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ABSTRACT

The primary goal of this thesis is to introduce the reader to the fundamentals of
optical methods for cardiovascular monitoring. Opposed to traditional methods
that rely on measuring the electrical activity of the heart with electrodes, optical
methods utilize light and are thus considered indirect methods. The thesis begins
with an introduction to photoplethysmography, a commonly used technique
based on illuminating the skin and measuring the intensity of the reflected or
transmitted light. In addition to presenting the operating principle of this method,
some of the key issues and use cases are discussed; in particular, methods for
estimating heart rate will be presented in more detail, including an example
algorithm. Additionally, the core principles of the Arduino ecosystem and the
WebSocket protocol will be considered.

In the latter part of this thesis, an implementation of an Internet of Things
-capable optical heart rate meter based on the Arduino MKR1000 will be
presented. Finally, the drawbacks and benefits of both photoplethysmography
and the implemented system will be discussed in brief.

Keywords: photoplethysmography, cardiovascular monitoring, WebSocket,
Internet of Things
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TIIVISTELMA

Taman kandidaatintyon tavoitteena on esitelli lukijalle sydidn- ja
verisuonijirjestelmin  toiminnan mittaamiseen  kiytettivien optisten
menetelmien péaidperiaatteita. Toisin kuin perinteiset menetelmiit, jotka
perustuvat sydidmen sihkoisen toiminnan mittaamiseen elektrodien avulla,
optiset menetelmiit hyodyntaviit valoa ja ovat siten epasuoria menetelmii. Tyosséi
Kisitellddn yleisesti kiytossd olevaa fotopletysmografiaa, joka perustuu ihon
valaisemiseen ja heijastuneen tai lipiisseen valon intensiteetin mittaamiseen.
Fotopletysmografian toimintaperiaatteen esittelemisen lisiksi Kkésitellddn
joitakin tidrkeimpid kiyttokohteita ja menetelmin haasteita. Tarkemmin
kisitelliin fotopletysmografiaan perustuvan sykemittauksen toimintaperiaate
ja esitellaiin esimerkkialgoritmi. Tidmén jilkeen Kisitelldin péapiirteittiin
Arduino-ekosysteemié ja WebSocket-protokollaa.

Tyon jalkimmaéisessi osassa esitelldiin esineiden Internet -kiyttoon soveltuva
toteutus optisesta sykemittarista. Toteutukseen kiytetiin Arduino MKR1000
-kehitysalustaa ja hyodynnetiin WebSocket-protokollaa. Lopuksi pohditaan
lyhyesti seké fotopletysmografian ettii toteutetun sykemittarin ansioita, haasteita
ja jatkokehitysmahdollisuuksia.

Avainsanat: esineiden Internet, fotopletysmografia, kardiovaskulaaritoiminnan
seuranta, WebSocket
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LIST OF ABBREVIATIONS AND SYMBOLS

AC alternating current

ADC analog-to-digital converter

API application programming interface
BP blood pressure

CSS Cascading Style Sheets
deoxy-Hb deoxygenated hemoglobin

DC direct current

DOM Document Object Model

ECG electrocardiography, electrocardiogram
HTML HyperText Markup Language

HR heart rate

IoT Internet of Things

IR infrared

LED light-emitting diode

LS light source

MA motion artifact

OHRM optical heart rate monitoring
oxy-Hb oxygenated hemoglobin

PD photodetector

PP peak-to-peak

PPI peak-to-peak interval

PPG photoplethysmography, photoplethysmogram
Ul user interface

A; absorbance of the ith layer

i concentration of the ith layer

d; optical path length in the ¢th layer
e Euler’s number

fs sampling rate

I; light intensity in the ith layer

Iiy intensity of incident light

Lirans intensity of transmitted light

L threshold value

M threshold value

n number of layers

N window size

Negq length of cooldown period

Di sampling instant of the ith peak
PPI; peak-to-peak interval in samples
PPI; peak-to-peak interval in seconds
x[n] nth sample

€ extinction coefficient of the ith layer



1. INTRODUCTION

In the recent years, wearable sensors have become commonplace and widely available.
Featured on everyday devices such as smartwatches, they are utilized both by athletes
and ordinary individuals for health monitoring. As a result, the need for reliable yet
convenient methods for measuring various health-related metrics has emerged. Optical
methods are often used since they are convenient and possess numerous advantages
over traditional methods. In particular, heart rate (HR) is considered an important
metric; it provides a good glimpse of an individual’s overall health while still being
easy to measure and interpret.

Additionally, various health-related cloud services have been gaining in popularity.
Since health monitoring devices often feature Internet of Things (IoT) connectivity, the
data produced by them can be distributed to the cloud for further analysis. By utilizing
machine learning approaches, it has become possible to derive useful physiological
information that can then be utilized for improving the user’s health, including disease
prevention and detection.

In this thesis, some methods for physiological monitoring with optical methods will
be considered. The primary aim is to introduce the reader to the fundamentals of
optical methods for cardiovascular monitoring by conducting a brief literature review
on the operating principles, use cases and key issues of these methods; in particular,
optical heart rate monitoring (OHRM) will be considered. Additionally, concerning
wearable 10T devices, the fundamentals of the WebSocket protocol and the Arduino
platform used for prototyping purposes will be presented. With this foundation, an
IoT-based optical heart rate monitor implementation utilizing the Arduino MKR1000
device will be presented in Chapter 3, demonstrating these concepts in practice.



2. RELATED WORK

This chapter introduces the reader to photopletysmography (PPG), an optical and non-
invasive method for obtaining various cardiovascular metrics. Additionally, the core
principles of the WebSocket protocol and the Arduino platform will be presented.

2.1. Photopletysmography

Traditionally, electrocardiography (ECG) has been viewed as the gold standard for
measuring various heart-related metrics [1], meaning that it is considered superior to
other methods specifically in terms of measurement accuracy and is often used as a
point of comparison. This is due to the fact that ECG is a direct technique based on
monitoring the electrical activity of the heart with bioelectrodes placed on the skin [2].
However, requiring electrode placement, ECG limits the mobility of the user and can
be cumbersome to use, particularly in wearable applications [2].

In order to overcome these limitations regarding flexibility and convenience, optical
methods have been developed. While being non-invasive like ECG, these methods
utilize light instead of electrical activity for measuring various cardiovascular metrics.
As such, they are considered indirect methods since unlike ECG, they do not directly
measure the electrical activity of the heart.

The technique considered in this chapter is PPG, a popular optical method that can
be utilized for a variety of purposes ranging from HR estimation to disease detection.
Opposed to ECG, PPG features simpler hardware implementation and is considered
more cost effective [2].

2.1.1. Operating Principle

PPG is based on illuminating the skin and measuring changes occurring in the
absorption of the light as a function of time [2]. Since light absorption depends on
volumetric changes of the blood occurring in the tissue, the events of the cardiac cycle
are reflected in the intensity of the light and measuring this provides various kinds
of information about the cardiovascular system. As such, the measurement system
consists of two fundamental components, a light source (LS) and a photodetector
(PD) [2]. Often, an infrared (IR) or green light-emitting diode (LED) is utilized
since longer wavelengths generally provide better tissue penetration, resulting in better
signal quality [2].

In addition, the raw PPG signal obtained from the PD requires preprocessing. Due
to a relatively non-complex waveform, simple processing often suffices for obtaining
a sufficiently clear signal [3]. For this purpose, an amplifier and filters are typically
utilized. A low-pass filter is used for removing the baseline and a high-pass filter is
applied in order to eliminate any high-frequency noise present in the signal [4]. A
microprocessor is then utilized for processing the filtered signal and deriving useful
properties from it [4].

PPG sensors can be classified by how the measurement is implemented [2]. In
transmittance mode, the light source (LS) and the photodetector (PD) are placed on



opposite sides of the body part utilized for the measurement [2]. The light then
passes through the tissue and the non-absorbed part reaches the detector placed on
the opposite side. In contrast, when reflectance mode is utilized, the light source and
the detector are placed side by side [2]. The detector then receives the light that is
reflected back from the tissue. Reflectance mode is often utilized if reliable signal
cannot be obtained with transmittance mode, e.g., due to large thickness of the body
part or the presence of bones. In addition, it is often considered more convenient and
is utilized in smartwatches. These two modes have been illustrated in Figure 1.

LS
PD LS PD

(a) (b)

Figure 1. Illustration of (a) transmittance mode and (b) reflectance mode measurement
on a finger.

Next, the physical foundation of the transmittance mode PPG measurement will
be considered in brief. When light passes through a medium, the intensity of the
transmitted light is given by Beer—Lambert’s law [3]. According to it, the intensity
Liyans Of the transmitted light is

A —dce
]trans: in€ = 1in€ 5 (1)

where [;, is the intensity of the incident light, e Euler’s number and A absorbance
[3]. The absorbance is dependent on the optical path length (d), the concentration of
the medium (c) and the extinction coefficient (¢) which is an intrinsic property of the
medium [3]. In the body part utilized for the measurement, the light passes through
several layers of tissue that include the skin, muscle, bone and blood. Assuming that
there are n layers in total with each layer having an absorbance of

A; = —d,cie, 2)

it can be seen by applying Equation 1 that the intensity of light passing through layer
lis

Il = meAl . (3)
Similarly, it can be deduced that the light intensity through layer 2 is
I, = L™ = [,ete® = [e T4, (4)

Continuing in this manner, it can be derived that the light intensity on the opposite side
of the finger is then given by
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I, = Lye>imt i, (5)
The layers and the corresponding light intensities have been illustrated in Figure 2.
v
layer 1: A; ¢ I1
layer 2: A, ¢ I

v
layern: A, l I,

Figure 2. The n layers and their corresponding absorbances. In addition, the light
intensities in each layer have been marked. [;, is the incident light intensity and /,, the
intensity at the opposite side of the finger.

From this, it can be seen that the intensity of the transmitted light decays
exponentially when the optical path length increases [3]. Since the pulsation of the
heart results in periodic expansion and contraction of the arteries, periodic changes
occur in the optical path length [5]. In this manner, the small blood volume changes
caused by pulsation of the heart are reflected in the intensity of the transmitted light
that is then measured and interpreted.

2.1.2. The PPG Waveform

The PPG waveform is comprised of two main components [6]. The large non-pulsatile
direct current (DC) component corresponds to the baseline of the signal; it results from
absorption of the light by static tissues, including bones, muscles and venous blood [6].
However, there is also some variation in the baseline due to low frequency fluctuations
that can be caused by respiration and activity of the nervous system [3]. In contrast,
the pulsatile, comparatively small alternating current (AC) component stems mainly
from the small arterial blood volume changes in the tissue caused by pulsation of the
heart as discussed in the previous subsection [6].

Since the AC component reflects volumetric changes of the arterial blood, numerous
phases of the cardiac cycle can be identified from it. Some of these are highlighted in
Figure 3. The first part of the waveform is the systolic component that mainly results
from the pressure wave directly propagating from the left ventricle of the heart to the
finger [7]. The highest point of this phase is the systolic peak that is reached when the
blood volume in the tissue is maximal [3]. After this, the systolic phase ends in the
dicrotic notch that corresponds to the closing of the aortic valve [8]. At this point, the
diastolic phase begins. Primarily, it is the result of pressure waves that are reflected
from smaller arteries located in the lower body and then reach the finger through the
heart [7].
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Figure 3. The PPG waveform and some of its components; the systolic phase of the
first cycle has been emphasized with a red color. Note that the DC and AC components
have not been drawn to scale for clarity.

2.1.3. Heart Rate Estimation

Reflecting the functioning of the cardiovascular system, there are numerous
characteristics that can be derived from the PPG signal. Deriving heart rate (HR) will
now be considered in more detail since unlike various other metrics, it does not require
complex analysis of the PPG signal [9]. HR is also the metric that is utilized in the
implementation part of this thesis.

In order to estimate HR from the PPG signal, one can utilize either the time domain
or the frequency domain. In the time domain, HR estimation is typically based on
finding the time intervals between certain parts of the periodic signal [10]. Perhaps
the simplest approach is detecting peaks in the signal and finding the time differences
between consecutive peaks. Often, the systolic peaks are utilized since they typically
appear pronounced on the signal [10]. From the time intervals, one obtains the intervals
between consecutive peaks called peak-to-peak intervals (PPI) that can then be utilized
for HR estimation [10].

Numerous algorithms have been proposed for peak detection, ranging from
relatively non-complex thresholding and derivative-based methods to methods that
utilize more advanced tools, such as wavelets and neural networks [3]. While a simple
algorithm can suffice for a high-quality PPG signal, more advanced algorithms are
often required in practice. This is due to the fact that real-world PPG signals typically
suffer from various kinds of noise and artifacts.

As an example of a peak detection algorithm, the mountaineer’s method for peak
detection proposed by Argiiello-Prada [11] will now be considered briefly. In this
method, the PPG pulse is modelled as a mountain with the systolic peak corresponding
to the mountain top. The aim is to detect the systolic peaks and the sample x[i| obtained
at sampling instant ¢ is considered to be a part of the systolic rising edge if it holds that

x[i] > x[i — 1] when i > 1. (6)



12

A peak could then be detected at the point where Condition 6 no longer holds,
i.e., when the derivative of the signal changes from positive to negative or zero.
However, since noise could easily result in detecting erroneous peaks, a threshold
value is utilized. The change in the derivative of the signal is only considered to
indicate a systolic peak if Condition 6 has been met L times. This threshold value
is updated dynamically based on the number of samples required to reach the systolic
peak, enabling the detection of new peaks even when HR increases. The particular
advantages of this method include ease of implementation and the fact that unlike
several other methods, it does not depend on the signal amplitude [11].

In contrast, the frequency domain approach is generally based on calculating the
power spectrum of the PPG signal in a time window [12]. From the resulting
periodogram, the aim is to detect the fundamental frequency of the AC component
that corresponds to the heart rate [12]. While one avoids the challenges associated
with detecting peaks from the noisy signal in time domain, it can be at least equally
difficult to discern the peak corresponding to the heart rate from the peaks caused by
low-frequency noise present in the signal. In the approach proposed by Ahamed et al.
[12], this is accomplished by utilizing multi-stage adaptive filtering and then singular
spectrum analysis in the frequency domain for noise reduction. It is expected that this
filtering suppresses the noise peaks sufficiently, making the peak corresponding to the
HR easier to detect reliably.

2.1.4. Other Use Cases

In contrast to HR, other metrics that can be derived from the PPG signal generally
require more complex analysis of the waveform [3]. Many of these metrics have
important applications in a clinical setting and are based on the fact that blood
circulation is modulated by various systems of the body [3].

A very common use case for PPG is measuring oxygen saturation (SpO,). The
measurement system is based on dual-wavelength PPG, typically featuring a red
LED and an IR LED [4]. Since oxygenated (oxy-Hb) and deoxygenated (deoxy-Hb)
hemoglobin absorb light at these wavelengths differently, the resulting light intensities
can be used for estimating the amounts of oxy-Hb and deoxy-Hb present in the arterial
blood [4]. SpO, can then be estimated from the relative amounts of oxy-Hb and deoxy-
Hb [4].

Containing a respiratory component, the PPG signal can be also utilized for
determining the breathing rate. There are various mechanisms on how respiration
affects the PPG signal; one such mechanism is the variation of intrathoracic pressure
that is then reflected in the PPG signal [2]. Since traditional methods for respiratory
monitoring typically require wearing a chest band and a nasal cannula [2], a PPG-based
method can greatly improve user comfort.

Serving as an indicator for hypertension, another research interest has been cuffless
blood pressure (BP) measurement. While the relationship between BP and the PPG
signal is not yet completely understood, deep learning models have already been
succesfully utilized for BP estimation [13]. As an input to the models, either the raw
PPG signal or some selected derived features, such as area under the curve or inflection
points, are used [13].
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Additionally, since the PPG waveform is modulated by individual differences, PPG
can be utilized for assessing cardiovascular function and detecting diseases. One such
metric is arterial stiffness that is indicated by the steepness of the systolic peak [2].
Furthermore, it has been shown that the second derivative of the PPG signal, indicating
the acceleration of the blood, contains various kinds of useful information regarding
the condition of the cardiovascular system [2]. For instance, it can be utilized for
estimating the risk of coronary heart disease and determining the arterial stiffness index

[2].

2.1.5. Issues

While photoplethysmography is considered to be better suited for wearable
applications than ECG in many respects, it still suffers from several issues that
complicate its use particularly in wearable devices.

Like many biosignals, the raw PPG signal is feeble. Due to this, it can be difficult to
reliably discern the useful PPG signal from noise [10]. This issue can be exacerbated
even further due to the fact that computationally intensive signal processing might be
infeasible to implement in wearable devices that are typically resource-constrained,
possibly resulting in a tradeoff between accuracy and resource consumption.

Concerning noise, the PPG signal is particularly susceptible to motion artifacts (MA)
that are caused by voluntary or involuntary movements of the body [9]. Since these
artifacts often overlap with the interesting parts of the signal in the frequency domain,
basic filtering in the frequency domain is not applicable for eliminating the artifacts
[9]. Instead, acceleration data is often measured alongside the PPG signal. Adaptive
filtering can then be utilized for reducing the noise by using the accelerometer data as
a reference signal [12].

In addition, the baseline of the signal can fluctuate due to events such as respiration
and nervous activity [3]. Particularly in reflectance mode, the wander can also be
caused by poor contact between the body part and the sensor. Since this can complicate
the interpretation of the signal, adequate preprocessing is required in order to mitigate
the baseline wander. Often, high-pass filtering is utilized for removing the fluctuation.
However, similarly to MAs, the frequencies of the baseline wander often overlap with
the frequencies of the AC component. High-pass filtering can thus result in distortion
of the waveform [3].

Furthermore, numerous individual characteristics and environmental factors can
easily alter both the shape and the amplitude of the resulting waveform. These factors
include the user’s age, gender, skin tone, condition of the vascular system and thickness
of the subcutaneous fat layer [9]. For instance, low temperature or poor condition of
the vascular system can cause hypoperfusion and result in lower signal amplitude [3].
However, as discussed previously, this can be also perceived as an advantage since
these differences reveal information about the condition of the cardiovascular system.
Overcoming these challenges requires careful algorithm planning that manages to take
into account individual and environmental characteristics.
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2.2. Arduino

Arduino' is an electronics platform originally developed for low-threshold prototyping.
The Arduino ecosystem consists of Arduino boards and software. Although originally
developed for prototyping purposes, Arduino devices have been gaining in popularity
and are nowadays used for a variety of different purposes, ranging from teaching
demonstrations to full-fledged projects. The key advantages of Arduino products
include ease of use, low cost, cross-platform support and open-source platform [14].

The hardware side of the ecosystem consists of Arduino boards. They are essentially
microcontroller boards that feature easily programmable interfaces, making it possible
to develop prototypes without in-depth electronics knowledge. Some key features
include USB connectivity and input/output pins that can be utilized for attaching
sensors and actuators; two types of pins are featured. A digital pin has only two
possible states (LOW and HIGH) whereas analog pins feature integer values from 0
to 1023. Since the boards contain a built-in analog-to-digital converter (ADC), the
analog pins can also be used for sampling a signal provided by a sensor [15].

Concerning software, Arduino boards can be programmed with Arduino Integrated
Development Environment (IDE), a tool featuring a code editor, an interface for
progamming the device and debugging tools. For programming the device, the
Arduino Programming Language built on top of C++ can be utilized. Furthermore, the
structure of Arduino code is simple to understand since minimally, only two functions,
setup () and loop (), are required [16]. The function setup () is ran once in the
beginning of the program while 1oop () is ran repeatedly [16].

Additionally, a wide variety of different libraries providing extra functionality
are available. For instance, there are libraries providing wrappers for wireless
communication and tools for data processing. The Arduino IDE can be utilized for
installing the libraries and utilizing them in the Arduino code.

2.2.1. MKR1000

In addition to the general features presented above, the Arduino MKR1000 utilized in
the implementation part of this thesis features built-in Wi-Fi connectivity. This enables
interacting with the device through the Internet and makes the board well-suited for [oT
applications. Additionally, it features a powerful SAMD?21-based processor [17].

Furthermore, the MKR1000 is compatible with Arduino IoT Cloud, an online
platform for creating IoT projects. It features tools for configuring the Arduino board
and automatically creating code for programming the board [18]. For displaying the
data provided by the device, a visual interface called dashboard is featured [18]. For
example, it could be utilized for monitoring temperature with an Arduino device and
displaying this data on another device.

"http://www.arduino.cc
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2.3. WebSocket

WebSocket is a full-duplex communication protocol facilitating bidirectional message
exchange between a client and a server [19]. Compared to traditional half-duplex
Hypertext Transfer Protocol (HTTP), WebSocket has less overhead and it eliminates
the need to poll for new data from the server. Due to these advantages, it is especially
well-suited for real-time web applications that require continuous and low-latency
data transfer between a server and clients. Instead of initiating multiple Transmission
Control Protocol (TCP) connections by periodic polling, only a single TCP connection
is utilized.

An example of message exchange over WebSocket protocol has been presented in
Figure 4. Initially, the client sends a WebSocket handshake request to the server. The
handshake request is essentially a HTTP GET request that contains relevant headers,
including an Upgrade header that invites the server to switch to the WebSocket protocol
[19]. The server then provides a WebSocket handshake response containing the HTTP
101 Switching Protocols status code, indicating that the server is switching to the
WebSocket protocol as requested by the client [19]. After the connection has been
established, the client and server can send messages back and forth with minimal
overhead. Finally, the connection can be closed by either party.

handshake request

>

handshake response
Client |[€ Server

D _ bidirectional messaging gi

connection closed
by either party

/

Figure 4. The messages exchanged between a client and a server during a WebSocket
connection.
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3. IMPLEMENTATION

In this chapter, the structure and functionality of the implemented heart rate
measurement system is presented. The aim was to implement a system that
demonstrates the main concepts of OHRM and IoT communication utilizing the
WebSocket protocol.

The Arduino MKR1000 is utilized for implementing the OHRM. Furthermore, it
connects to a Wi-Fi network and functions as a WebSocket server, sending the HR
data to connected clients in the local network. The system architecture consisting of
a Wi-Fi router, the MKR1000 with a pulse sensor attached and connected clients is
depicted in Figure 5.

®

MKR
1000

Server

Client

Wi-Fi router

Client

Figure 5. The architecture of the implemented system.

Next, the hardware and software implementation of the OHRM system is presented.
Finally, the implementation of the client-server -functionality and the integration of the
OHRM system into this will be considered.

3.1. Heart Rate Measurement

The implementation of the heart rate measurement system was divided into three parts.
First, the utilized hardware will be discussed. Next, a method for detecting the peaks
in the obtained signal and estimating the HR will be presented. Finally, the presented
method will be implemented in software.

3.1.1. Hardware

Considering the hardware implementation of the measurement system, the initial plan
was to utilize only basic electrical components and use Vishay’s TCRT5000 which
combines an IR LED and and an IR receiver into a single module. The simple circuit
depicted in Figure 6 was built for this purpose. However, this approach was discarded
since even though the PPG waveform could be identified, the resulting signal was very
noisy. In particular, the signal contained high baseline drift and was extremely sensitive
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to finger placement to the point that HR estimation did not seem feasible. Additionally,
one of the components was rendered useless in an electrical mishap.

2200 A
] A
| I |

Vcc O0—o

1kQ

1
l
/, g
Vout ”

Figure 6. The circuit diagram of the initial system.

Instead of building a more complex circuit with hardware-based filtering and
amplifiers, it was decided to utilize a sensor designed specifically for this purpose.
The Sparkfun SEN-11574 was chosen for its ease of use and due to the fact that it
features built-in signal amplification and noise cancellation [20], likely reducing the
need for filtering in the software. Furthermore, being a reflective-mode sensor, it
enables utilizing a wider variety of measurement sites.

The SEN-11574 features three header pins: one for supply voltage (Vdd), another
for the signal output and a ground pin (GND) [20]. Since the input voltage range is 3
... 5.5 V [20], the Arduino’s +3.3 V supply (Vcc) is utilized directly for powering the
sensor. The signal output is fed to one of the Arduino’s analog inputs (A0), enabling
the MKR1000 to sample the signal with its ADC. The system is shown in Figure 7.

Figure 7. The system in action; a finger is placed on the SEN-11574.
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3.1.2. Peak Detection and HR Estimation

Having decided on the hardware implementation, the software implementation for
analyzing the data provided by the sensor and estimating the HR from it was considered
next. The method used for estimating the HR is based on detecting the systolic peaks
of the PPG signal. This method was chosen since the systolic peaks appear pronounced
on the signal provided by the pulse sensor, likely making them easier to detect reliably
than other parts of the waveform. Utilizing the sampling intervals of the detected
peaks, one can obtain the PP intervals and use them to calculate the corresponding HR
estimate.

For peak detection, a naive thresholding approach was first considered. In this
approach, a peak would be detected when the signal crosses a certain predetermined
threshold. However, this would likely result in detecting multiple occurrences of
the same peak. Furthermore, a fixed threshold would not account for variations in
the signal amplitude caused by differences in finger positioning and the individual
characteristics discussed in Chapter 2.

As a more dynamic approach, a simplified version of the mountaineer’s method
discussed in Chapter 2 was considered. In this method, a peak is detected when the
derivative of the signal changes sign from plus to minus. However, remaining noise in
the signal could result in detecting the diastolic peak and false peaks.

In the method utilized in this thesis, parts from these two approaches were combined.
The sample z[n] obtained at a sampling instant n = 1,2,... is considered a peak
candidate if it holds that

zn| < x[n — 1], (7
xzln] > M, (8)

where M 1is a fixed threshold. Condition 7 aims at detecting a falling edge of the signal
while Condition 8 aims at preventing the detection of erroneous peaks. Furthermore,
a cooldown period N4 is utilized to prevent noise peaks and detecting the same peak
multiple times. A sample x[n] fulfilling Conditions 7 and 8 is only considered a peak
if none of the last N.q samples have been classified as a peak.

After detecting two successive peaks at sampling instants p; and p;.q, the
corresponding PP interval is found to be

PPLs = piy1 — pi ©)
samples. With a sampling rate of f;, this corresponds to a time interval

1
PPIL; = ?(pi—&—l —pz‘)- (10)

From this, it can be deduced that the corresponding heart rate estimate is

60

HR = 60/PPIt = —
Pi+1 — Di

(1)
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With the aim of increasing stability, averaging is utilized. The moving average of the
last NV PP intervals is calculated and this is then used for obtaining the HR estimate
sent to the server and eventually shown to the user.

3.1.3. Software

The algorithm described in the previous subsection was implemented in the Arduino
MKR1000. This approach was chosen since the algorithm is computationally
lightweight and one avoids the delays that would be associated with running the
algorithm in another device. Additionally, this enabled utilizing the Arduino’s built-in
LED for visualizing the heartbeat. However, performing the processing on another
device could have been considered if a more computationally intensive algorithm
would have been implemented. The implemented algorithm is depicted in Algorithm
1.
Algorithm 1. HR estimation
Input : Parameters f;, N.g, N and M
Output: Heart rate estimate HR every time a new peak is detected
1 cd<+0
2 count < 0
3 previous <— 0
41+ 0
5 PPI < zeros(N)
¢ every 1/f; do

7 T + readSensor ()
8 count < count + 1

9 if cd > 0 then

10 ‘ cd < cd—1

11 end

12
13 if r > M and x < previous and cd = 0 then

14 PPI[i] < count

15 i<+ (i+ 1) mod N

16 count < 0

17 cd +— Ngq

18 HR « f;-60 / (sum (PPI)/N)
19 end

20 Previous <— x

21 end

During the software implementation, the values for parameters M, N.4 and N
were chosen experimentally. It was noted that A/ = 515 resulted in reliable peak
detection while still tolerating some variability in the signal amplitude. Additionally,
the cooldown period N.,g4 = 20 seemed sufficient for preventing the detection of
erroneous peaks. The sampling rate f; = 50 Hz was initially chosen in order to enable
easier visual inspection of the signal in the Arduino serial monitor. However, it also
seemed to suffice for HR estimation due to the low frequency of the heart rate. Finally,
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N = 5 seemed to provide a good balance between stability of the HR estimate and
the time delay associated with averaging. An example result of the peak detection
algorithm is presented in Figure 8.

560.0
540.0 |

= uwuwt\dwk
200 050g sog 1008

Figure 8. The detected systolic peaks shown accentuated on the Arduino serial monitor
with parameters M = 515, Noq = 20 and f; = 50 Hz. The red dots marking the peaks
were added for clarity.

3.2. Networking

In this section, the implementation of the network connectivity and the integration of
the HR algorithm into this will be considered. The implementation was divided into
two parts that will be considered separately (server and client).

3.2.1. Server

The central part of the system is the server that handles connection requests and sends
the obtained HR data to connected clients. Initially, an approach that involved sending
a message to clients every time a peak is detected was attempted. Even though this
would have enabled the clients to display individual heartbeats in near real-time, it was
noted that it was highly unreliable due to variation in network latency. Instead, it was
decided to obtain the HR estimate on the Arduino and send this reading to clients if a
change is detected.

Several alternatives for implementing the WebSocket server were considered. While
the library WiFilOl1 can be used for utilizing WiFi on the MKR1000, another library
is needed for server implementation. The library NINA-Websocket was utilized since
it provides a simple WebSocket implementation sufficing for the needs of this thesis.

However, when integrating Algorithm 1 into the server implementation, issues were
faced in setting the sampling rate. The server code in the main loop may take longer to
execute and vary in execution time, affecting the timing and thus the sampling rate. In
order to ensure that sampling is performed roughly at the frequency f;, the sampling
was moved into a hardware timer provided by the Arduino. Concretely, the Timer5
library was utilized since it provides higher level abstractions of the timers.
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3.2.2. Client

Connected to the server in the local network, the client periodically receives data
provided by the server. This HR data is then made available to the user and also
presented graphically.

Different methods for implementing the client service were considered. Initially,
it was planned to implement the client service as a mobile application. However, this
would have limited the compatibility of the service to mobile devices running Android.

In order to ensure better interoperability and easier implementation, a web-based
solution was decided on. The implemented client runs in the browser and utilizes the
JavaScript WebSocket Application Programming Interface (API) to communicate with
the server. Hypertext Markup Language (HTML) and Cascading Style Sheets (CSS)
are utilized for the user interface (UI) design.

Concretely, the implementation of the system is based on the callbacks provided by
the WebSocket API. When new data becomes available or the state of the connection
changes, JavaScript is utilized to modify the HTML Document Object Model (DOM)
and thus display the information to the user.

As demonstrated in Figure 9, the Ul of the system consists of a connection status
indicator, a pulsating heart shape displaying the newest HR estimate and a graph
visualizing the last 10 HR estimates. The graph was implemented with Chart.js, an
open source JavaScript library for data visualization. Furthermore, the pulsating heart
was accomplished with a CSS animation and JavaScript was utilized for retriggering
the animation.
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Figure 9. A screenshot of the browser client.
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4. DISCUSSION

In the literature review section of this thesis, it was noted that PPG is a
multidimensional and powerful tool for health monitoring with promising future
prospects; it was surprising to note how many metrics can be reliably extracted
from the seemingly simple waveform. However, many unresolved issues still remain
regarding signal quality and reliability. Furthermore, integration of the measurement
system into wearable devices poses various additional challenges for signal processing
and noise removal. Since adequate signal quality forms the basis for extracting
reliable information from the signal, these challenges must be addressed with careful
preprocessing and algorithm design.

In the implementation part, a simple optical heart rate meter was implemented and
it was shown that basic HR estimation can be accomplished without special hardware
or complex algorithms. However, being a simple prototype, several challenges would
need to be addressed in order to be able to integrate the implementation into a concrete
wearable device with sufficient accuracy.

To begin with, several measures could be taken for improving the accuracy of the
system. Instead of the approach based on a fixed threshold and the derivative, the
mountaineer’s method presented in Chapter 2 could have been utilized directly. Since it
was noted that positioning of the finger had a large impact on the PPG amplitude, such
an amplitude-independent method could have greatly improved the accuracy of the
measurement. Furthermore, there is currently no means for detecting finger presence,
resulting in erroneous HR data when a finger is not placed on the sensor.

On the other hand, owing to the various challenges associated with the implemented
system, it was possible to demonstrate many of the PPG issues that were presented
in Chapter 2 in practice. For instance, it was noted that testing the system with cold
hands resulted in lower signal amplitude and distortion in the waveform, causing the
peak detection algorithm to fail. Additionally, it was noted that the contact between
the finger and the sensor had a large impact on the signal quality, demonstrating the
challenges of a peak detection algorithm based on a fixed threshold value.

Concerning the IoT functionality of the system, the implementation is simple yet
not very scalable. Since the resource-constrained MKR1000 functions as a server,
performance problems can arise when the number of connected clients increases. As
a more scalable solution, sending the HR data to a cloud server could be considered;
for instance, the Arduino IoT Cloud could be utilized. This would also facilitate easier
access to the data, enabling further distribution and analysis of the data. Machine
learning approaches could then be utilized for deriving metrics from the gathered data
as discussed in the introduction.
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5. SUMMARY

The aim of this thesis was to introduce the reader to PPG, a relatively simple yet
versatile optical technique for physiological monitoring. It was demonstrated that
PPG is a well-suited technique especially for wearable devices and some of the main
use cases and issues were discussed; in particular, methods for estimating HR from
the PPG signal were presented in more detail. Additionally, the core principles
and features of the WebSocket protocol and the Arduino ecosystem were presented,
including the IoT-suited Arduino MKR1000.

In the latter part of this thesis, the theoretical part was applied by implementing an
IoT-capable optical heart rate meter based on the Arduino MKR1000. It was shown
that simple PPG-based heart rate measurement can be implemented with relatively
simple hardware and a non-complex algorithm. However, it was also noted that
since the signal is modulated by individual differences and typically contains noise
originating from various sources, careful preprocessing and a more complex algorithm
would be required for improving the reliability of the system.
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