochastic geom-
etry was used to investigate infrastructure sharing, spectrum
sharing, and the combination of two. When both types of
sharing is allowed, the authors showed that a trade-off existed
between coverage and data rate performance.

We consider multiple co-located deployment of network
infrastructures by different MNOs, where the MNOs are
assumed to operate over orthogonal frequency bands. In the
infrastructure sharing deployment, each base station (BS) can
be utilized by the users subscribed to more than one MNO.
The MNO that installs the BS is considered as a potential
seller of the BS infrastructure. This is the incumbent MNO.
The entrant MNOs that use the BS of the incumbent MNO
to serve its mobile user equipment (UE) are considered as the
buyers. In the presence of multiple seller MNOs, it is assumed
that they compete with each other to sell their infrastructure
to a potential buyer. Our study only focuses on the sharing
of infrastructure among the MNOs, that is, the MNOs do not
share their spectrum.

In this paper, we consider the scenario where there are
multiple seller MNOs and one buyer MNO. In this case, we
study the strategy of a buyer MNO, that decides which MNOs
to buy the infrastructure from, and how much infrastructure
to buy from them. We propose a cost minimization problem
for the buyer MNO, while guaranteeing the quality-of-service
(QoS) to its UEs, in terms of the signal-to-interference-
plus-noise ratio (SINR) coverage probability, as a fractional
knapsack problem. Since there is a single buyer in the market,
the competition among the buyers is not considered here.

Next, we consider the market from the point of view of the
sellers which compete with each other to sell the infrastructure.
We model the competition among the seller MNOs as a
Cournot-Nash game. The seller MNOs compete with each
other in terms of their supply (a fraction of infrastructure to be
shared), the cost associated (e.g., due to power consumption
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at the BSs), and the selling price with the objective to gain
the highest profit. As such we find the Cournot-Nash equilib-
rium and obtain the equilibrium price. We use results from
stochastic geometric analysis of large-scale cellular networks
to evaluate SINR outage probability and power consumption
to model such market.

II. SYSTEM MODEL AND ASSUMPTIONS

Consider a system with K + 1 MNOs given by the set
K = {0, 1, . . . ,K} to serve a common geographical area. We
consider a single-buyer multiple-seller market for infrastruc-
ture sharing. Let MNO-0 denote our buyer MNO. Let the set
of BSs owned by MNO-k be given by Fk, where k 2 K.
Each of the BSs and user equipments (UEs) is assumed to
be equipped with a single antenna. The maximum transmit
power of each BS is p

max

. Also, a UE subscribing to an
MNO associates to the nearest BS belonging to that MNO.
The BSs owned by different MNOs are spatially distributed
according to homogeneous Poisson point processes (PPPs). Let
the spatial intensity of BSs per unit area of MNO-k be denoted
by �k, where k 2 K. Furthermore, each MNO-k, k 2 K, is
assumed to operate on orthogonal spectrum. Thus, there is no
inter-operator interference among the MNOs.

For infrastructure sharing, we assume that the following
assumptions hold:

Assumption 1. When the buyer MNO-0 is allowed to use the
infrastructure of a seller MNO-k, where k 2 K\{0}, the UEs
of MNO-0 associates with the nearest available BSs owned by
MNO-0 or the seller MNO-k.

Assumption 2. The buyer MNO-0 is assumed to use the
infrastructure, but not the spectrum, belonging to a seller
MNO-k, where k 2 K\{0}. As such a UE of MNO-0 served
by the shared BS of a seller MNO-k has to operate on the
spectrum belonging to the MNO-0 itself. Since the seller MNO
operates on a different spectrum, the shared BSs of the seller
do not add extra interference to the UEs of MNO-0.

If the buyer MNO-0 shares infrastructure with N ✓ K\{0}
seller MNOs, then a UE subscribing to MNO-0 can effectively
associate to any one of the enlarged set of BSs given by F =

F
0

[ ([i2NFi). This implies that the net BS intensity that a
typical UE of MNO-0 will find itself in is

� = �

0

+

X

i2N
�i, (1)

due to the superposition property of PPP. Note that despite
the sharing of BSs among MNOs, there is no inter-operator
interference among MNOs in our system model, since each
MNO operates over a separate spectrum. Due to Assumption
2, the buyer will purchase only the infrastructure of the seller
MNO and not the spectrum.

III. SINR COVERAGE AND TRADEOFF BETWEEN
TRANSMISSION POWER AND BS DEPLOYMENT

A. SINR Coverage Probability
Without loss of generality, we will consider a typical UE

of MNO-0 to be located at the origin, which associates with
the nearest BS in the enlarged set of BSs given by F . We
will denote the nearest BS from F to the typical UE as BS-
0. We assume that the message signal undergoes Rayleigh
fading with the channel gain given by g

0

. Furthermore, let
↵ > 2 denote the path-loss exponent for the path-loss model
r

�↵
0

, where r

0

is the distance between the typical UE and BS-
0. Finally, let �2 denote the noise variance and p denote the
transmit power of all the BSs in MNO-0, including BS-0. The
downlink SINR at the typical UE is

SINR =

g

0

r

�↵
0

p

I + �

2

. (2)

Here I =

P
i2F

0

\{0} gir
�↵
i p is the interference experienced

by a typical UE only from the BSs that operate on the spectrum
of MNO-0. These are the BSs that belong only to MNO-0
itself. Here gi is the co-channel gain between typical UE and
interfering BS-i and ri is the distance between the typical UE
and the interfering BS-i, where i 2 F

0

\{0}. The transmit
power of each BS is 0 < p  p

max

.
Given a minimum required SINR threshold T , the SINR

coverage probability for a typical UE of MNO-0’s cellular
network is defined as

Pc = Pr(SINR > T ). (3)

In [8, Theorem 1], the authors derived a formula for
the coverage probability of a typical UE when the BS are
distributed according to a homogeneous PPP of intensity � as
given by

Pc = ⇡�

Z 1

0

exp{�(Az +Bz

↵/2
)}dz, (4)

where A = ⇡�� and B =

T�2

p , and

� =

2(T/p)

2/↵

↵

Eg[g
2/↵

(�(�2/↵, T g/p))� �(�2/↵)].

When the interfering links undergo Rayleigh fading, � = 1+

⇢(T,↵), where

⇢(T,↵) = T

2/↵

Z 1

T�2/↵

(1 + u

↵/2
)

�1

du. (5)

For this special case, we see that � is independent of transmit
power.

However, for our system, due to the fact that the interference
does not scale with the BS intensity, we have to modify the
above formula. We can proceed in a manner similar to the
proof of [8, Theorem 1] and show that a more general coverage
formula is given as follows:

Proposition 1. The coverage probability of a typical UE of
buyer MNO-0 under Assumptions 1 and 2 is

Pc = ⇡�

Z 1

0

exp{�(A

0
z +Bz

↵/2
)}dz, (6)



where A

0
= ⇡(� � �

0

(1 � �)) and � = �

0

+

P
i2N �i such

that N ✓ K\{0}. Here B and � are the same as in (4).

Proof: Proceed in a manner similar to the proof of [8,
Theorem 1], keeping in mind that interference is contributed
only from BSs of MNO-0, while BS association is contributed
by all MNOs in N .

Corollary 1. When there is no infrastructure sharing (i.e.,
N = ;), (6) reduces to (4).

Except for ↵ = 4, the integral for Pc cannot be evaluated in
closed form. Nevertheless, a simple closed-form approxima-
tion for the general case, where ↵ > 2, and where both noise
and intra-operator interference are present, can be given as [9,
Eqn. 4]

Pc ' ⇡�

"
A

0
+

↵

2

B

2/↵

�

�
2

↵

�
#�1

. (7)

Proposition 2. Let N = |N |. Then, (i) for fixed N ,
lim�

0

!1 Pc = 1/�, (ii) for fixed �

0

, if limN!1
P

i2N �i =

1, then limN!1 Pc = 1, (iii) for fixed N , if �
0

= 0, then
Pc '

h
1 +

↵
2⇡�( 2

↵ )

B2/↵
P

i2N �i

i�1

.

Proof: (i) From the approximation in (7), we see that as
�

0

! 1, since B and
PN

i=0

�k remains constant, Pc ! 1/�.
(ii) Again from the approximation (7), since B and �

0

(1��)

are constants, Pc ! 1. (iii) When �

0

= 0, A0
= ⇡

P
i2N �i.

Simplifying (7), we obtain the desired result.
In our case, the increase in BS intensity does not correspond

with the increase in co-channel interference, which is different
from [8]. Proposition 2 also confirms our intuition that greater
sharing of infrastructure leads to better coverage.

B. Minimum Transmit Power Required to Satisfy the QoS
Let us further assume that the MNO-0 wants to ensure that

the coverage probability of a typical UE satisfies the following
QoS constraint:

Pc � 1� ✏, (8)

where 0 < ✏ < 1 is some arbitrary value.
In order to satisfy the coverage constrain in (8), the min-

imum power required for each BS of MNO-0, for given
infrastructure, is given by the following proposition.

Proposition 3. Assume that the interfering links undergo
Rayleigh fading and � be defined as before. Then, given that
1 � ✏ < 1/�

0, where �

0
= 1 � �

0

(1 � �)/�, the minimum
transmit power required for each BS of MNO-0 such that
Pc � 1� ✏, is

p ' c�

�↵/2
, (9)

where c =

h
2⇡(1�(1�✏)�0

)

↵(1�✏)(T�2

)

2/↵�(
2

↵ )

i�↵/2
.

Proof: When the interfering links undergo Rayleigh fad-
ing, � = 1 + ⇢, as given in (5), and is independent of p.
Thus, using (7) in the inequality Pc � 1� ✏, and solving for
p, we obtain the desired result. For p > 0, it suffices that

1 � (1 � ✏)�

0
> 0 in the expression for c. Re-arranging the

terms gives the sufficient condition.
In Proposition 3, note that 1/�0 � 1/�.

C. Trade-off Between Power and Infrastructure

Every MNO wishes to guarantee a certain probability of
coverage to its own customers. For this purpose, if a UE is
experiencing outage, the MNO can either choose to increase
the transmit power of the BSs so as to increase the coverage
radius, or offload the call to a shared BS. It is natural to
wonder at the possible trade-off between increasing the power
and sharing more infrastructure. The answer was provided by
Proposition 3.

Corollary 2. When there is no infrastructure sharing, the
minimum BS transmit power for which Pc � 1 � ✏ is
p ' c�

�↵/2
0

, where c is independent of �
0

.

Proof: From Proposition 3, since N = ;, we have � = �

0

and �

0
= �.

D. Areal Power Consumption for a Seller MNO

Let the transmit power of each BS belonging to the seller
MNO-k, where k 2 K\{0}, be denoted by pk. Apart from
the transmit power, each BS also consumes a fixed amount
of circuit power, denoted by pc. Hence, the total power
consumption of a BS of an MNO-k is pk+pc. Since the MNO-
k has �k BS per unit area, the areal power consumption of
the network (i.e., power consumption per unit area) is

Sk = �k(pk + pc). (10)

For MNO-k, let the QoS constaint on coverage probability
of a typical UE be Pc � 1� ✏ and the threshold SINR be Tk.
In order to satisfy this constrain, it can either increase its BS
intensity �k or increase its transmit power pk. The trade-off
between �k and pk was given by Proposition 3. Similarly, the
trade-off between �k and Sk follow immediately.

Proposition 4. Given the assumptions in Proposition 3, the
areal power consumption of seller MNO-k, where k 2 K\{0},
is

Sk(�k) =

(
�k(pmax

+ pc), if 0  �k  (

ck
p
max

)

2/↵
,

�k(ck�
�↵/2
k + pc), if �k � (

ck
p
max

)

2/↵
,

(11)

where ck =

h
2⇡(1�(1�✏)�)

↵(1�✏)(Tk�2

)

2/↵�(
2

↵ )

i�↵/2
.

Proof: Since the MNO-k does not buy infrastructure from
other MNOs, the net BS intensity that a typical UE of MNO-
k experiences is �k. Thus, from Corollary 2, we have pk '
ck�

�↵/2
k . Putting pk in (10) and recalling that 0 < pk  p

max

,
we have (11).

IV. BUYER’S STRATEGY

In this section, we propose a strategy for the buyer MNO-
0 which will allow it to choose the seller MNOs to buy the
infrastructure from.



Proposition 5. For the QoS condition Pc � 1�✏ to be feasible
for the buyer MNO-0, the net BS intensity � = �

0

+

P
i2N �i

must satisfy
� � 1� ✏

✏

(� � �

0

(1� �)), (12)

where � =

↵
2⇡

B2/↵

�

�
2

↵

� , for some N such that ; ✓ N ✓ K.

Proof: Using the approximation (7) in (8) and solving for
�, we have required result.

If there is no cost attached to the infrastructure sharing, or
if the cost of buying infrastructure from all the seller MNOs is
the same, then the QoS constrain (8) can be easily satisfied by
selecting the N MNOs with largest BS intensities �i such that
(12) is satisfied. This greedy approach thus gives the required
MNOs from whom to buy the infrastructure from. However,
if there is a cost associated with the sharing of infrastructure,
then we can formulate a cost minimization problem with the
QoS constraint, which can be written as a linear program as
follows:

min
X

k2K\{0}

qkxk (13)

s.t. (C1)

X

k2K\{0}

�kxk � 1� ✏

✏

(� � �

0

(1� �))� �

0

,

where qk is the price of infrastructure when buying from
MNO-k, where k 2 K\{0}, and xk (0  xk  1) denotes
the fraction of infrastructure bought from seller MNO-k. We
can interpret xk in two possible ways: 1) The buyer MNO-0
buys the entire infrastructure of MNO-k but utilizes the whole
infrastructure of MNO-k for only xk fraction of time, 2) the
MNO-0 buys only a fraction xk of the total infrastructure of
MNO-k, but utilizes it all the time.

The problem in (13) is an instance of a knapsack problem. In
the knapsack interpretation of problem (13), the seller MNOs
are interpreted as “items”, their BS intensities are interpreted
as “weights”, and the right hand term of constrain (C1) is
interpreted as “weight capacity” of a “bag”. Likewise, qk is
interpreted as the “value” of the k-th “item”. Since xk 2 [0, 1],
the problem (13) becomes a fractional knapsack problem, and
a greedy algorithm can be used to obtain the optimal solution
[13, Chap 17.1].

The greedy algorithm is provided in Algorithm 1. The
idea behind this greedy algorithm is as follows: We first sort
the seller MNOs according to their cost per BS intensity
in ascending order. We then select an MNO in that order
if its weight (the BS intensity) is less than or equal to the
residual weight capacity of the knapsack. In our case, the
maximum weight capacity of knapsack is defined by w̄ =

1�✏
✏ (� � �

0

(1� �))��

0

. If the BS intensity exceeds w̄, then
the buyer MNO-0 buys only a fraction of the infrastructure
from the remaining seller MNOs. Hence, we can define the
variable xk as

xk =

⇢
1, if �i  w̄ � w

(w̄�w)

�i
, if �i > w̄ � w,

(14)

where w is the weight in the knapsack thus far.

Algorithm 1 Fractional Knapsack Algorithm
1: Initialize xk = 0, w = 0, and V = 0

2: Compute ⇢k = qk/�k

3: Sort the sellers by ⇢k in ascending order such that ⇢⇡
1


⇢⇡

2

· · ·  ⇢⇡K

4: for i = 1 to K do
5: if �⇡i  w̄ � w then
6: x⇡i = 1

7: V = V + q⇡i

8: w = w + �⇡i

9: else
10: x⇡i =

w̄�w
�⇡i

11: V = V + q⇡iy⇡i

12: Terminate
13: end if
14: end for

V. SELLERS’ COMPETITION: PRICING OF
INFRASTRUCTURE

In this part, we will study the equilibrium pricing due to
the sellers competition as well as the optimal fraction of
infrastructure that the seller MNOs will be willing to sell.
We will formulate the seller competition as a Cournot-Nash
oligopoly game [15].

Let the fraction of infrastructure to be sold from the seller
MNO-k, k 2 K\{0}, be zk, where 0  zk  1. Then, the
total amount of infrastructure sold by the seller MNO-k is
yk = �kzk. Let the cost of operating its infrastructure be
Ck(yk), which we can define as

Ck(yk) = akSk(yk) + dk, (15)

where ak is the price of areal power consumption, dk is a
fixed operation cost, and Sk is as given in (11).

Let the overall infrastructure from K seller MNOs available
in the market be denoted by y =

PK
k=1

yk. Also, let us denote
the fraction of infrastructure of all MNOs except MNO-k by
y�k = y � yk. Let the selling price of the infrastructure be
Q(y). The price function Q(y) is assumed to be monotonically
increasing with the total supply of infrastructure, in accordance
to the “law of supply”. We will assume Q(y) to be

Q(y) = ✓ + ⌘y, (16)

where ✓ is the initial installation price of infrastructure from
all seller MNOs and ⌘ denotes the marginal price of the total
infrastructure y in the market. Thus, the MNO-k’s profit is

Fk(y1, . . . , yk) = ykQ(y)� Ck(yk). (17)

In order to maximize the profit of MNO-k with respect to
yk, we first partial differentiate (17) with respect to yk, and
noting that @y/@yk = 1, we obtain

@Fk

@yk
= yk

dQ

dy

+Q� dCk

dyk
. (18)



Using the optimality condition @Fk
@yk

= 0 in (18) and solving
for yk, we obtain

yk =

1

dQ
dy

✓
dCk

dyk
�Q

◆
, (19)

which is in a fixed-point form. Let us denote the function at
the right hand side of (19) by BRk(y�k) ⌘ 1

dQ
dy

⇣
dCk
dyk

�Q

⌘
,

which we referred to as the best response of MNO-k to the
action of other competitive sellers.

Here we have dQ
dy = ⌘, and

dCk

dyk
=

(
ak(pmax

+ pc), if 0  yk  (

ck
p
max

)

2/↵

ak(1� ↵
2

)cky
�↵/2
k + akpc, if yk � (

ck
p
max

)

2/↵
.

We see that the marginal cost of MNO-k is constant up
until a certain point, after which the marginal cost starts to
monotonically increase. Thus, the action of MNO-k to sell yk
amount of infrastructure depends on the action of other MNOs,
as given by the equation yk = BRk(y�k). Substituting dCk

dyk
,

dQ
dy and Q in (19), and recalling that y = yk+y�k, we obtain
the best response of MNO-k as

yk =

( Uk
2

� y�k

2

, if 0  yk  (

ck
p
max

)

2/↵

Vky
�↵/2
k
2

+

Wk
2

� y�k

2

, if yk � (

ck
p
max

)

2/↵
,

(20)
where Uk =

ak(pmax

+pc)�✓
⌘ , Vk =

ak(1�↵
2

)ck
⌘ and Wk =

akpc�✓
⌘ .
The equilibrium solution of the Cournot-Nash oligopoly

market, y⇤, is the fixed point of the best response
function. As such, the best responses of all K seller
MNOs can be expressed in vector form as y⇤

=

BR(y⇤
), where y⇤

= [y

⇤
1

, y

⇤
2

, . . . , y

⇤
K ]

T and BR(y⇤
) =

[BR

1

(y

⇤
�1

),BR

2

(y

⇤
�2

), . . . ,BRK(y

⇤
�K)]

T . The [.]

T denotes
transpose of vector. By taking summation of (20) over all
K seller MNOs, and using the fact that

P
k2K\{0} y

⇤
�k =P

k2K\{0}(y
⇤ � y

⇤
k) = (K � 1)y

⇤, we can analytically solve
the equilibrium quantity y

⇤ as

y

⇤
=

1

K � 1

X

k2K\{0}

y

⇤
�k (21)

Once the equilibrium quantity y

⇤ is computed, we can find
the corresponding equilibrium price q

⇤ by substituting y

⇤ into
the price function in (16), we get q⇤ = Q(y

⇤
).

VI. NUMERICAL RESULTS

We assume that the BSs are spatially distributed according
to homogeneous PPP inside a circular area of 500 meter radius
for all K+1 MNOs. The seller MNOs are assumed to have the
same intensity of BSs per unit area. The maximum transmit
power of each BS is p

max

= 10 dBm, the SINR threshold at
each user is Tk = 15 dB, the path-loss exponent is ↵ = 4,
and noise �

2

= �120 dBm.
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i=1 xi versus the tolerable outage probability.

A. Effect of Changing the Outage QoS

In Fig. 1, we illustrate the fraction of infrastructure bought
by MNO-0 while increasing the values of tolerable outage
probability ✏ (i.e. Pc � 1 � ✏). Each BS from all MNOs
are assumed to transmit at its the maximum power. We also
assume that the price of infrastructure qk is the same for
all sellers. The fractional variable x =

PK
i=1

xi indicates
the proportion of infrastructure that MNO-0 has bought. We
see that for low values of ✏, MNO-0 cannot satisfy the
required QoS solely through own infrastructure. In this figure,
the MNO-0 needs to buy infrastructure from all the sellers.
When ✏ increases beyond a certain value, x starts to decrease,
indicating that at higher ✏ MNO-0 buys less infrastructure.

B. Effect of Changing the BS Intensity of MNO-0

BSs Intensity of MNO-0 (λ
0
) ×10-5
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Fig. 2. The coverage probability of user of MNO-0 before and after buying
infrastructure.

In Fig. 2, the difference between coverage probability of the
buyer MNO-0 before and after buying infrastructure is shown.
Each BS of every MNOs transmits at maximum power. Before
buying infrastructure, it can be seen that the Pc of MNO-0
approaches 1/� as �

0

increases. The MNO-0 cannot simply



increase its own BS intensity to achieve a coverage more than
the upper bound 1/�, as we proved in Proposition 2 (i). The
MNO-0 will have to buy more infrastructure to gain more
coverage. After buying infrastructure from all five MNOs, we
see that the coverage of MNO-0 improves and is greater than
1/�. For fixed �

0

, when the BS intensity of seller MNO-k,
k 2 K\{0}, increases, the coverage of MNO-0 also increases.
This verifies Proposition 2 (ii). Also, for fixed �k, where
k � 1, as �

0

increases, the coverage of MNO-0 decreases, in
accordance to Proposition 2 (i).

C. The Market Equilibrium Price and Quantity
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Fig. 3. Equilibrium quantity (y⇤) with y1 and y2.
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Fig. 4. Equilibrium Price (q⇤) with y

⇤
1 and y

⇤
2 .

The market equilibrium quantity and price are illustrated
in Fig. 3 and Fig. 4. We consider two seller MNOs, where
the best response of seller MNO-1 to the action of the MNO-
2 and vice versa can be obtained from (20). In Fig. 3, we
have plotted the equilibrium quantity y

⇤ from (21) with respect
to y

⇤
1

and y

⇤
2

. We observe that for fixed y

⇤, the equilibrium
contour lines for large y

⇤
1

and y

⇤
2

are hyperbolas. Fig. 4 shows
the equilibrium price with respect to y

⇤
1

and y

⇤
2

. The contour
lines of equilibrium price gives a single equilibrium price
solutions.

VII. CONCLUSION

We have studied the infrastructure trading problem for
multiple seller MNOs and one buyer MNO using stochastic
geometry. We have first analyzed the coverage probability of
the buyer MNO, and studied the trade-offs between buying
of infrastructure and increasing of transmit power. We have
then focused on the strategy of buyer and the competition
between sellers. We have provided the strategy of a buyer
MNO on choosing how many MNOs and which MNOs to buy
infrastructure from in order to satisfy the QoS. The strategy
of the buyer has been formulated as a fractional knapsack
problem and the optimal solution has been found using a
greedy algorithm. The problem of pricing and determining the
fraction of infrastructure that sellers are willing to sell have
been formulated using a Cournot-Nash oligopoly game. This
work can be extended in several directions: 1) in addition to in-
frastructure sharing, spectrum sharing can be also considered,
and 2) multiple buyer MNOs can be considered where they
compete with each other to obtain their demand with lowest
price, in addition to the seller competition.
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