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Abstract. In histopathological image assessment, there is a high de-
mand to obtain fast and precise quantification automatically. Such au-
tomation could be beneficial to find clinical assessment clues to produce
correct diagnoses, to reduce observer variability, and to increase objec-
tivity. Due to its success in other areas, deep learning could be the key
method to obtain clinical acceptance. However, the major bottleneck is
how to train a deep CNN model with a limited amount of training data.
There is one important question of critical importance: Could it be possi-
ble to use transfer learning and fine-tuning in biomedical image analysis
to reduce the effort of manual data labeling and still obtain a full deep
representation for the target task? In this study, we address this ques-
tion quantitatively by comparing the performances of transfer learning
and learning from scratch for cell nuclei classification. We evaluate four
different CNN architectures trained on natural images and facial images.

1 Introduction
There are two key concepts that makes neural networks powerful in various
applications. First, unlike conventional machine learning techniques, deep con-
volutional neural networks (CNNs) extract features automatically only by using
the training data. Second, deep learning methods discover image features at mul-
tiple levels (layers) which is called “feature hierarchies”. Features at each layer
are computed from the previous layer representations and it was shown that
features are learned gradually from low-level to high-level. Multi-level abstrac-
tion enables deep learning networks to handle very complex functions and high
dimensional data.

While deep learning algorithms achieves state-of-the-art results in different
machine learning applications, there are several challenges in their application in
biomedical domain. First, training deep CNN requires large amount of annotated
images to learn millions of parameters. Although large-scale annotated databases
are available for generic object recognition task (e.g. ImageNet), it is currently
lacking in biomedical domain. Annotating biomedical data requires expertise
therefore it is expensive, time consuming, and subject to observer variability.
Second, limited amount of training data leads “overfitting” and features can not
generalize well on data. Overfitting becomes more serious when the data contain
high variability in the image appearance which is usually the case in biomedical
domain. Third, training deep CNNs from scratch requires high computational
power, extensive memory resources, and time. Such approaches have practical
limitations in biomedical field.
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In generic object recognition tasks, “transfer learning” and “fine-tuning”
methods are proposed to overcome these challenges [13]. Transfer learning and
fine-tuning aims at reusing image representations learned from a source task and
a dataset with large amount of labeled data on a second target dataset and a
task [20]. It is shown to be an effective tool to overcome overfitting when the tar-
get dataset has limited amount of labeled data [13, 20]. However, transferability
of deep networks across unrelated domains have been found to be limited due to
data bias [13, 20, 8]. In this study, we exploit the transfer learning properties of
CNNs for cell nuclei classification in histopathological images. Although, there
are significant differences in image statistics between biomedical image datasets
and natural images, this study evaluates whether the features learned from deep
CNNs trained on generic recognition tasks could generalize to biomedical tasks
with limited training data. We evaluate four different CNN architectures trained
on natural images (ImageNet [6]) and facial images [7]. We compare the perfor-
mances of CNN models learned from scratch and fine-tuned from pre-trained
models for cell nuclei classification. We present an empirical validation that
initializing the network parameters with transferred features can improve the
classification performance for any model and learning from pre-trained network
model requires less training time than learning from scratch.

2 Related Work and Method

2.1 Nuclei Classification in Histopathology Images

Although there has been a progress in the development of image analysis al-
gorithms in histopathological image assessment [4, 19, 10], there is a still high
demand to obtain fast and precise quantification automatically. Such techniques
could be beneficial to find clinical assessment clues to produce correct diagnoses,
to reduce observer variability, and to increase objectivity. Due to its success in
other fields, deep learning could be the key method to obtain clinical acceptance.
However, the major bottleneck is how to train a deep CNN model with a limited
amount of training data. There is one important question of critical importance:
Could it be possible to use transfer learning and fine-tuning in biomedical im-
age analysis to reduce the effort of manual data labeling and still obtain a full
deep representation for the target task? In this study, we address this question
quantitatively by comparing the performances of transfer learning and learning
from scratch for nuclei classification using unrelated source tasks and datasets
from different distributions.

Cancer is still one of the top leading cause of death worldwide. In order to
develop better cancer treatments, it is important to analyse tumors at cellular
level to understand disease development and progression. In cancer histopathol-
ogy image analysis, convolutional neural networks are used for region of interest
detection, segmentation, and also for mitosis detection [2]. On the other hand,
there is a relatively little work on cell nuclei classification for histopathology im-
ages. However, the analysis of nuclei types provides deeper understanding about
the state of the disease[4] which has a critical importance for treatment strate-
gies. Hand-crafted (morphological and intensity) features are often employed



Transfer Learning for Cell Nuclei Classification in Histopathology Images 3

Epithelial Nuclei

Fibroblast Nuclei

Inflammatory Nuclei

Fig. 1: Examples of different classes of cell nuclei in routine hematoxylin and eosin
(H&E) stained histopathology images of colorectal adenocarcinoma. (From top
to bottom) Epithelial nuclei, Fibroblasts, and Inflammatory nuclei.

for classification purposes [4, 11]. They include complex preprocessing pipeline
including stain normalization, nucleus detection, and region of interest segmenta-
tion. This is mainly due to the heterogeneous structure of histopathology images.
In this study, we evaluate performances of convolutional neural network models
to classify cell nuclei in hematoxylin and eosin (H&E) stained histopathology
images of colorectal adenocarcinoma. We used a dataset of H&E stained histol-
ogy images of size 500×500 cropped from non-overlapping areas of whole slide
images from 9 patients. The database (HistoPhenotypes) is published recently
by Sirinukunwattana et al. in [16] where they also follow a CNN approach for
detection and classification purposes. Example patches of different classes of cell
nuclei in the dataset are shown in Figure 1.

2.2 Transfer Learning, Fine Tuning, and Full Training

Transfer learning has been explored in many problems including character recog-
nition [3], generic object recognition [13], computer aided diagnosis of lymph
node detection and interstitial lung disease classification [14], polyp detection
and image quality assessment in colonoscopy videos, human epithelial type 2
cell classification in indirect immunofluorescence images [1], embolism detection
[18], and segmentation [12, 18]. Earlier works in deep convolutional neural net-
works studied ‘learning from related tasks’ whereas recent studies follow domain
adaptation by learning shallow representation models to minimize the negative
effects of domain discrepancy [9]. Yosinski et al. [20] show that the feature trans-
ferability drops significantly when the domain discrepancy increases. They also
confirm that modern deep neural networks learn general features on the first
layers and features learned on the last layers depend greatly on the data and
therefore, they are specific. While shallower networks suppress domain specific
features and reduce domain discrepancy they have limited capacity to explore
and learn more complex features. On the other hand, there is a high feature
variability in the domain of biomedical imaging which requires deeper architec-
tures to obtain full representation for the target data. In this study, we used
CNN architectures with different depths and structures to explore their effects
on transfer learning and fine-tuning. We investigate four different CNN archi-
tectures: AlexNet [6], GenderNet [7], GoogLeNet [17], and VGG-16 [15].
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AlexNet [6] is the winner of ImageNet 2012 challenge that popularized CNNs.
It contains five convolutional and pooling layers and three fully connected layers
including local response normalization (ReLU) layers and dropouts. It operates
on 227×227×3 input images which are cropped randomly from 256×256 images.
GoogLeNet [17] architecture achieved the state-of-the art results in ImageNet
challenge in 2014. It has 22 layers with 9 inception units and finally a fully
connected layer before the output. The inception module has two layers and 6
convolutional blocks which is an intrinsic component of GoogLeNet. The main
contribution of this architecture is reducing the number of parameters of neural
networks. Although GoogLeNet is very deep, it has 12× fewer parameters than
AlexNet which makes it computationally efficient to train.
VGG-16 [15] has a similar architecture with AlexNet with more convolutional
layers. It has 13 convolutional layers followed by rectification and pooling layers,
and 3 fully connected layers. All convolutional layers use small 3 × 3 filters
and the network performs only 2 × 2 pooling. VGG-16 has a receptive field
of size 224 × 224. Although VGG-16 performs better than AlexNet and has a
simpler architectural design, it has 3× more parameters which requires more
computation.
GenderNet [7], this small network contains three convolutional layers followed
by rectified linear operation and pooling layers, and two fully connected layers.
GenderNet is used for both age and gender classification from real-world, uncon-
strained facial images which comes from a much smaller dataset than ImageNet.

There are basically two techniques in transfer learning: fine-tuned features
and frozen features [20]. When the layers are frozen and initialized from a pre-
trained network model, there is no need to back-propagate through them during
training and they behave as fixed features without changing on the new task.
Fine-tuning involves back-propagating the errors from the new tasks into the
copied layers [20]. In this study, we adopt a different strategy by choosing dif-
ferent learning rates for the layers coming from the source network and the new
layers in the target network. We allow layers copied from the source network
change slowly whereas we learn features at higher layers (last fully connected
layers) with higher learning rates (fine-tuning). We propose to utilize this to
train the network data specific features while tuning the well learned features
from the source task without overfitting. On the other hand, full training requires
learning from scratch with all the network layers initialized randomly.

3 Experiments and Results

HistoPhenotypes dataset involves 29,756 manually marked cell nuclei from 100
H&E stained images. Out of these, 22,444 nuclei are classified into four labels:
epithelial, inflammatory, fibroblast, and miscellaneous. Miscellaneous category
consists of mixed cell nuclei therefore, we have excluded it from this study.
There are 7,772 epithelial, 5,712 fibroblast, and 6,971 inflammatory cell nuclei.
In our experiments, a total number of 20,405 cell nuclei are divided randomly into
training (17,004 nuclei) and testing (3,401 nuclei) set. We cropped small patches
of sizes 32 × 32 around the cell nuclei centers which is large enough to contain



Transfer Learning for Cell Nuclei Classification in Histopathology Images 5

Number of Iterations
0 200 400 600 800 1,000 1,200 1,400 1,600

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Transfer Learning vs. Full Training (AlexNet)

Transfer Learning
Full Training

(a) AlexNet
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(b) GenderNet
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(c) GoogLeNet
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(d) VGG-16

Fig. 2: Comparison of transfer learning with fine tuning and full training for
networks a) AlexNet, b) GenderNer, c) GoogLeNet, and d)VGG-16.

whole nucleus. However, the network models we use in our experiments have
larger receptive fields (∼ 256×256). Therefore, we upsampled cell nuclei patches
to 256× 256 images. Raw images are then used without any other preprocessing
or data augmentation. During training, mean intensity subtraction is employed
to normalize illumination changes.

In our experiments, all networks are trained using the minibatch stochastic
gradient descent with a momentum factor of 0.9. We initialize the base learning
rate (lr) as 0.001 and decrease the learning rate as follows: lrnew = lrbase × (1 +
γ × iteration number)power with power=0.75 and γ=0.001. All network models
are trained for 10 epochs either learned from scratch or fine-tuned from pre-
trained models. We utilize a batch size of 100 images for AlexNet and GenderNet,
whereas GoogLeNet and VGG-16 operates on a minibatch of 50 images due to
memory constraints. Our implementation is based on the Caffe library [5].

When we learn models from scratch, the network parameters are initialized
randomly either from Gaussian distributions (AlexNet and GenderNet) or with
Xavier algorithm (GoogLeNet and VGG-16) which is provided in Caffe. For
transfer learning, we used models pre-trained on ImageNet database for generic
object recognition except GenderNet architecture which is trained on a much
smaller facial dataset [7] for gender classification. For all the network architec-
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tures we experimented, firstly we copied all the layers from source models to
our target networks except the last fully connected layer. Then we modified the
last fully connected layers for adapting models to our nuclei classification task in
which the output is fed into a 3-way softmax, initialized randomly and trained
from scratch.

Figure 2 shows classification accuracies of test set for AlexNet (Figure 2a),
GenderNet (Figure 2b), GoogLeNet (Figure 2c), and VGG-16 (Figure 2d). For
simplicity and to avoid clutter we present only test set accuracies. In each fig-
ure, we plot the performance of transfer learning and fine-tuning, and full train-
ing against the number of iterations. Because the batch sizes are smaller in
GoogLeNet and VGG-16, required number of iterations are higher to train them
for 10 epochs. First, we can observe from the comparisons that the transfer
learning outperforms full training. In the GenderNet model, the classification
accuracy of the test set for transfer learning and full training are comparable.
This difference could be due to the size of the feature space of the source task
and the depth of the network. Second, we also observed that fine-tuned mod-
els converges much earlier than their fully trained counterparts which concludes
that transfer learning requires less training time to achieve the maximum perfor-
mance. After the first epoch, the classification accuracies for fine-tuned AlexNet,
GenderNet, GoogLeNet and VGG-16 are 85.68%, 80.62%, 84.03%, and 87.27%
respectively. Accuracies at the same time for full training are 71.13%, 77.18%,
77.42%, and 82.18% in the same order. Deeper architectures AlexNet and VGG-
16 convergence faster in the fine-tuned settings which is an indication that they
can handle more complex features. A maximum of 88.03% accuracy is achieved
with fine-tuned VGG-16 model.

Although there is a great difference between natural/facial images and biomed-
ical images, transfer learning and fine tuning provides much better results than
learning from scratch. We confirm that the feature transferability is affected by
the depth of the network, source task, and the diversity of the source data. Exper-
imental results are promising that the features learned from deep CNN networks
trained on generic recognition tasks could generalize to biomedical tasks and
they could be used to fine-tune new tasks having small datasets.

4 Conclusion

Deep learning opened a new era in the field of image analysis including the
biomedical domain. Although learning parameters in deep architectures requires
a lot of labeled training data which is difficult to obtain in the biomedical domain,
transfer learning provides promising results in reducing the effort of manual data
labeling by reusing the learned features from a different source task and data.
In this study, we compared four different CNN models with depths ranging from
3 to 13 convolutional layers. Firstly, our empirical results show that initializing
the network parameters with transferred features can improve the classification
performance for any model. However, deeper architectures trained on bigger
datasets converges quickly. Secondly, learning from pre-trained network model
requires less training time than learning from scratch.
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17. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE, CVPR.
pp. 1–9 (2015)

18. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway,
M.B., Liang, J.: Convolutional neural networks for medical image analysis: Full
training or fine tuning? IEEE transactions on medical imaging 35(5), 1299–1312
(2016)

19. Veta, M., Pluim, J.P., van Diest, P.J., Viergever, M.A.: Breast cancer histopathol-
ogy image analysis: A review. IEEE Transactions on Biomedical Engineering 61(5),
1400–1411 (2014)

20. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in Neural Information Processing Systems.
pp. 3320–3328 (2014)


