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Abstract

Background

A high proportion of women start pregnancy overweight or obese. According to the develop-

mental overnutrition hypothesis, this could lead offspring to have metabolic disruption

throughout their lives and thus perpetuate the obesity epidemic across generations. Con-

cerns about this hypothesis are influencing antenatal care. However, it is unknown whether

maternal pregnancy adiposity is associated with long-term risk of adverse metabolic profiles

in offspring, and if so, whether this association is causal, via intrauterine mechanisms, or

explained by shared familial (genetic, lifestyle, socioeconomic) characteristics. We aimed to

determine if associations between maternal body mass index (BMI) and offspring systemic

cardio-metabolic profile are causal, via intrauterine mechanisms, or due to shared familial

factors.

Methods and findings

We used 1- and 2-stage individual participant data (IPD) meta-analysis, and a negative-con-

trol (paternal BMI) to examine the association between maternal pre-pregnancy BMI and off-

spring serum metabolome from 3 European birth cohorts (offspring age at blood collection:

16, 17, and 31 years). Circulating metabolic traits were quantified by high-throughput

nuclear magnetic resonance metabolomics. Results from 1-stage IPD meta-analysis (N =

5327 to 5377 mother-father-offspring trios) showed that increasing maternal and paternal

BMI was associated with an adverse cardio-metabolic profile in offspring. We observed
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strong positive associations with very-low-density lipoprotein (VLDL)-lipoproteins, VLDL-

cholesterol (C), VLDL-triglycerides, VLDL-diameter, branched/aromatic amino acids, glyco-

protein acetyls, and triglycerides, and strong negative associations with high-density lipo-

protein (HDL), HDL-diameter, HDL-C, HDL2-C, and HDL3-C (all P < 0.003). Slightly stronger

magnitudes of associations were present for maternal compared with paternal BMI across

these associations; however, there was no strong statistical evidence for heterogeneity

between them (all bootstrap P > 0.003, equivalent to P > 0.05 after accounting for multiple

testing). Results were similar in each individual cohort, and in the 2-stage analysis. Offspring

BMI showed similar patterns of cross-sectional association with metabolic profile as for

parental pre-pregnancy BMI associations but with greater magnitudes. Adjustment of paren-

tal BMI–offspring metabolic traits associations for offspring BMI suggested the parental

associations were largely due to the association of parental BMI with offspring BMI. Limita-

tions of this study are that inferences cannot be drawn about the role of circulating maternal

fetal fuels (i.e., glucose, lipids, fatty acids, and amino acids) on later offspring metabolic pro-

file. In addition, BMI may not reflect potential effects of maternal pregnancy fat distribution.

Conclusion

Our findings suggest that maternal BMI–offspring metabolome associations are likely to be

largely due to shared genetic or familial lifestyle confounding rather than to intrauterine

mechanisms.

Author summary

Why was this study done?

• It is unknown whether maternal pregnancy adiposity is associated with long-term risk

of adverse metabolic profiles in offspring, and if so, whether this association is causal via

intrauterine mechanisms or explained by shared familial (genetic, lifestyle, socioeco-

nomic) characteristics.

• Our study was designed to unpick whether maternal pregnancy BMI–offspring meta-

bolic traits associations were due to intrauterine mechanisms (involving overfeeding of

the developing fetus) or shared familial characteristics (or both of these) by using pater-

nal BMI–offspring metabolic traits associations as a negative control.

• If maternal associations represent causal intrauterine effects, as opposed to being due to

shared familial factors, they should be stronger than paternal associations with the same

metabolic traits.

What did the researchers do and find?

• We looked at associations between maternal pre-pregnancy BMI and 153 offspring

serum metabolic traits, in adolescence and adulthood, in 3 independent European birth

cohorts (>10,000) and compared these to paternal BMI–offspring metabolic traits as a

negative control.

Metabolomics in developmental overnutrition
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• Paternal BMI was used as a negative control as it will share most of the confounders of

the main exposure (maternal BMI) but could not directly influence offspring’s meta-

bolic traits via an intrauterine effect.

• We found very little evidence of a markedly stronger association of maternal BMI with

offspring outcomes.

What do these findings mean?

• Our findings are more supportive of shared familial factors than intrauterine develop-

mental overnutrition mechanisms for associations of maternal BMI with offspring met-

abolic traits.

• Interventions to reduce BMI in all family members may be more beneficial for cardio-

metabolic health than focusing on reducing maternal pre-conception or pregnancy

BMI.

Introduction

In Western populations, the proportion of women who start pregnancy overweight or obese

(body mass index [BMI]�25 kg/m2) has increased over the last 20–30 years and is now esti-

mated to be between 20%–50% [1,2].

The developmental origin of adult diseases hypothesis proposes that greater maternal adi-

posity in pregnancy can prime changes in fetal metabolism that result in a life-long risk of

greater adiposity and metabolic dysregulation [3]. As more adipose women have higher circu-

lating gestational glucose, lipids, and fatty acids (FAs), the fetus is purportedly overfed, which

may lead to changes in energy metabolism and the fetal endocrine system, potentially resulting

in differences in appetite control, risk of obesity, and adverse metabolism throughout the lives

of offspring. This may perpetuate obesity and adverse cardio-metabolic outcomes across gen-

erations, as the daughters of overweight women would be predisposed to enter pregnancy

overweight and with adverse metabolic profiles themselves. Concerns about this hypothesis

are influencing antenatal care; for example, recommendations related to gestational weight

gain and the new criteria for diagnosing gestational diabetes are aimed at reducing future off-

spring obesity and adverse metabolism [4,5]. However, whether the associations of maternal

adiposity and associated traits with offspring outcomes are causal is unknown, and if they are

causal, then the mechanisms are unclear [4,6,7].

A recent study using genetic instrumental variables (Mendelian randomisation) found that

intrauterine exposure to greater maternal adiposity and fasting glucose results in greater birth-

weight and ponderal index [6]; however, Mendelian randomisation studies, within siblings

analyses and negative control studies do not support a causal intrauterine effect of greater

maternal gestational adiposity on later offspring adiposity levels [8,9]. Exposure to greater

maternal adiposity and associated metabolic disruption could, nonetheless, result in more

adverse metabolic profiles in offspring via intrauterine mechanisms even in the absence of an

effect on offspring adiposity, for example, through a direct effect on appetite control of the

development of the liver and pancreas.
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The aim of this study was to examine associations between maternal pre-pregnancy BMI

and multiple offspring serum lipids, lipoproteins, and metabolites in adolescence and adult-

hood (i.e., when offspring are in their reproductive years), using paternal BMI as a negative

control. Our hypotheses are that 2 key paths could explain the association of maternal pre-

pregnancy BMI with offspring future metabolic traits: (i) intrauterine developmental overnu-

trition and (ii) confounding of this potential effect via shared familial genetics, socioeconomic,

lifestyle, and behavioural characteristics (Fig 1). It is established that to adjust for all such con-

founding is impossible in most datasets, and consequently, conventional multivariable

approaches are likely to be very biased by residual confounding [10]. Paternal BMI assessed at

the same time as maternal BMI is an ideal negative control as it will be influenced by the

shared familial characteristics that we are concerned would confound the maternal BMI asso-

ciation, but it could not plausibly result in intrauterine developmental overnutrition [11].

Thus, if maternal associations represent causal intrauterine effects, as opposed to being due to

shared familial factors, they should be stronger than paternal associations with the same out-

comes [4].

Methods

Study populations

All study participants provided written informed consent, and study protocols were approved

by the relevant local ethics committees. Specifically, ethical approval for the Avon Longitudinal

Study of Parents and Children was obtained from the ALSPAC Ethics and Law Committee

and the Local Research Ethics Committees (full details at http://www.bristol.ac.uk/alspac/

researchers/data-access/ethics/lrec-approvals/#d.en.164120), and ethical approval for the

Northern Finish Birth Cohort 1966 and 1986 studies was obtained from the Ethics Committee

of Northern Ostrobotnia Hospital District, Finland.

The parent-specific BMI associations with offspring metabolic profiles were examined in 1

British and 2 Finnish birth cohorts with nuclear magnetic resonance (NMR)–based serum

metabolomics: Avon Longitudinal Study of Parents and Children [12,13] (ALSPAC; offspring

Fig 1. Hypothesised paths between maternal pre-pregnancy BMI and offspring future metabolic traits

tested here. Abbreviation: BMI, body mass index.

https://doi.org/10.1371/journal.pmed.1002376.g001
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follow-up at 17 years), Northern Finland Birth Cohort 1966 and 1986 studies [14,15] (NFBC66

and NFBC86; offspring follow-up at 31 and 16 years, respectively). Full details of the cohorts

are provided in S1 Text and S1 Fig.

Parental exposures and covariables

In ALSPAC, parental pre-pregnancy weight, height, education, occupation, and smoking

behaviour, and maternal parity were obtained during pregnancy via questionnaires. Paternal

weight and height were reported by the mothers (i.e., the recruited pregnant women). Off-

spring sex was obtained from obstetric records, and parental and offspring ages were calcu-

lated from their dates of birth and dates of questionnaires or clinic assessments. Parental

occupation was classified into social class groups from I (managerial) to IV (unskilled manual

workers). Highest educational qualification for both parents was collapsed into 1 of 5 catego-

ries from none/Certificate of Secondary Education (CSE; national school exams at age 16) to

university degree.

In NFBC86, parental height, weight, occupation, and smoking status; offspring sex; and

maternal parity were collected using questionnaires given to all mothers at their first antenatal

clinic visit. As in ALSPAC, paternal weight and height were reported by their partner (the

mother). Level of education was obtained from questionnaires in 2001–2002. Parental and off-

spring ages were derived from their dates of birth and dates of assessments. Parental education

was categorised into 8 categories from no occupational education to university degree, and

occupation was categorised into 6 categories from entrepreneur to no occupation.

In NFBC66, maternal height, weight, occupation, smoking status, parity, and offspring sex

were reported by mothers at the first antenatal clinic visit (16th week of gestation), or in ques-

tionnaires administered between the 24th and 28th week of gestation. Offspring age at serum

collection was derived from their date of birth and date of attendance at the 1997–1998 follow-

up clinic. Maternal age in pregnancy was derived from year of birth and the date of pregnancy

questionnaire completion. Education was categorised into 9 categories from none or circulat-

ing school to beyond matriculation exam, and occupation was categorised into 5 categories

ranging from I (highest social class) to V (no occupation). Information on paternal BMI was

not collected in NFBC66; therefore, this cohort’s data were used to test for replication of the

maternal-offspring association results only.

In all cohorts, head of household social class was defined as the highest occupation of either

parent. For the 1-stage individual participant data (IPD) [16–18] meta-analysis, education and

head of household occupational social class categories were harmonised between cohorts (see

S1 Text and S1 Table). Individual cohort variables were used in the 2-stage IPD meta-analysis.

In ALSPAC, parents-offspring trios where the mother had reported that her partner was not

the biological father of the offspring, and those for whom this information was missing, were

excluded; this information was not available for the Northern Finland Birth Cohort studies

(NFBCs). Differences in fetal growth in multiple pregnancies suggest that intrauterine effects

are different for singletons and multiple births [19]: for the purpose of this study we consid-

ered only singleton pregnancies. For our analyses, we used data from 5,327 to 5,377 mother-

father-offspring trios from ALSPAC and NFBC86, and 4,841 to 4,874 mother-offspring pairs

from NFBC66 who had data on parental BMI, offspring metabolite, and covariables.

Outcomes: Metabolic profiling

A comprehensive profiling of offspring circulating lipids, lipoproteins, and metabolites was

done by a high-throughput NMR metabolomics platform, providing a snapshot of offspring

serum metabolome at follow-up [20,21]. In ALSPAC, offspring metabolic traits were assessed

Metabolomics in developmental overnutrition
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on fasting (minimum 6 hours) plasma at 2 ages (mean ages of 15.5 and 17.8), and we used data

from either of these. As we were interested in lasting effects into reproductive years, we priori-

tised measures from the older age follow-up and used the earlier measures only for participants

who did not have measures at mean age 17.8. Mean age at assessment in the whole cohort after

using both time points was 17. Participants of both NFBCs fasted overnight before serum col-

lection on the morning of clinic attendance (8 to 11 AM) at mean age 16 (NFBC86) and 31

(NFBC66) years.

Collectively, the 153 metabolic traits measured by the platform represent a broad molecular

signature of systemic metabolism [20,21]. The platform provided simultaneous quantification

of lipoprotein lipids and subclasses, FAs and FA compositions, ketone bodies, amino acids, as

well as glycolysis and gluconeogenesis-related metabolites in absolute concentration units.

This platform has been applied in various large-scale epidemiological and genetic studies [22–

25]; the detailed protocol, including information on quality control, has been published else-

where [21,26] and more information is given in S1 Text.

Statistical analysis

A draft analysis plan was written by DLSF and DAL in March 2015. This was shared with

other cohort analysts and investigators, and a final analysis plan was agreed upon in September

2015 (see S2 Text), with analyses commencing in early 2016. Two changes were made to the

analysis plan after analyses had begun. In October 2016, in response to one of the coauthors, it

was agreed that we would explore whether parental BMI–offspring metabolic trait associations

were attenuated with additional adjustment for offspring BMI. In our original plan, we had

agreed to explore offspring BMI–offspring metabolic trait associations but had not planned to

adjust parental BMI–offspring metabolic traits for offspring BMI. In May 2017, in response to

one reviewer, we constructed a random intercept and slope multilevel model to further assess

the agreement between maternal and paternal associations. In our original plan, we proposed

to assess this using linear regression only. No further changes to the original plan were made.

Data cleaning and checking were performed separately for each cohort. One-stage and

2-stage IPD [16–18] meta-analyses were performed to assess the associations of maternal pre-

pregnancy BMI with offspring metabolic profiles, using paternal BMI as a negative control.

The term IPD relates to the data recorded for each participant in a study [16]. Linear regres-

sion models were adjusted for parental age, smoking, education, head of household social

class, maternal parity, offspring age at blood collection, and sex. Robust standard errors were

estimated for all associations and probability values, as some metabolic traits concentrations

had skewed distributions.

We conducted 3 sets of IPD meta-analysis that included maternal versus paternal

comparisons:

1. A 1-stage IPD meta-analysis restricted to the 2 cohorts with data on both maternal and

paternal BMI (ALSPAC and NFBC86) which were our main analyses. In these analyses, off-

spring metabolic traits were standardised (z-scored) across both cohorts and then regressed

on maternal and paternal z-scored BMI (again standardised across both cohorts, separately

for mothers and fathers) with adjustment for the harmonised covariables and a binary vari-

able reflecting whether the participant was from ALSPAC or NFBC86. These analyses were

conducted on between 5,327 and 5,377 trios (numbers with complete data varied slightly

for different metabolic traits). This approach has greater statistical efficiency than a 2-stage

IPD meta-analysis, and restricting to the 2 cohorts with both maternal and paternal BMI

ensures that exposure-outcome comparisons are possible within all parental-offspring trio

Metabolomics in developmental overnutrition
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data available. It assumes that the 2 cohorts are from the same population to which infer-

ences are being made.

2. A 1-stage IPD meta-analysis, undertaken as described above, but including the maternal

BMI–offspring metabolite associations from NFBC66. This sensitivity analysis assessed

associations of maternal BMI with offspring metabolic traits in up to 4,874 additional

mother-offspring pairs (10,181 to 10,251 in total) from ALSPAC, NFBC86, and NFBC66

and compared these with the same associations of paternal BMI with offspring metabolic

traits in ALSPAC and NFBC86 only (N = 5,327 to 5,277). This has greater statistical power

for the maternal associations and for determining differences between mothers and fathers.

It assumes that all 3 cohorts are from the same population to which inference is being

made. This includes the assumption that paternal BMI would be similarly associated with

offspring metabolic traits in NFBC66 as in the other 2 cohorts if we would have been able to

model data on this unmeasured trait.

3. 2-stage IPD meta-analysis in which the regression outputs of standardised offspring meta-

bolic traits with standardised parental BMI were derived separately for each cohort and for

maternal and paternal BMI (stage 1) was performed, and then pooled results from each

cohort were meta-analysed together using the random effects inverse-variance-weighted

method (stage 2). The standardisation of offspring metabolic traits and parental BMI was

undertaken within each cohort in this method. We used this method to (a) explore whether

our standardisation across cohorts of offspring metabolic traits and parental BMI, and har-

monisation of potential confounders in the 1-stage IPD meta-analyses, had notably influ-

enced results; (b) test for heterogeneity in association results between the 3 cohorts (2 for

paternal BMI–offspring metabolic traits associations) using the I2 statistics [27], which pro-

vides a test of replication of our findings and tests our assumption that the cohorts are likely

to be from the same population to which we want to make inference; and (c) test, by using a

random effects method for pooling results (even if there was little evidence of heterogene-

ity), whether results were similar if we relaxed the assumption of the cohorts all being from

the same underlying population (this approach provides results that are interpreted as the

average across studies, assuming that these might reflect different populations).

Magnitudes of maternal and paternal associations were compared by presenting the results

one on top of the other so that the extent to which point estimates and their respective confi-

dence intervals differ (or not) can be clearly seen. In addition, the magnitudes of maternal and

paternal associations were compared to each other using linear fit and a random intercept and

slope multilevel model. The latter was used to overcome the fact that as metabolic traits are

correlated, the independence assumption of the linear fit analyses are likely to be violated,

which could bias results. We defined clusters according to metabolic trait-classes, which

resulted in 27 classes with between 1 and 9 metabolic traits in each class (see S2 Table). This

model is composed of a fixed effects part, which is the average association of maternal BMI–

offspring metabolic trait point estimates with paternal BMI–offspring metabolic trait point

estimates for each metabolic trait (level 1) and the same associations of maternal and paternal

point estimates, within their trait classes, allowing the intercepts and slopes of these to all vary

from the level 1 averages (associations in these classes are level 2). Conditional (R2
cond) and mar-

ginal (R2
marg) goodness of linear fit [28] were computed. These represent the agreement between

maternal and paternal point estimates when clustering within classes is taken into account

(R2
marg), plus when variance explained by the individual classes is included (R2

cond). One-stage

IPD associations were compared to the corresponding 2-stage IPD for maternal and paternal

BMI separately, also by examining their linear fit. The differences between maternal and

Metabolomics in developmental overnutrition
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paternal associations (in all 3 approaches) were calculated from the bootstrap replicate distri-

bution (1,000 replications). To this end, we sampled with replacement parental-offspring trios

so that the correlation structure of the original dataset was maintained. Beta-estimates and

standard errors were empirically calculated from the mean and SD of the bootstrap distribu-

tion, respectively. All P values were calculated using bootstrap means and standard errors and

compared to a z-distribution.

To establish a threshold that takes into account multiple testing and the correlation struc-

ture of the metabolic traits data, principal components analysis (PCA) was carried out on the

z-scored metabolic traits data [29]. The rationale for defining the number of independent tests

via PCA has been discussed previously [25,29,30], and more information is available in S1

Text. The first 17 principal components (PCs) explained 95% of the metabolic traits data vari-

ance across the 3 cohorts; this number is a proxy of the number of independent tests being per-

formed. Therefore, the threshold of P< 0.05 becomes P< 0.003 (i.e., α� 17 where α = 0.05)

when multiple testing is considered for assessing associations with the 153 metabolic traits.

We performed 2 additional analyses, using the 1-stage IPD meta-analysis only, that aimed

to explore whether any maternal (or paternal) pre-pregnancy BMI associations with offspring

metabolic traits were mediated by the relationship of the parental BMI with offspring BMI.

First, we examined the associations of offspring BMI (assessed at the same time as blood collec-

tion) with their metabolic traits. Second, we repeated the meta-analysis described above, in

point 1, with additional adjustment for offspring BMI. Both analyses were undertaken in

N = 5,266 to 5,316 trios from ALSPAC and NFBC86 cohorts.

Statistical analyses were conducted using R version 3.0.1 (R Foundation for Statistical Com-

puting, Vienna, Austria) and Stata version 14.1 (Stata Inc., TX, USA).

Results

Characteristics of the 3 study populations are shown in S1 Table, and the flowchart is shown in

S1 Fig. The percentage of overweight or obese mothers was 20%, 15%, and 23% in ALSPAC,

NFBC86, and NFBC66, respectively, and for fathers was 47% and 32% in ALSPAC and

NFBC86, respectively. The highest percentage of overweight or obesity in offspring, at follow-

up, in adolescent or adulthood was seen in NFBC66 with 40% (mean age 31 years), followed

by ALSPAC with 21% (mean age 17 years), and NFBC86 with 11% (mean age 16 years).

Figs 2–4 show associations of parental BMI with the 153 offspring metabolic measures,

each expressed as a difference in means in SD units for a 1-SD greater parental BMI, from a

1-stage IPD meta-analysis restricted to the 2 cohorts with complete trio data (N = 5,327 to

5,377 trios). S3 Table shows the same associations expressed as magnitudes in absolute concen-

tration units (e.g., mmol/l per 1-SD difference in parental BMI). Both maternal and paternal

pre-pregnancy BMI were associated with a large proportion of the offspring metabolic traits

(maternal BMI associated with 49% and paternal BMI with 44% of offspring metabolic traits at

P< 0.003). The associations were mostly in the same direction for both parents and were in

the direction of more adverse cardio-metabolic risk in offspring with higher parental BMI in

pre-pregnancy.

Amongst lipoprotein lipids, the most marked positive associations were observed in 5 very-

low-density lipoprotein (VLDL) subclasses (all VLDL except the very small subclass). There

were no robust associations of parental BMI with offspring intermediate-density lipoprotein

(IDL) and low-density lipoprotein (LDL) subclasses. Strong inverse associations were observed

for the very large and large high-density lipoprotein (HDL) subclasses with the exception of

structural triglycerides that exhibited no clear associations. Lipoprotein particle sizes followed

the same pattern of associations as those observed with lipoprotein subclasses. Parental BMI
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was strongly positively associated with offspring VLDL cholesterol, VLDL triglycerides, tri-

glycerides, and remnant cholesterol, with the same direction and comparable magnitudes to

the first 5 VLDL lipoprotein subclasses. Conversely, HDL, HDL2, and HDL3 cholesterol sub-

fractions showed inverse associations, with magnitudes similar to the very large and large

Fig 2. One-stage individual participant data meta-analysis. Offspring lipoprotein and lipid differences in means in SD units per 1-SD

higher maternal (pink) or paternal (blue) body mass index (BMI), meta-analysed across Avon Longitudinal Study of Parents and Children

(ALSPAC) and Northern Finland Birth Cohort of 1986 (NFBC86) cohorts. Associations were adjusted for parental age, smoking, education,

head of household social class, maternal parity, offspring age at blood collection, sex, and cohort membership. Results are shown in SD-

scaled concentration units of outcome; differences in absolute concentration units are listed in S3 Table. Error bars = 95% confidence

intervals (CI). Abbreviations: IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; VLDL, very-low-density lipoprotein.

https://doi.org/10.1371/journal.pmed.1002376.g002
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HDL lipoprotein subclasses. Associations of parental BMI with apolipoprotein A-I and B were

in opposite directions, in agreement with the association pattern for lipoprotein subclasses.

Parental BMI was strongly positively associated with offspring branched-chain amino acids

and maternal BMI with aromatic amino acids.

Fig 3. One-stage individual participant data meta-analysis. Offspring lipoprotein and lipid differences in means in SD units per 1-SD

higher maternal (pink) or paternal (blue) body mass index (BMI), meta-analysed across Avon Longitudinal Study of Parents and Children

(ALSPAC) and Northern Finland Birth Cohort of 1986 (NFBC86) cohorts. Associations were adjusted for parental age, smoking, education,

head of household social class, maternal parity, offspring age at blood collection, sex, and cohort membership. Results are shown in SD-

scaled concentration units of outcome; differences in absolute concentration units are listed in S3 Table. Error bars = 95% confidence

intervals (CI). Abbreviations: C, cholesterol; HDL, high-density lipoprotein; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated

fatty acids.

https://doi.org/10.1371/journal.pmed.1002376.g003
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Mono-unsaturated fatty acids (MUFA) was the only FA clearly associated with parental

BMI when assessed alone or as a proportion of total FAs (MUFA-to-total FA ratio). Several of

the other FAs showed associations with parental BMI, but only as proportions of total FAs.

Poly-unsaturated (PUFA) to total FAs (PUFA-to-total FA ratio), ratio of linoleic acid (LA) to

Fig 4. One-stage individual participant data meta-analysis. Offspring metabolite differences in means in SD units per 1-SD higher

maternal (pink) or paternal (blue) body mass index (BMI), meta-analysed across Avon Longitudinal Study of Parents and Children

(ALSPAC) and Northern Finland Birth Cohort of 1986 (NFBC86) cohorts. Associations were adjusted for parental age, smoking, education,

head of household social class, maternal parity, offspring age at blood collection, sex, and cohort membership. Results are shown in SD-

scaled concentration units of outcome; differences in absolute concentration units are listed in S3 Table. Error bars = 95% confidence

intervals (CI).

https://doi.org/10.1371/journal.pmed.1002376.g004

Metabolomics in developmental overnutrition

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002376 August 22, 2017 11 / 19

https://doi.org/10.1371/journal.pmed.1002376.g004
https://doi.org/10.1371/journal.pmed.1002376


total FAs (LA-to-total FA ratio), and omega 6 to total FA ratio were all inversely associated

with parental BMI.

Parental BMI was not clearly associated with any of the glycolysis-related metabolites,

except citrate where there was an inverse association. Parental BMI was strongly positively

associated with offspring glycoprotein acetyls, an inflammatory marker.

Overall, associations across offspring metabolic traits were similar for maternal and pater-

nal BMI, as can be seen in Figs 2–4, and also by the similarity of results when directly model-

ling the 2 sets of point estimates by both linear fit and multi-level models (Fig 5—linear fit: R2

= 0.89 and slope = 0.78 ± 0.02; S2 Fig—multi-level model: R2
cond = 0.94 and R2

marg = 0.87). Fur-

thermore, for all except 1 of the metabolic traits, there was no strong statistical evidence that

associations differed between maternal and paternal BMI (Pboot > 0.003). Docosahexaenoic

acid (DHA)-to-total FA ratio was the only metabolic trait that showed some suggestion of dif-

ference in association between maternal and paternal BMI (mean difference in percentage per

1-SD BMI: βmother = −0.01, 95% CImother = −0.02 to −0.01, Pmother = 0.0002 versus βfather =

0.002, 95% CIfather = −0.01 to 0.01, Pfather = 0.66; Pboot for difference between the 2 associa-

tions = 0.0034; Figs 2–4). However, the difference between maternal and paternal association

appeared to be driven primarily by results in ALSPAC as the difference was not seen in

NFBC86 or the 2-stage IPD meta-analysis (S3 Fig).

When the 1-stage analyses were repeated to compare maternal BMI–offspring metabolic

trait associations in all 3 cohorts (N = 10,181 to 10,251) to paternal BMI–offspring metabolic

trait associations in the 2 cohorts with paternal BMI (N = 5,327 to 5,377), the maternal associa-

tions were essentially the same as those described above; no statistical evidence for stronger

maternal associations emerged (S4 Fig).

In the 2-stage meta-analysis, the associations were highly consistent across the 3 cohorts,

with just 5% and 3% of associations having I2 statistic�75% for maternal and paternal BMI,

respectively, suggesting that the majority of our findings replicate across the 3 independent

cohorts (S3 Fig and S4 Table). A comparison of the results from 1- and 2-stage IPD meta-anal-

yses showed very similar patterns of association for both maternal and paternal BMI (R2 = 0.96

and slope = 0.81 ± 0.01; R2 = 0.99 and slope = 1 ± 0.01, respectively, for maternal and paternal

BMI; S5 Fig). The magnitudes of associations in absolute concentration units for individual

cohorts, as well as for the 2-stage IPD meta-analysis, are shown in S4–S6 Tables.

Cross-sectional associations of offspring BMI with their metabolic traits had very similar

patterns (in terms of direction and which metabolic traits had strongest and weakest associa-

tions) to those seen for parental BMI but were considerably stronger in magnitude (S6 Fig).

When adjusting parental BMI–offspring metabolite associations for offspring BMI, most

attenuated markedly, such that many point estimates were in the opposite directions and the

vast majority were consistent with the null following this adjustment (S7 Fig).

Discussion

We report, to the best of our knowledge, the first study that investigates the potential influence

of maternal pre-pregnancy BMI on adult offspring serum metabolome to determine whether

intrauterine mechanisms related to developmental overnutrition result in metabolic disrup-

tion in adults when they are in their reproductive years. We found similar associations of both

maternal and paternal BMI with offspring systemic metabolism 16–17 years later and 31 years

later (the latter assessed with maternal BMI only), suggesting that shared familial genetic,

socioeconomic, and lifestyle characteristics rather than an intrauterine programming effect

explain the associations of maternal pre-pregnancy BMI with offspring metabolic measures

(Figs 2–4).
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Fig 5. Linear fit between paternal and maternal models (green dashed line). Each green dot represents a metabolic trait and the

positions of the dots are determined by difference in mean offspring metabolite (in SD units) for each increase of 1-SD maternal body mass

index (BMI) (x-axis) and difference in mean offspring metabolite (in SD units) for each increase in 1-SD paternal BMI (y-axis). The horizontal

grey lines on each dot denote the confidence intervals (CI) for maternal associations and the vertical grey lines indicate the CI for paternal

estimates. A linear fit of the overall correspondence summarises the similarity in magnitude between maternal and paternal associations

(green dashed line). A slope of 1 with an intercept of 0 (dashed grey line), with all green dots sitting on that line (R2 = 1), would indicate that

maternal and paternal estimates had the same magnitude and direction. R2 indicates goodness of linear fit and as such is a measure of the

consistency between maternal and paternal associations. Results are shown in SD-scaled concentration units of outcome, difference in

absolute concentration units are listed in S3 Table. Abbreviations: C, cholesterol; HDL, high-density lipoprotein; LDL, low-density lipoprotein;

MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids.

https://doi.org/10.1371/journal.pmed.1002376.g005
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Associations of greater parental BMI with offspring lipids were in the directions of an

adverse cardio-metabolic profile, with positive associations with VLDL-lipoproteins, VLDL-

cholesterol (C), VLDL-triglycerides, VLDL-diameter, branched/aromatic amino acids, glyco-

protein acetyls, and triglycerides, and inverse associations with HDL-lipoprotein, HDL-diame-

ter, HDL-C, HDL2-C and HDL3-C. Associations were also seen with FA ratios and some

amino acids. In further analyses, we demonstrated that in addition to similar associations

between paternal BMI with offspring metabolic traits (to those seen for maternal BMI), the off-

spring BMI was associated in a similar pattern (but with stronger magnitudes) to their meta-

bolic traits, further supporting the notion that shared familial characteristics explain these

associations. Lastly, we found that parental associations with metabolic traits attenuated

markedly with adjustment for offspring BMI, suggesting that shared familial characteristics

drive associations of maternal pre-pregnancy BMI and paternal BMI with their offspring BMI,

which in turn results in metabolic disruption (Fig 1).

Previous studies have compared associations of maternal and/or paternal BMI, measured

pre-pregnancy, with offspring adiposity (BMI [3,31–33], overall adiposity [31], central adipos-

ity [31–33]), with fewer also examining association with offspring lipids (HDL-C [31–33],

LDL-C [31,32], total cholesterol [31,32], triglycerides [31]), blood pressure [31–33], glucose

[33], and insulin [31]. Our study is generally larger than these previous studies, examines a

detailed metabolic profile with 153 metabolic traits (lipids, lipoproteins, and metabolites), and

assesses outcomes in offspring at older ages. Where it is possible to make comparisons, our

findings are consistent with the reported lack of association between maternal BMI and off-

spring total cholesterol [31,32], LDL-C [31], and glucose [33], and inverse association with

HDL-C [31,33] (previous studies N = 70 to 4,871; offspring age range: 4–8 years). Our results

also contrast reports from some of the same studies that found no association of maternal BMI

with offspring triglycerides [31,33] or HDL-C [32]. These differences might reflect differences

in the age of offspring outcome and/or that we are able to assess associations with more refined

outcomes (e.g., HDL-C subfractions). The only previous study that we were able to identify

that compared maternal to paternal BMI associations with any outcomes similar to ours and

with a similar size (N = 4,871) to our main analysis approach reported similar associations of

maternal BMI with total cholesterol, LDL-C, and HDL-C to those seen for paternal BMI [31],

as in our study, though that study found no association of either parental BMI with offspring

triglycerides. Associations between offspring BMI and their serum metabolomic profile are

similar to the ones reported by Wurtz et al. [34].

Our study has several strengths. It has a large sample size, included replication testing

across 3 different birth cohorts from 2 different countries, and included very detailed offspring

blood metabolome measurements. The consistency of associations across 3 independent stud-

ies using different analytical approaches suggests that our results are unlikely to be due to

chance. Furthermore, we used a negative-control approach (with paternal BMI) to explore

causal inference. Using paternal BMI as a negative control makes it possible to disentangle the

extent to which maternal BMI–offspring metabolite associations are due to casual intrauterine

effects or confounding by familial factors (i.e., genetic and/or shared lifestyle traits within fam-

ilies) [4,35]. As we would expect from previous studies [36–39], maternal and paternal BMI

are weakly correlated in our cohorts (0.17 in ALSPAC and 0.2 in NFBC86). This correlation is

likely to be driven by shared genetic, socioeconomic, and lifestyle characteristics [38,39],

which are the very characteristics that we were concerned would confound conventional

(without negative control) multivariable regression analyses of maternal BMI with offspring

metabolic traits. Thus, paternal BMI is an ideal negative control, as it fulfils the criteria of hav-

ing the same, or very similar, confounding structure as the main risk factor of interest (mater-

nal BMI), but it is implausible that paternal BMI would affect offspring future metabolism
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through the intrauterine overfeeding mechanisms that are hypothesised and that we have

investigated [4]. The fact that maternal and paternal associations are very similar highlights

the importance of the negative control approach and the likelihood that had we only presented

maternal multivariable adjusted results, incorrect conclusions about a possible intrauterine

effect may have been made. We performed a 1-stage IPD meta-analysis, which is the gold stan-

dard of meta-analysis [40], for our main analytical approach, but also tested the assumptions

of this approach, and the effect of harmonisation across studies, by comparing the results to a

2-stage IPD, and found high levels of consistency between the 2 approaches.

Limitations of our study include the use of parental BMI as a measure of adiposity; different

body composition characteristics, such as fat distribution or fat-to-lean body mass ratio, may

show differential associations with offspring serum metabolome. Moreover, maternal BMI was

self-reported, and paternal BMI was reported by their partners (i.e., the pregnant mothers),

which might have led to misclassification of parental BMI. Another limitation is that infer-

ences cannot be drawn about the role of circulating maternal fetal fuels (i.e., glucose, lipids,

FAs, and amino acids) on later offspring metabolic profile, as these were not measured during

pregnancy in our cohorts. It is possible that non-paternity for some of the fathers has affected

our results (for the NFBCs we had no information on this possibility). However, any impact of

non-paternity would be likely to selectively reduce paternal BMI associations, since there

would be no shared genetic effects on the association of paternal BMI with offspring metabolic

traits, and family lifestyle and socioeconomic associations may be weaker between non-biolog-

ical parents and offspring. This would thus tend to enhance maternal-paternal differences,

whereas we see similar associations between parents. Despite adjusting for several potential

confounders, residual confounding may still explain the associations that we have observed

between parental BMI and offspring. For example, we were unable to adjust for parental physi-

cal activity or dietary intake. These confounders are likely to be similar for maternal and pater-

nal BMI and so would be unlikely to bias our inference about specific maternal effects on

offspring metabolism (potentially due to intrauterine programming). Whilst we have a large

sample size, we may lack power to detect small differences between maternal and paternal

BMI associations with offspring metabolic traits, especially as the human circulating metabo-

lome is a tightly controlled homeostatic system, and even small differences between some met-

abolic traits might have important clinical impact. However, we think this is unlikely for many

of the traits we have examined. First, Figs 2–4 show that, for the majority, associations are pre-

cisely estimated (they have narrow CIs), and it can be clearly visualised that there is little differ-

ence in magnitude between maternal and paternal associations. Second, we have shown high

levels of consistency of maternal and paternal associations as demonstrated by their linear fit

(Fig 5) and multilevel model (S2 Fig), and by tests of heterogeneity that show for all but 1 of

the metabolic traits there is no strong statistical support for differences. Lastly, at the request of

the academic editor and a reviewer, we have undertaken a post-hoc power calculation. For our

main analyses, we compared associations in 5,327 to 5,377 mother-father-offspring trios; our

power calculation is based on a sample size of 5,300. At our multiple-testing adjusted alpha

level of 0.003 and with 80% power, we would be able to detect a minimum difference between

the maternal BMI–offspring metabolic trait and paternal BMI–offspring metabolic trait of

0.07-SD per 1-SD BMI, and with 90% power of 0.08-SD across all metabolic traits examined.

We have assessed BMI as a continuous variable to explore the hypothesis that each incremen-

tally greater maternal BMI overfeeds the developing infant in utero in a dose-response way,

and our results suggest that if that is the case it has no long-term effect on offspring metabo-

lism. However, we cannot exclude a threshold effect—i.e., maternal obesity (or extreme obe-

sity)—having a long-term effect via intrauterine mechanisms. Furthermore, our results may

not necessarily generalise to other non-European populations.
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In conclusion, the similarity of association between pre-pregnancy maternal BMI and

paternal BMI with offspring metabolic profiles suggests that maternal BMI associations are

likely to be largely due to shared genetic or familial lifestyle confounding rather than intrauter-

ine mechanisms. Further replication of these findings in other larger studies, including with

measured fat distribution in mothers and fathers at the time of the mother’s pregnancy, would

be valuable, though we are not aware of any studies with relevant data currently to be able to

do that.
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