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ABSTRACT

Ray tracing-based methods have become the state of the art for radio channel
propagation modeling simulations. They provide a way to deterministically
simulate field strength and multidispersive characteristics of the radio channel,
and thus, offer a faster and easier alternative to measuring. Ray tracing is also an
important tool for validating algorithms, and many applications can utilize the
simulation results. As the wireless networks suffer from increasing complexity,
the interest in machine learning and artificial intelligence solutions is increasing
as well, and in this context the simulation results can be utilized as training data.

We introduce the relevant theory in radio propagation modeling in the context
of ray tracing, followed by theory of graphics processing unit-based computing,
architecture, and ray tracing. We present multiple existing graphics processing
unit and ray tracing-based radio channel propagation modeling implementations
from the literature. We then develop multiple optimized versions of an existing
environment discretization-based path search implementation and develop a path
refiner for refining the coarse paths generated by the path search. The path
refiner computes the optimal paths, and then validates them by utilizing ray
tracing. Experiments for the developed solutions are conducted with an indoor
and an outdoor model on two different computer setups. We achieve on average
over 25 times faster computation in the outdoor scene and over 4 times faster
computation in the indoor scene when compared to the original path search
implementation. The path refiner is able to find the optimal paths fulfilling the
Fermat’s principle of least time on average for over 96% of the coarse paths in the
outdoor scene, and for over 99% in the indoor scene. From these refined paths,
on average about 62% pass the validation phase in the outdoor case, and around
30% in the indoor case. The results show that the path refinement combined with
validation is essential for improving the quality of the paths found by the initial
discretization-based search.

Keywords: graphics processing unit computing, ray launching, optimization,
deterministic radio channel modeling.



Vaara N. (2022) Työkaluja säteenseurantaan perustuvaan
radiokanavamallinnukseen ja simulointiin. Oulun yliopisto, Tietotekniikan
tutkinto-ohjelma, 70 s.

TIIVISTELMÄ

Säteenseurantaan perustuvat menetelmät ovat edistyneintä tekniikkaa
radiokanavien etenemisen mallinnussimulaatioissa. Ne tarjoavat
tavan deterministisesti arvioida radiokanavan kentänvoimakkuutta ja
monidispersiivisiä ominaisuuksia ja siten tarjoavat nopeamman ja helpomman
vaihtoehdon mittaamiselle. Säteenseuranta on myös tärkeä työkalu algoritmien
validoinnissa ja useissa sovelluksissa voidaan hyödyntää simulointien tuloksia.
Langattomien verkkojen monimutkaisuuden lisääntyessä myös kiinnostus
koneoppimis- ja tekoälypohjaisiin ratkaisuihin lisääntyy, ja tässä yhteydessä
simulointien tuloksia voidaan hyödyntää opetusdatana.

Tässä työssä esitellään teoriaa radiokanavan etenemisen mallinnuksesta
säteenseurantaan perustuen, jonka jälkeen esitellään näytönohjainpohjaisen
laskennan, arkkitehtuurin, sekä säteenseurannan teoriaa. Tämän jälkeen
tarkastellaan useita olemassa olevia näytönohjain- ja säteenseurantapohjaisia
radiokanavan etenemistä mallintavia toteutuksia. Työssä kehitetään useita
optimoituja versioita olemassa olevasta ympäristön diskretisointiin perustuvasta
polunetsintätoteutuksesta ja kehitetään poluntarkentaja tarkentamaan sen
tuottamia epäoptimaalisia polkuja. Poluntarkentaja laskee optimaaliset polut
ja validoi ne hyödyntämällä säteenseurantaa. Ratkaisuiden tehokkuutta
arvioidaan sekä ulko- että sisätilan malleille tehtävillä laskennoilla kahdella
eri tietokoneella. Paras polunetsintäversio saavuttaa keskimäärin yli 25 kertaa
nopeamman laskennan ulkotilassa ja yli 4 kertaa nopeamman laskennan
sisätilassa verrattaessa alkuperäiseen toteutukseen. Poluntarkentaja löytää
optimaaliset polut, jotka täydentävät Fermat’n periaatteen lyhyimmästä ajasta
keskimäärin yli 96 prosentille karkeista poluista ulkotilassa ja yli 99 prosentille
sisätilassa. Näistä tarkennetuista poluista keskimäärin noin 62 prosenttia
pääsee läpi validoinnista ulkotilassa ja noin 30 prosenttia sisätilassa. Tulokset
osoittavat, että polkujen tarkennus ja validointi ovat tärkeitä alkuperäisen
diskretisointipohjaisen haun löytämien polkujen laadun parantamiseksi.

Avainsanat: laskenta näytönohjaimella, säteenlaukaisu, optimointi,
determinisitinen radiokanavan mallinnus.
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1. INTRODUCTION

Ray tracing (RT) provides a deterministic approach for radio channel modeling. It
has been studied since the 1990’s with the goal of fast computation and accurate
field calculation [1]. RT-based implementations prove to be a reliable method for
approximating features of the radio channel and they have many use cases such as
helping in the design of beamforming and multiple-input multiple-output (MIMO)
systems, where the performance depends on the multidispersive characteristics in
polarization, time and space domains on top of signal-to-noise ratio [2, 3]. Vehicular
ad hoc networks (VANET) greatly benefit from RT based radio channel modeling
simulations as well. They provide a cheap and fast way to accurately simulate vehicle-
to-vehicle (V2V) communication channel, which is essential as the safety-critical
applications require widescale testing [4].

Recently, an interest in the area of artificial intelligence (AI) and machine learning
(ML) for green and efficient communication networks has peaked as the large amount
of traffic generated by the rapidly growing number of connected devices make effective
monitoring and modeling of network traffic difficult [5]. This creates a new use case
for RT-based radio channel propagation modeling simulations, as the results can be
used as training data for ML models. ML requires a lot of training data, which is hard
and time consuming to acquire through measurements. As a result, RT-based accurate
simulations become an interesting application for this use case.

RT is computationally challenging due to the nature of tracing the rays. It might
take multiple interactions before before a ray launched from the transmitter (TX)
reaches a receiver (RX) in the scene. Each interaction might result in multiple new
rays that have to be traced, which is why the maximum number of interactions is
usually limited. Especially interaction types such as diffraction and scattering are very
expensive computationally, as they result in many new rays. Angular discretization
can be used to reduce the number of new rays caused by scattering or diffraction.
Reducing the number of rays does not come without a cost, as it might result in
important paths being missed. As each ray is traced independently, parallelism can
be utilized to achieve faster execution speed.

The introduction of programmable graphics processing units (GPUs) has massively
accelerated the computation speed of RT-based simulations due to their highly parallel
nature [1]. Due to the architecture of GPUs, optimizations in the GPU side code might
have a significant impact on the performance of RT-based algorithms. Even with GPU
acceleration, RT-based solutions such as ray launching (RL) can still be extremely time
consuming, thus, ways to reduce the computational complexity are needed.

The accuracy of the simulation is affected by multiple factors. Acceleration methods
such as environment-based discretization simplify the RT process with the cost of
decreasing the accuracy [6]. The accuracy is also determined by other factors such
as the geometrical representation of the environment, and the electromagnetic (EM)
material properties of the objects in the environment.

For ML applications, it is important to get the optimal paths that fulfill the Fermat’s
principle of least time to get as accurate training data as possible. To overcome
the accuracy issues of acceleration methods such as discretization, a path refinement
solution for correcting the paths has to be developed. As mentioned, ML applications
require training data in large quantities, thus, the components involved in the data
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generation such as RT and path refinement should be optimized for fast execution
speed.

In this thesis, we will optimize an existing discretization-based path search
implementation. As the second task, we develop a path refinement solution to compute
the optimal paths fulfilling the Fermat’s principle of least time for the paths generated
by the path search. In Chapter 2, theory and methods of radio channel propagation
modeling in the context of RT are presented. Chapter 3 introduces GPU architecture
and relevant GPU computing theory, as well as GPU-based implementations for radio
channel propagation modeling. In Chapter 4, we develop optimized versions of the
path search implementation, as well as the path refiner for computing the optimal paths.
In Chapter 5, all of the path search versions are benchmarked and further experiments
are conducted with the best performing version in an indoor and an outdoor scene. The
path refinement experiments are conducted with the paths that are generated during the
path search experiments. In Chapter 6, we discuss and analyze the results and findings,
and present the future work ideas. In Chapter 7 we summarize what was done in this
thesis.
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2. RADIO CHANNEL PROPAGATION MODELING

Scientific exploration of EM waves started to progress remarkably when Hertz made
the discoveries in 1880’s. In wireless communications, the wireless channel is the
carrier of the information, which is propagated through radio waves [1]. In this chapter
we introduce the general theory behind the ray concept, ray-based methods in radio
channel propagation modeling, as well as the EM properties that should be considered
when tracing the rays.

2.1. Ray Tracing

Ray optic-based algorithms such as RT can be used to approximate properties of radio
waves, as they solve the Maxwell’s equations in the high frequency regime [1]. For
electric and magnetic fields in the free space, the Maxwell’s equations introduce the
Faraday’s law, the Ampere’s law, and the Gauss’s laws. For rays in the high frequency
regime, [7] illustrates that the Fermat’s principle of least time can be proven, as well
as the Maxwell’s equations.

2.1.1. Types of Ray Interactions

RT-based radio channel propagation modeling follows certain rules, such as the laws
of reflection, diffraction and refraction, and that the ray travels in a straight line in a
homogeneous medium [1].

Line of Sight

Line of sight (LOS) rays are known as the rays which have a direct connection between
TX and RX without obstruction from the environment in the scene [1]. Based on the
used RT method, LOS rays can be determined with low computational effort.

Reflection and Refraction

When a ray encounters any object with a different medium, it causes reflection and
refraction [8]. The Snell’s law defines the law of refraction as [9]

n1 sin θ1 = n2 sin θ2, (1)

where the refractive indices n1 and n2 are defined based on the relevant medium. θ1
defines the angle between surface normal and the incoming ray. The angle defined
by θ1 is also the same between the reflected ray and the surface normal. θ2 defines
the angle between surface normal and refracted angle. Illustration of the mentioned
variables can be seen in Figure 1.
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Figure 1. Reflection and refraction behavior.

Diffraction

In the geometrical theory of diffraction (GTD), Keller extends the geometrical optics
theory to account for diffraction [10]. Diffraction happens for example, when a ray
hits an edge. The diffracting rays are represented as a cone, as in Figure 2, which is
determined by the law of edge diffraction. The law states that the angle between the
incident and diffracting rays have an equal angle with the edge in the same medium.
GTD was later refined in the uniform theory of diffraction (UTD) by Kouyoumjian
& Pathak [11]. Many RT-based implementations for example, in [4, 6] have their
diffraction coefficients based on the UTD.

Simulating diffractions is rather expensive, as the diffracting edges result in multiple
new rays from the incident ray [1]. The complexity of diffractions does not end there,
as the diffraction coefficients are computationally more expensive to calculate than the
coefficients for the other interaction types. Due to the complexity, multiple methods
for calculating the diffraction coefficients have been developed.

Yun & Iskander [1] present multiple methods for diffraction calculations, such as for
lossy wedges [12], transparent wedges [13], lossy dielectric wedges [14], the uniform
asymptotic theory [15], and a method for multiple straight wedge diffraction in 3D
space [16].
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Figure 2. Sampled diffracting rays determined by the law of edge diffraction.

Scattering

Scattering happens when a ray encounters a rough surface. In [17], 60 GHz RT-based
simulations were done, where the effect of rough surface in non-line of sight (NLOS)
urban areas was deemed considerable. Thus, it is essential to take the roughness
of surfaces into consideration when using RT-based simulations in order to achieve
accurate results. For very rough surfaces the power scatters into all directions, meaning
that the interaction cannot be represented as specular [17, 18]. Illustration of scattering
can be seen in Figure 3.

Figure 3. Scattering rays.
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2.1.2. Ray Tracing Methods

RT is time consuming, as millions of rays might have to be traced in order to get
adequate results. Multiple methods have been developed with varying computational
complexity and accuracy.

Ray-based algorithms are often divided into RT and RL algorithms [19]. The RT
methods, such as the image method, often revolve around figuring out valid optical
paths between a single TX and RX. These optical path methods are not very optimal
for coverage related simulations with multiple RXs, as each TX and RX pair has to be
calculated separately.

Image method

In the image RT method, the optical path is solved by dividing the environment into
components such as planes and edges [20]. The path between these components that
reaches the RX is then searched while satisfying the requirements of the relevant laws,
such as the Snell’s law and the law of diffraction.

The image method can be used to retrieve the intersection point Q, presented in
Figure 4. The images of RX and Ri are retrieved with respect to the reflecting plane,
followed by forming a line between TX and Ri to determine the intersection point Q
on the plane [1]. Diffraction points can be computed by solving systems of nonlinear
equations, as shown in [21].

Figure 4. Reflection using the image method.

Ray launching

In RL, the rays are launched in the relevant directions from the TX with a small angular
separation, and traced until they reach any RXs, or until the power threshold or the
maximum number of interactions is reached. This makes RL suitable for coverage
related simulations, as the computation time is not largely effected by the number of
RXs in the scene [19]. Thus, RL can be used to gain adequate path loss estimates [1].
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RL has its challenges, as the discretization of launched rays causes analytical errors
due to the spatial resolution, which means that the paths cannot be considered optimal
[20]. Ray splitting [22] was developed to combat the angular dispersion [23]. Each ray
is split into four new rays when the spatial separation reaches a threshold. While ray
splitting reduces the angular dispersion, it increases the computational complexity due
to the additional rays that have to be traced. The RX sphere radius has to be chosen so
that it captures the relevant rays, while also avoiding duplicate paths. A visualization
of paths generated with a ray launcher can be seen in Figure 5.

Figure 5. Paths generated with a ray launcher.

Combined method

Some implementations such as [24, 25] combine the RL and image methods. The valid
paths are first determined using RL, followed by using the image method.

Determination of valid RL paths reduces the computational complexity of the image
method, as the sequence, as well as the relevant planes and edges on the path are
known [1]. In the combined approach, the overhead of applying the image method is
insignificant, while resulting in improved accuracy of the paths.

2.1.3. Acceleration Methods

Visibility graph

The visibility graph method presented in [26] provides information of the visibilities
between the objects in the scene. Methods such as the binary space partitioning (BSP)
and bounding volume (BV) can be used to generate visibility graphs in high speed [20].
BSP divides the planes into subspaces sequentially. The division happens iteratively
until all the planes are added to the tree. In BV, the scene is divided into multiple blocks
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of same width and depth, but the height of the block depends on the tallest object in
the block.

Space division

Space division methods divide the objects in the scene into small cells. When a
ray is being traced, the next cell can be determined by the neighboring information,
which reduces the number of possible intersections in the scene. Multiple methods
of space division exist, such as triangular and rectangular grid methods [1]. A 2D
rectangular space division approach [27] presented in [20] reported 86% reduction in
computational time compared to the visibility graph method.

Discretization is a form of space division, where the different elements, such as walls
and streets are divided into cells to simplify the RT process with the cost of reduced
accuracy of the simulation [6]. This method is used in papers such as [6, 28]. An
example where the environment is discretized into tiles can be seen in Figure 6.

Figure 6. Discretized geometry.

Combined methods

Visibility graph and space division methods have been combined to achieve even better
performance. In [28], which was published in 1999, the visibility relations between the
center point of the discretized tiles and edges are determined to form a visibility graph
in the form of a tree structure. Similar approach is still used in recent implementations,
such as [6] published in 2018, where the visibility relations between the discretized
elements are saved in a matrix. The latter implementation is explained in detail in
Section 3.2.1.
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2.2. Electromagnetic Properties

RT-based solutions for radio channel propagation modeling are used in different
environments such as indoor [29, 30, 31, 32] and outdoor [4, 6, 33, 34], where the
calculation models for the EM properties and the used RT-based algorithms differ.

2.2.1. Electromagnetic Field

Acquiring an approximation of the EM field with the given parameters is the main
purpose of radio propagation modeling [1]. For free space radio propagation, the
simplest model is known as the Friis equation [35]

Pr

Pt

= GtGr

(
λ

4πr

)2

, (2)

where Pr is the received power, Pt is the transmitted power, Gt is the transmitter
antenna gain, Gr is the receiver antenna gain, r represents the distance between TX
and RX with assumed matching impedance and polarization, and λ is the wavelength
of the EM waves.

As a ray traverses in the scene, it might interact with the geometry before reaching
a RX. The interactions contribute to the field strength, and the effect is modeled
through dyadic coefficients for each interaction, where they decompose the field into
orthogonal polarizations [36]. In [6], the field strength for a ray is represented as

~E = SF ·

(
Nb∏
i=1

Ci

)
· ~E0 · e−jβrtot , (3)

where SF is the spreading factor, which represents the propagation loss caused by
spatial broadening of the wavefront [37]. Nb is the number of interactions for the path,
β denotes the wave number, rtot represents the total length of the path, ~E0 represents
the field of the ray from the TX launched into the direction of departure, and lastly, Ci
is the dyadic coefficient of the ith interaction.

2.2.2. Dyadic Coefficients

Dyadic coefficients represent the decomposition of the field in the ray-fixed coordinate
system and the multiplication by the interaction coefficients [38]. The coefficients are
used when considering the changes in amplitude and phase shift [6]. As an example,
the dyadic reflection coefficient is presented by the equation [38, 39]

R = ~ei‖ ~er‖Γ‖ + ~ei⊥ ~er⊥Γ⊥, (4)

where ~ei‖ and ~er‖ are the incident and reflected parallel unit vectors, Γ‖ and Γ⊥ are the
parallel and perpendicular Fresnel reflection coefficients, and lastly, ~ei⊥ and ~er⊥ are
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the incident and reflected perpendicular unit vectors. The unit vectors ~ei‖, ~er‖, ~ei⊥, and
~er⊥ are defined by the following equations [38]

~ei‖ =
~si × (~n× ~si)

‖~si × (~n× ~si)‖
, (5)

~er‖ =
~sr × (~n× ~sr)

‖~sr × (~n× ~sr)‖
, (6)

~ei⊥ = ~si × ~ei‖, (7)

and
~er⊥ = ~sr × ~er‖, (8)

where ~si is the incident ray direction, ~sr is the reflected ray direction, and ~n is the
normal vector of the surface. From these equations we can conclude that the vectors
~ei‖ and ~er‖ lie in the parallel plane spanned by the vectors ~si, ~sr, and ~n. Additionally,
the vectors ~ei⊥ and ~er⊥ are perpendicular to this plane.

The reflection and refraction dyadic coefficients are modeled by the famous Fresnel
equations. Based on the Fresnel’s equation [40], the reflection’s perpendicular Γ⊥ and
parallel Γ‖ polarizations can be calculated using the equations

Γ⊥ =
Z2 cos θi − Z1 cos θt
Z2 cos θi + Z1 cos θt

(9)

and
Γ‖ =

Z2 cos θt − Z1 cos θi
Z2 cos θt + Z1 cos θi

, (10)

where θi is the angle between the surface normal and the ray, θt is the angle between
the surface normal and the reflected ray, Z1 and Z2 represents the impendances of the
mediums, which are defined by relative permittivity εr, permeability and conductivity.

For refractions, the Snell’s law can be used to get the refraction coefficient
multipliers, if we assume that the medium is non-magnetic [31]. The Fresnel’s
reflection coefficients can be simplified to [40]

Γ⊥ =
cos θi −

√
εr − sin2 θi

cos θi +
√
εr − sin2 θi

(11)

and

Γ‖ =
εr cos θi −

√
εr − sin2 θi

εr cos θi +
√
εr − sin2 θi

. (12)

For diffractions, often UTD-based coefficients are used, described in [11], and a
well detailed example can be found in [38]. Scattering has its own coefficients. In
[6], diffuse scattering is supported, where the approach for calculating the coefficients
is described in [41]. For example, in [17], the Fresnel reflection coefficients are
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multiplied with a roughness correction factor ρs, which is introduced in [42] by the
equations

ρs = max

[
exp

(
−1

2
g2
)
, 0.15

]
(13)

and
g =

4πσ

λ
cosϕ, (14)

where σ is the standard deviation of the surface roughness, λ is the wavelength and ϕ
is the angle between the ray and the normal of the surface. The value 0.15 was decided
as the threshold for avoiding too small roughness factor.
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3. GPU COMPUTING FOR RAY TRACING

In this chapter, we introduce the relevant GPU application programming interfaces
(APIs), as well as the common GPU APIs used for RT. Then, we present
multiple existing GPU accelerated RT based radio channel propagation modeling
implementations and discuss their benefits and drawbacks.

3.1. GPU Computing

In the past decade, GPUs have been widely used in research as they evolved from
configurable to programmable processors [1]. They are extremely suitable for parallel
processing, as they contain many cores executing thousands of threads in parallel.
Another point of attraction is that the computers equipped with such devices are very
affordable [43].

3.1.1. Application Programming Interfaces

NVIDIA released Compute Unified Device Architecture (CUDA) [44] in 2007, which
was the first general-purpose languange for programming GPUs [45]. Graphics APIs
or abstractions of these were used previously. The introduction of CUDA resulted in
an increased interest in GPU computing, as it provided a more convenient interface to
use.

After the introduction of CUDA, multiple alternative APIs for general purpose
computing on the GPU (GPGPU) have been developed. DirectCompute [46] is
restricted to Windows only, and is only supported on versions starting from Vista.
OpenCL [47] on the other hand is not restricted to a single operating system, and is
more widely used. Vulkan [48] is the newest GPGPU API promising cross-platform
support [49]. It also promises high performance and efficiency due to its low level
control over the hardware, as the API is extremely explicit. Many of the operations in
other APIs such as memory allocation and work submission are handled by the API,
but in Vulkan these are done explicitly. Error checking and validation is present in the
form of layers that can be turned off in release builds, resulting in low driver overhead.

Mammeri & Juurlink [49] benchmarked Vulkan against CUDA and OpenCL and
concluded that Vulkan with low level optimizations on desktop platforms could offer
1.53 times faster execution when compared to CUDA, and 1.66 times faster execution
when compared to OpenCL. On mobile platforms, 1.59 times faster execution was
achieved with Vulkan when compared to OpenCL.

Although Vulkan could potentially bring better performance and enable execution
on devices and platforms that do not support CUDA or OpenCL, most of the existing
implementations of radio channel propagation modeling on the GPU are developed
using CUDA, as well as the implementations developed in this thesis.
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3.1.2. CUDA

NVIDIA GPU computing architecture consist of multi-threaded (MT) streaming
multiprocessors [43]. These streaming multiprocessors provide threads, shared
memory and processor cores for the CUDA thread blocks that have been scheduled
for execution. Streaming multiprocessors contain parallel processor cores that execute
instructions for threads in parallel. These parallel processors execute hundreds of
threads in parallel. As there are multiple streaming multiprocessors, different kernels
might be executing in parallel.

When a kernel is launched, the execution of it is represented as a 3D grid consisting
of blocks [45]. A block consist of threads, and the threads in the same block can
synchronize and cooperate using shared memory, illustrated in Figure 7. Each block
is executed on a single multiprocessor, but the multiprocessor can execute multiple
blocks in a preemptive way. Each kernel invocation can resolve its global index by
accessing its block dimension and thread indices. The global index is a useful tool to
retrieve and even write specific data in the context of a specific kernel invocation.

Transfering a single element from the main GPU memory takes hundreds of clock
cycles, thus, memory latencies in the GPU are hidden through massively threaded
execution model [45]. The GPU automatically switches to a waiting thread when a
memory fetch occurs, which serves well for hiding the latencies when there are lots of
available threads.

GPUs have a maximum number of active concurrent threads [45]. The number
of active threads with respect to the maximum number of active concurrent threads
is known as GPU occupancy, which can be used to represent the effectiveness of a
kernel. In most cases when developing a kernel, it is beneficial to achieve as high GPU
occupancy as possible, though in some cases where all the latencies are hidden, high
GPU occupancy might result in lower performance.

A major difference to CPUs is that the GPU executes instructions in a way that 32
threads execute the same instructions, comparable to single instruction multiple data
(SIMD) instructions [45]. This execution unit is known as a warp, which executes
the same instruction on all of the 32 threads. If the threads do not take the same
code paths, divergence occurs. In such a case, the diverging code paths have to be
executed separately. It is important to aim for kernel code that takes the same path as
in the worst case scenario the kernel execution could be 32 times slower than kernel
code where each thread takes the same code path. Divergence can be avoided by for
example, executing the diverging branch on the CPU side, or by sorting elements so
that each thread executes their code with minimal diverging. Due to the mentioned
effects of divergence, writing multiple kernels should also be considered to avoid clear
cases of divergence.
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Figure 7. CUDA architecture.

3.1.3. Application Programming Interfaces for Ray Tracing

Building custom RT solutions can be hard and time consuming. Modern graphics- and
compute-based GPU APIs are starting to support RT, and modern GPUs are developed
with RT in mind. For example, NVIDIA introduced RT cores dedicated for RT in their
RTX generation of GPUs [50].

The OptiX RT engine by NVIDIA is a general purpose, low level RT engine that
is built around the CUDA architecture [51]. In OptiX, the geometry is stored in
acceleration structures. An acceleration structure is a spatial representation of the
geometry that is used by the ray traversal algorithm to efficiently find the intersecting
primitives.

As of OptiX version 7 released in 2019, the API became more CUDA-centric
and explicit, as the GPU memory management was changed to be handled by the
application instead of OptiX [52]. The removal of OptiX host state was introduced
as well, which meant that the application was now responsible for the management of
resources such as scene graphs and materials.

The OptiX RT pipeline consists of user-defined programs, illustrated in Figure 8.
Tracing of rays consists the following of three parts [53]. First, the ray is created,
followed by scene traversal, and lastly, the result of scene traversal is interpreted
by the user defined programs. When the ray being traced finds the closest point
of intersection, the closest-hit program will be called. Any-hit program gets called
for every new intersection point, and as one might expect, the miss program is
called if no intersection points are found. The callable programs allow for additional
programmability. The direct callable programs are invoked instantly, while the
continuation callable programs are invoked by the scheduler. OptiX also has support
for an user-defined exception program, which will be called if the programs in the RT
pipeline cause an exception.
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Figure 8. OptiX ray tracing pipeline, the user-defined programs are marked with an
asterisk.

In November 2020, the Vulkan RT specification was released, and in December
2020, the first Vulkan software development kit (SDK) with RT extensions was
released [54]. The Vulkan RT extensions were built with existing RT APIs such as
OptiX in mind, making one of the goals of the extensions to enable easy porting to
Vulkan from existing implementation with other RT APIs.

Due to the popularity of CUDA, OptiX is mostly used in the radio channel
propagation modeling implementations where a RT API is used. Vulkan RT extensions
could bring radio channel propagation modeling solutions to platforms that do not
support CUDA. Hardware accelerated RT for ARM Mali mobile GPUs [55] and
Vulkan RT extensions for mobile platforms [56] are already under development.

3.2. Implementations for Radio Channel Propagation Modeling

In this section, we present GPU accelerated RT-based radio channel propagation
modeling implementations in depth on an algorithmic level. As GPU accelerated RT-
based radio channel propagation modeling is the most efficient way of conducting
simulations, many implementations such as [4, 6, 32, 57, 58, 59] utilize this
acceleration method.

3.2.1. Ray Launching with a Discretized Environment

Discrete environment-driven ray launching (DED-RL) algorithm by Lu et al. [6] is
a GPU-based ray launching solution for fast 3D prediction in urban areas, developed
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with CUDA. The environment is first discretized1 as in Figure 6, where each surface is
filled with a nonoverlapping grid of tiles. If a wall being discretized does not fulfill the
dimension requirements of the tile, the wall is discarded. The tile square area increases
the computation accuracy the smaller it is. However, choosing a small tile square area
also increases the time needed for computation.

Visibility preprocessing is done to determine the visibilities between the tiles [6].
The visibilities of each tile is saved in an N × N binary matrix, where N denotes the
number of tiles. The visibility between two tiles can be determined by their respective
indices, which can then be used to query the visibility matrix.

The center point of each visible tile is used as the RX for each interaction [6]. The
incident field, total incident ray field, angle of arrival and time delay are computed and
stored for each ray if the ray passes the visibility analysis. The first level visibility
analysis, presented in Figure 9 consists of a visibility matrix lookup, which is done for
each discretized element.

Figure 9. First level visibility analysis. The green tiles are visible from the ray origin.

After the discretized element passes the first level visibility analysis, simple
processing methods depending on the interaction type are used to determine whether
the interaction is valid or not [6]. For reflections, the second-level visibility is
determined by back-projecting the tile center point to the wall plane of the spawning
tile. The projected point is then checked whether it is in the spawning tile or not. A
visualization of the second-level visibility analysis (SLVA) of reflections can be seen
in Figure 10. SLVA of diffractions is determined based on two Keller’s cones that
define the visibility region, which is then used to test if the center point of the tile is
inside the region, illustrated in Figure 11. The implementation also supports diffuse
scattering, which does not require any more visibility processing, as all the visible tiles
in the visibility matrix can be reached through scattering. The rays are traced until the

1The idea of discretization was first considered by Hoppe et al. in 1999 [28].



24

maximum number of interactions is reached, or until the incident power falls below
the threshold.

Figure 10. Second-level visibility analysis of reflections.

Figure 11. Second-level visibility analysis of diffractions.

3.2.2. Ray Launching for VANET Application Simulations

The ray launching implementation by Schiller et al. [4] aims to bring fast and highly
detailed simulations of V2V communication channel. The implementation is used for
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virtual test driving of VANET applications. It is written with CUDA, and the rays are
traced using OptiX.

The algorithm is cut into two phases [4]. In the first phase, the rays are traced in the
scene by using ray launching. In the second phase, the EM calculations are done for
the paths that were acquired in the first phase.

The first step in in the ray launching phase is resolving the LOS paths [4]. For the
other interaction types, the initial rays are uniformly distributed to random directions
in order to gain an acceptable number of rays, as well as an accurate representation of
the possible paths. The ray directions are sorted using Z-order curve [60] in order to
avoid divergence. The computation and sorting of the primary ray directions is done
as a preprocessing step before tracing the paths.

The RX antennas are modeled as spheres, where the size of the sphere denotes how
many rays are collected at each RX [4]. Each triangle in the scene has information
regarding its material and interaction type. The reflections are traced in the direction
of the reflection and the tracing continues until the configured number of reflections is
reached. The diffracting edges are resolved in a preprocessing stage based on an angle
threshold. They are modeled as cylinders centered around the edge to allow efficient
intersection testing during the RT. Multiple rays are launched from diffracting edges in
the shape of a Keller’s cone as in Figure 2, according to the UTD.

A methodology called focusing is applied to the RL algorithm, which aims to reduce
the required computation while maintaining the accuracy [4]. The motivation for this
methodology comes from the many possible paths that will never reach a RX, which
results in a waste of computation resources. The scene is sampled coarsely with few
rays and with a big RX sphere, of which the rays that lead to an intersection with the
RX sphere are then sampled in more detail.

As the RL supports multiframe simulation, the previous frame is considered when
the movement of objects is minimal [4]. The direction information of the successful
paths in the previous frame is used in the coarse phase to assess similarity between
the frames. This information can then be used to retrieve paths that have not changed
significantly since the last frame.

The valid propagation paths are saved to a scene query tree, which might contain
duplicate paths [4]. The paths are then sorted based on primitive indices and interaction
types. The sorted path list is then processed to remove duplicate paths, resulting in each
remaining path being unique. Finally, the EM calculations are done for the remaining
valid paths based on the principles of geometrical optics and the UTD.

3.2.3. Beam-Tracing Method

As traditional RT is time consuming due to the discrete sampling of the space, Tan et
al. [32] developed 3D GPU-based beam-tracing solution for predicting radio channel
propagation in indoor environments to overcome issues in traditional RT.

A kD-tree [61] is constructed as a preprocessing step for indexing the triangles of
the scene [32]. In kD-tree, an axis-perpendicular plane is inserted into axis-aligned
bounding box (AABB), causing division of the current AABB into two AABBs.

A fast 3D stack-based beam-triangle intersection algorithm was developed for the
beam-tracer [32]. As the beam can intersect the triangle in multiple ways, there
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are different ways of launching secondary beams from the interaction. The fully
intersecting beams are mirrored, while the partially intersecting beams are clipped to
the intersecting area. The partial and fully intersecting beams are then divided into two
lists that will be further processed in their respective kernels. These kernels are then
used to launch the secondary beams to finalize beam-triangle intersection tests.

The generated beams are stored in a beam tree structure, where the TX acts as the
root [32]. From the tree, all the paths can be found. For each beam, a reference is
stored in the structure to the beams parent, the corresponding beam, and the triangle
primitive from which the beam starts.

The rays are traced starting from the bottom of the tree [32]. If the bottom level
beams contain a RX, a ray is launched to the apex of the beam with the RX as the ray
origin. If the ray does not hit the referred triangle of the node, the path is discarded.
The tracing runs iteratively until the TX is reached. If the interaction is a reflection,
a reflected ray is launched towards the parent node’s apex of the beam. In the case of
diffractions, the diffracting edges are stored during beam-tracing, that can then be used
to compute intersection points between the edge and the beam to form two Keller’s
cones, that are then used to confirm the validity of the diffraction. The path is then
determined by calculating the diffraction point for the valid diffractions.

After the valid paths have been determined, a hash is calculated for each path, which
is then inserted into a hash map in order to remove duplicate paths [32]. Next, the
EM calculations for the paths are performed on the GPU. In the first step of the EM
calculations, a kernel calculates the interaction coefficients at all frequencies for all the
paths, followed by another kernel calculating the fields of the paths. In the last step,
the total field contribution of the paths is calculated on a separate kernel.

3.2.4. Discussion

The presented implementations have their benefits and drawbacks. Especially with
diffractions, issues start to surface. For example, in the ray launcher by Schiller et al.
[4] angular discretization is used to launch the diffracting rays, meaning that balancing
the number of diffracting rays for each edge is hard due to the unknown distances to
the next interaction points. In other words, if an object is hit by diffracting rays from
the same edge, the number of diffracting rays is purely determined by the distance due
to the angular dispersion. This might cause some paths to be missed if the object is far
away, and on the other hand if the object is close, similar paths are generated, causing
unnecessary computation. As mentioned in Section 2.1.2, the angular dispersion
can be reduced with the ray splitting technique with the drawback of increasing the
computational complexity due to the additional rays [22, 23]. DED-RL [6] solves this
issue by utilizing environment-based discretization, where each discretized element
is considered when checking for a valid diffraction from an edge. The accuracy is
purely determined by the discretization resolution, and only one ray for each valid
discretized element is generated. The beam-tracing method [32] is restricted to only a
single diffraction, which has to be the last interaction. Thus, it is not very viable for
simulating diffractions or comparable to the other methods.

Both the beam-tracing implementation [32], and the ray launcher by Schiller et al.
[4] perform the EM calculations as a postprocessing step, while in DED-RL they
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are already performed during the RL phase. Performing them during the RL allows
discarding of the paths that would not contribute to the EM field in a significant manner.
It reduces unnecessary computation, as many new rays might be launched from each
interaction point along the path.

Considering that the effect of scattering was deemed significant in NLOS areas [17],
as mentioned in Section 2.1.1, taking it into consideration is important if rough surfaces
are present. DED-RL supports diffuse scattering [6], while the ray launcher by Schiller
et al. [4] and the beam-tracing method [32] in the current state do not. The latter
implementations in their current state cannot sufficiently support diffuse scattering,
as it introduces similar problems as simulating diffractions. As mentioned in Section
2.1.1, when scattering occurs, the power scatters into all directions [17, 18], meaning
that rays or beams would have to be launched into all directions.

DED-RL [6] has its downsides. One of them is that the scene has to be represented
with a tile-based discretization, which requires additional approximation of the original
geometry representation. Another downside is that the traced paths do not represent
the optimal paths, thus, additional processing is needed if the coarse approximations
are not enough. Methods such as the image method presented in Section 2.1.2 can
be applied to get more accurate paths. In this thesis work, a gradient descent-based
approach is developed for this purpose in Section 4.4.
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4. IMPLEMENTATION

In this chapter, optimizations and improvements are implemented to an existing path
search implementation developed at the University of Oulu. Additionally, a path
refinement solution is developed to compute the valid optimal paths fulfilling the
Fermat’s principle of least time. The development work is performed using C++,
CUDA and NVIDIA OptiX RT engine.

4.1. Overview

The path generation consists of input preparation, coarse path search, and refinement,
which are presented in Figure 12. The input preparation consists of geometry
discretization, and placement of TXs and RXs in the scene. All of the components that
use geometry information use an internal format, which contains information about
vertices, indices, and materials, as well as information about the diffraction edges and
walls in the scene. A tool was developed, which automatically detects the mentioned
attributes from glTF 2.0 [62] models and converts the relevant model data into the
internal format.

The coarse path search takes the data generated in the input preparation stage as an
input. Its main objective is to find paths between TXs and RXs determined in the input
preparation stage according to the rules presented in Section 3.2.1 for a given number
of interactions.

The refinement component takes the paths generated by the coarse path search with
the objective of computing the shortest path along the geometric elements that the path
interacts with. The refined paths are then validated using OptiX to make sure that the
interaction points did not move out of the bounds of the geometry or get occluded.

Figure 12. Overview of the different steps involved.

4.2. Coarse Path Search

Before diving into the optimizations and enhancements, it is necessary to understand
the existing implementation. The implementation is based on the DED-RL solution by
Lu et al. [6], which is presented in Section 3.2.1. The steps involved in the coarse path
search are presented in Figure 13.

Figure 13. Coarse path search.
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The first step is the determination of visibilities between the discretized elements,
which is used in the first level visibility checks, as described in Section 3.2.1. The
propagation is implemented by launching two types of kernels, a transmission and a
propagation kernel. In the transmission kernel, the initial interactions are determined
from the current TX. The coarse path search process is performed for each TX
separately. If the initial interaction is with a RX, the path is deemed as a LOS path.
If the initial interaction is valid and the type is reflection or diffraction, the path is
prepared for the propagation kernel.

The launch size of the propagation kernel is the same which was used in the
transmission kernel. Each launch index handles the generated rays recursively in its
own thread, until the maximum interaction depth, or until all of the paths have been
processed. For each RX point, a buffer of chosen size is allocated for storing the paths.
CPU side synchronizations are required if the path buffer is full, thus, the propagation
kernel is called in a loop until all the paths have been processed. As a post-processing
measure on the CPU, the paths are sorted, and then processed in an iterative fashion to
discard the duplicate paths.

In the implementation, the propagation is limited by thresholds for the maximum
number of interactions and diffractions. Additionally, the weak rays are discarded.
Assuming an omnidirectional radiator at a TX point (1W power), the field vectors are
computed at the interaction points, and if their power value is below a chosen threshold,
the path is discarded. The power value for the complex field vector ~E = [Eφ, Eθ]

T is
computed using

P
(
~E
)

= 10 log10

(
|Eφ|2 + |Eθ|2

)
[dB]. (15)

4.3. Coarse Path Search Optimizations

In this thesis, the visibility analysis is taken from the original implementation as is,
and we focus on optimizing the propagation. The initial guess for the bottleneck
in the existing implementation was low GPU occupancy, as the launch size for the
transmission and propagation kernels was the number of generated initial transmission
invocations. As an example, if the initial transmission invocation count would be 100,
it would mean that only 100 GPU threads would actively be processing all the possible
paths at most. These same threads would be handling the newly generated rays at each
new interaction, resulting in a high workload for each thread and the majority of the
available GPU computing resources being idle.

Another problem is that the generated ray count at each interaction point depends on
the environment. Even if the initial transmission invocation count would be high, it is
very likely that the total number of rays launched by each thread would not be equal,
resulting in an increasingly lower GPU occupancy as the interaction depth advances.

4.3.1. Optimizing the Existing Approach

The first valid propagation points are processed in the transmission kernel to get the
number of interactions in the next depth level. A buffer is then allocated for these
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interactions, and a kernel is launched to fill the buffer with the interactions. After
the buffer is filled, the rest of the depth levels are propagated the same way as in
the original implementation with the difference that the filled buffer is used in the
propagation kernel, resulting in a higher kernel launch size and one less interaction
depth level to process in the propagation kernel.

The initial optimized version was mostly developed to confirm the suspected
bottlenecks. The GPU memory usage is unpredictable and possibly very high, as it
depends on the number of generated rays from the first interactions in the transmission
kernel.

The GPU occupancy in this implementation still gets worse as the interaction
depth advances, though the GPU workload is distributed more evenly as the kernel
launch dimensions are larger. It still suffers from the same problem as the original
implementation, because the interactions are processed recursively on the same GPU
thread.

4.3.2. Chaining Implementations

To overcome the problems with the original implementation, a new approach called
chaining was designed for managing the computations. The idea is to have separate
kernels for handling reflections, diffractions and receival of rays at RX points. Dividing
the workload into smaller kernels that only handle specific interactions reduces the
divergence, and thus, increases the performance. The transmission kernels are similar
to the existing implementation, with the difference that only a specific type of
interaction is handled at once. Five variants of this approach were developed, which
are presented in this section. In addition, the sorting and removal of duplicate paths
adopted from the original implementation was replaced with a hash-based approach in
the best performing chaining implementation.

The launching starts at the interaction depth level zero. If the depth level is zero,
transmission kernels are used. Each level will first call the RX kernel, followed
by the reflection and diffraction kernels. The interaction processing functions will
keep launching the relevant processing kernel of the interaction type until all of the
interactions have been processed successfully. The reflection and diffraction kernels
will always call the top level launching function when a CPU side synchronization
occurs. The high level logic of the launching can be seen in figure 14.

Figure 14. Launching process in the chaining implementation.
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The propagation kernel only handles one interaction based on the launch index,
which results in a higher GPU occupancy, as each invocation requires only a small
amount of work. The kernel is launched for each parent in the current depth level,
which was filled in the previous depth level. The correct launch size is resolved
dynamically. In the case of valid reflections and diffractions, the relevant information
is written to the parent buffer of the next depth level.

CPU-based chaining (CPU ST)

CPU-based chaining is the basic version of the chaining implementations. The
launching is executed on a single CPU thread. Each processing function downloads
the required parent data from the GPU before the launching can be started for the
parents of the current depth level.

Multi-threaded CPU-based chaining (CPU MT)

For the MT CPU-based implementation, a thread pool implementation was developed
for better CPU utilization. Each thread has its own context and buffers required for
launching. CUDA streams are utilized, which make it possible to do asynchronous
operations with the GPU, meaning that we do not have to wait for other cores to finish
their GPU work. For example, it enables us to handle memory operations between the
CPU and the GPU asynchronously, and allows us to wait for the completion of specific
kernel launches.

The initial invocation count for the transmission kernels is divided based on the
available number of CPU cores, so that the workload can be distributed as evenly as
possible for each launching context.

GPU-based chaining (GPU ST)

With the help of dynamic parallelism feature of CUDA [63], it is possible to launch a
kernel from within a kernel. This means that we can avoid some memory transfers
between the CPU and the GPU, as we can interact with the GPU memory in the
launching kernel. The launching happens on a single GPU thread, and synchronization
with the CPU is only required when the valid path buffer is full.

Multi-threaded GPU-based chaining (GPU MT, GPU MT Async)

Single-threaded (ST) GPU implementation was developed into a MT version as
well. The GPU-based launching is also able to exploit CUDA streams, which in
this implementation rises in importance, as the MT GPU launching is in most cases
performed on a lot more threads than in CPU MT.

The logic between the MT implementations are quite the same, but the GPU-based
implementation has the advantage of not having to do memory transfer operations, as
it is interacting with the GPU memory directly. The launching block size is by default
32, meaning that there are 32 invocations for the launching.

In the GPU implementations during the propagation, the CPU downloads the path
buffer and processes the contents once the buffer is full. Downloading and processing
large buffers takes a decent amount of time, during which the GPU has to wait for
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the CPU to finish its work before the propagation can continue. To overcome the
delay caused by the CPU synchronizations, GPU MT was further developed to support
double buffering. As the name suggests, the path buffer is divided into two separate
buffers, which allows for the CPU and the GPU to work asynchronously. The thread
pool implementation which was developed for CPU MT is utilized in the double
buffering version as well. When the CPU synchronization happens, the current buffer
index is set on the GPU, and the launching is continued immediately. An available
thread is retrieved from the thread pool on the CPU side, which downloads the valid
paths from the previously filled buffer asynchronously by utilizing a CUDA stream.

Duplicate path processing

The original duplicate path removal post-processing step was replaced with a hash-
based solution, which checks for the uniqueness of the paths during the propagation.
As the comparison in the original implementation was based on integers, implementing
a function for calculating the hash of a path was straightforward, as in [32]. When the
valid paths are downloaded from the GPU, the hash for each path is calculated. The
hashes are then used to query the hashmap to check if the paths already exists. If the
hash for a path is not found in the hashmap, the path is saved.

4.4. Path Refinement

Paths generated by the coarse path search are coarse approximations and do not
represent the optimal path, as the intermediate paths come from discretization.
Gradient descent algorithm was applied as the solution for finding the optimal paths
fulfilling the Fermat’s principle of least time. The different steps in the refinement
process can be seen in Figure 15.

Figure 15. Overview of Refinement.

The pre-processing code is written in C++, and the gradient descent algorithm is
written in CUDA compatible C++. As the algorithm is written in CUDA compatible
C++, both CPU- and GPU-based implementations were developed. CPU-based
implementation runs on a single thread only and could easily be expanded to run on
multiple threads using the thread pool implementation, which was developed for CPU
MT. Since all of the paths that are being processed can be refined in parallel, as they
do not interfere with each other in any way, it is more beneficial to keep the CPU
implementation as simple as possible for potential debugging purposes. The GPU
implementation should be used when fast execution speed is desired.
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4.4.1. Gradient Descent

Gradient descent algorithm can be used to minimize a function f(x) by updating the
parameters in the direction of the function’s negative gradient [64]. In our case, we
want to minimize the path length to find the path fulfilling the Fermat’s principle
of least time. The gradient descent algorithm can be represented by the following
equation [64]

xn+1 = xn − γn∇f(xn), n > 0, (16)

where γn is the step size, xn represents the parameters, and ∇f(xn) represents the
gradient of the function.

Each interaction point is updated with (16) iteratively until one of the thresholds is
reached. The convergence and maximum iteration thresholds are taken as arguments.
In the current implementation the step size γ is halved every 25 iterations, which
should be further developed to be computed by a step size algorithm in the future.
As the current supported interaction types in the coarse path search are reflection and
diffraction, we do not have to consider the index of refraction in the equation, as the
rays travel only in a homogenous medium. Thus, we can represent the function for the
path length which we aim to minimize by the following equation

f(~x) =
N∑
k=0

‖Ik+1 − Ik‖, (17)

where N is the number of interactions and Ik is the notation for the function of the
interaction type. Especially I0 and IN+1 correspond to TX and RX points of the path,
respectively. The path minimization for boundless planes and straight edges is convex,
thus, the converged path found with gradient descent algorithm represents an unique
global minimum, which is validated afterwards.

In the case of Nr reflections and Nd diffractions, the vector of variables for the path
can be represented as

~x = (r1, . . . , rNr , s1, . . . , sNr , t1, . . . , tNd
)T , (18)

where the elements ri, si, and ti are updated with the function f differentiated with
respect to the relevant variable. Thus, the gradient becomes

∇f(~x) =
(
fr1 , . . . , frNr

, . . . , fs1 , . . . , fsNr
, . . . , ft1 , . . . , ftNd

)T
, (19)

where fu denotes the partial derivative ∂f/∂u.

Reflections

In the case of reflections, we have the surface point p and orthonormal vectors ~u and
~v. A reflection point Ri on the plane can be represented as

Ik = Ri = pi + ri~ui + si~vi. (20)
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For each reflecting interaction the path consists of the source point Ik−1, the
interaction point Ik, and the destination point of the reflected ray Ik+1. The path length
is determined by the variables ri and si, thus, we get the equations

∂

∂ri
‖Ik+1 − Ik‖ =

(Ik − Ik+1)

‖Ik − Ik+1‖
· ~ui, (21)

∂

∂ri
‖Ik − Ik−1‖ =

(Ik − Ik−1)
‖Ik − Ik−1‖

· ~ui, (22)

∂

∂si
‖Ik+1 − Ik‖ =

(Ik − Ik+1)

‖Ik − Ik+1‖
· ~vi, (23)

and
∂

∂si
‖Ik − Ik−1‖ =

(Ik − Ik−1)
‖Ik − Ik−1‖

· ~vi, (24)

from which we can compose the following functions that are used for updating the
vector elements ri

fri =

(
(Ik − Ik+1)

‖Ik − Ik+1‖
+

(Ik − Ik−1)
‖Ik − Ik−1‖

)
· ~ui (25)

and si

fsi =

(
(Ik − Ik+1)

‖Ik − Ik+1‖
+

(Ik − Ik−1)
‖Ik − Ik−1‖

)
· ~vi. (26)

Diffractions

For diffractions, we have the surface point p and the normalized direction vector ~w
along the edge. The diffraction points can be represented with the equation

Ik = Di = pi + ti ~wi. (27)

The same way as for reflections, the path consists of the source point Ik−1, the
interaction point Ik, and the destination point of the diffracted ray Ik+1. For diffractions
we only have the normalized direction vector ~w, thus, the length of the path is
determined by the variable ti, resulting in the equations

∂

∂ti
‖Ik+1 − Ik‖ =

(Ik − Ik+1)

‖Ik − Ik+1‖
· ~wi (28)

and
∂

∂ti
‖Ik − Ik−1‖ =

(Ik − Ik−1)
‖Ik − Ik−1‖

· ~wi, (29)

from which we can compose the function for updating the vector elements ti

fti =

(
(Ik − Ik+1)

‖Ik − Ik+1‖
+

(Ik − Ik−1)
‖Ik − Ik−1‖

)
· ~wi. (30)
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4.4.2. Path Validation

After the path refinement was developed, integration with the existing path validation
and EM calculation code was performed. The path validation is performed using
OptiX, similarly to the visibility analysis of coarse path search. The refinement
algorithm takes the paths generated by the coarse path search as an input, does the
refinement, and then validates the paths and performs EM calculations for the refined
paths that converged.

Path validation is needed, as the refinement code might move the interaction points
outside of the surface or diffraction edge bounds, or there might be an object in the
way of the ray between interaction points after the refinement. Another issue is that
due to the design of DED-RL presented in Section 3.2.1, SLVA may result in infinity
bouncing. This increases the likelihood of the refined paths to fail the validation. An
example of this is illustrated in Figure 16, where in situation A, the ray launched from
the source point P is reflected at the tile Q. SLVA determines that the tile R is suitable
for reflection. In situation B, the tile R reflects the ray coming from the point Q, and
SLVA determines the tile Q suitable for reflection. In situation C, the tile Q reflects the
ray coming from the point R, and SLVA determines the tile R suitable for reflection.
Thus, it is possible for the algorithm to keep bouncing between the situations B and C
infinitely.

Figure 16. Infinity bouncing problem of DED-RL.
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5. EXPERIMENTS

In this chapter, we conduct benchmarks with the original and the optimized
implementations of the propagation step in the coarse path search, which are presented
in Section 4.2. The benchmarks are conducted on two computer setups, System G
and System R. The components of these setups are presented in Table 1. Varying
parameters will be used for the experiments that are evaluated with an indoor and an
outdoor model, which are real locations from Oulu, Finland. The outdoor scene is a
model of Etu-Lyötty, which can be seen in Figure 17. The indoor scene is a model
of a corridor in the CWC research unit located in the University of Oulu, presented in
Figure 18. For the path refinement experiments, we will refine the final paths gathered
in the coarse path search experiments and benchmark the execution time on the CPU
and GPU. The development work was done on System G. Some additional experiments
are conducted on System R.

Table 1. The computer setups System G and System R used in the experiments.
System G System R

CPU Intel i5-2500k Intel i7-8700k
CPU Cores 4 6
RAM (GB) 8 32

GPU NVIDIA GeForce GTX 1070 GeForce RTX 2080 Ti
CUDA Cores 1920 4352
VRAM (GB) 8 11

OS Windows 7 Windows 10

Figure 17. The Etu-Lyötty scene.
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Figure 18. An inside and outside view of the CWC corridor scene.

5.1. Coarse Path Search

The first benchmarks of propagation were performed without saving the interaction
points, as saving them is only required by the path refiner. The details of the
implementations can be found in Section 4.2. The maximum number of interactions
will be referred as #Ia in the tables. For the initial benchmarks, a 5 minute threshold
was decided as the time limit for each execution, thus, execution times exceeding this
limit are not reported.

5.1.1. Outdoor Scene

The Etu-Lyötty experiments were conducted with 5×5m discretization for the walls
and 10×10m discretization for the ground plane, which resulted in 7389 tiles and 3239
diffraction edges. The scene has one TX and a RX grid of 719 points. 1.4GHz carrier
frequency was used, and -100dB power threshold for the field vector powers. The size
of the path buffer for each RX point was 10000, unless mentioned otherwise.

In Table 2, common path statistics are presented for the mentioned setup. In the
fourth column, the number of RX points receiving at least one path is given, and in the
fifth column, the average number of paths for those RX points. The Figures 19, 20 and
21 include benchmarks conducted on System G. The details can be found in Tables
1, 2, and 3 of Appendix 1. In these benchmarks, the interaction points are not saved.
Similar benchmarks were done on System R. The initial benchmarks can be found in
Table 3. The GPU MT Async benchmarks can be found in Figure 22 and the details
are presented in Table 4 of Appendix 1.
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Table 2. Path statistics of the Etu-Lyötty experiments.
#Ia Diffraction Limit #Paths #Receivers #Paths Per Receiver
2 0 1170 348 3.36
3 0 4527 459 9.86
4 0 17295 529 32.69
5 0 64683 564 114.69
6 0 242087 579 418.11
2 1 33085 566 58.45
3 1 153041 579 264.32
4 1 510818 587 870.22
5 1 1286550 588 2188.01
6 1 2807669 588 4774.95
2 2 88009 585 150.44
3 2 379181 587 645.96
4 2 1118404 588 1902.05
5 2 2572653 588 4375.26
6 2 5024738 588 8545.47

Figure 19. Propagation time of the implementations on System G in the Etu-Lyötty
scene when diffractions are limited to 0.
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Figure 20. Propagation time of the implementations on System G in the Etu-Lyötty
scene when diffractions are limited to 1.

Figure 21. Propagation time of the implementations on System G in the Etu-Lyötty
scene when diffractions are limited to 2.
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Table 3. Benchmarks of different implementations on System R with the limits of 3
interactions and 1 diffraction, and a buffer size of 10000.

Implementation Propagation Time (ms)
Original 11321

Optimized 3890
CPU ST 3257
CPU MT 2646
GPU ST 8836
GPU MT 2000

The optimized version did not have a significant difference in the execution time
in the case of zero diffractions. On System G, the execution time is only slightly
faster when compared to the original implementation with the different number of
interactions. We can see large improvement when the diffraction limit is increased.
The improvement is caused by the increase in the GPU occupancy, as the diffractions
cause a large increase in the number of valid interactions, and thus, more invocations
for the propagation kernel are generated. On System R, the optimized version was
only ran with the limits of three interactions and one diffraction. When comparing to
the original implementation, the performance improvement was about the same as for
System G. In terms of execution time, System R was nearly three times faster.

On System G, CPU ST on average outperformed the original and optimized
implementation. CPU MT was slower than CPU ST, which is quite odd considering
that asynchronous CUDA operations were used. System G has four cores, thus, the
launching was running on four different threads. Each thread had its own complete
context, meaning that no synchronization was needed between the threads until the
propagation on each thread had finished its work.

System R outperformed the original and optimized version as well. The launching
was running on six threads, as System R has six CPU cores. Interestingly, the MT
version greatly outperformed the ST version. The System G results indicate that the
launching is not causing overhead, as there is no significant difference between the
ST and MT results. However, the benchmarks conducted on System R suggests great
improvement from MT launching.

The GPU MT implementation was the most performant implementation. On System
G, GPU ST was about as fast as CPU ST. Unlike CPU MT, GPU MT sustained great
benefit from MT launching. GPU MT was the most performant version for System R
as well. For some reason, on System R, GPU ST was the slowest optimized version.
Some undocumented experiments were done to hunt down the possible cause, but
nothing was found. As GPU MT was the fastest on both setups, it was decided as
the final optimized version that would be further developed to include path hashing
and double buffering.

In the original, optimized, and the initial chaining implementations, the valid paths
are first sorted followed by a simple removal of duplicate paths in an iterative fashion.
The execution time of the sorting-based duplicate path removal is presented in Figure
23 and the details can be found in Table 5 of Appendix 1. The benchmarks were
performed with GPU MT on System G.
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Figure 22. Propagation time of GPU MT with varying parameters in the Etu-Lyötty
scene on System R.

Figure 23. The execution time of the original duplicate path removal algorithm with
GPU MT on System G.
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Comparison of GPU MT and GPU MT Async performance can be seen in Figure 24.
The details of the GPU MT Async benchmarks can be found in Table 6 of Appendix 1.
The implementation contains hashing of paths to avoid duplicates, which means that
when comparing the execution time to the GPU MT benchmarks, the execution time
of the duplicate path removal shown in Table 5 of Appendix 1 should be added to the
propagation time found in Tables 1, 2, and 3 of Appendix 1.

When comparing the GPU MT Async benchmarks to the GPU MT benchmarks,
the propagation time is generally faster with few exceptions. With a high diffraction
limit and interaction count, small benefit from double buffering can be seen, as there
will be more CPU synchronizations causing GPU to idle on the initial implementation.
However, it should be noted, that the benefit of double buffering would be higher if we
saved the interactions points, as there would be more data to transfer and process. On
top of the general performance increase, GPU MT Async does not have to worry about
removing duplicates after the propagation. The uniqueness of each path is guaranteed
through the hash-based validation during the CPU synchronizations.

Figure 24. Comparison of the benchmarks of GPU MT and GPU MT Async in the
Etu-Lyötty scene.

The final experiments were done with the interaction points saved. The original
implementation benchmarks can be seen in Figure 25, and the details can be found in
Table 7 of Appendix 1. The experiments were ran with 5000 and 7500 buffer sizes for
both computer setups. For System G, the results can be seen in Figure 26. The details
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can be found in Tables 8 and 9 of Appendix 1. For System R, Figure 27 presents the
benchmarks and Tables 10 and 11 of Appendix 1 contain the details.

Increasing the buffer size with GPU MT Async increased the performance on
both setups, as CPU synchronizations do not have to happen as often. With double
buffering, the downloading of the data happens asynchronously on a CPU thread while
the GPU continues its work, thus, increasing the buffer size has no drawbacks other
than higher memory usage.

When comparing the original implementation to GPU MT Async with the diffraction
and interaction limits from Table 7 of Appendix 1, GPU MT Async on System G
and with a buffer size of 5000 is 11.61-52.44 (on average 25.54) times faster when
considering propagation and removal of duplicate paths, presented in Figure 29. The
details for the execution speed improvement can be found in Table 19 of Appendix 1.

System R was slower than System G setup with higher interaction and diffraction
limits, presented in Figure 28. Considering that the GPU in System R is a newer
generation and higher tier graphics card, further investigation should be done.

Figure 25. Original versus GPU MT Async in the Etu-Lyötty scene on System G and
with a buffer size of 5000. The interaction points are saved.
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Figure 26. System G GPU MT Async performance with 5000 and 7500 buffer sizes in
the Etu-Lyötty scene.

Figure 27. System R GPU MT Async performance with 5000 and 7500 buffer sizes in
the Etu-Lyötty scene.



45

Figure 28. System G versus System R propagation time in the Etu-Lyötty scene with
GPU MT Async and with a buffer size of 7500.

Figure 29. Speedup of GPU MT Async on System G in the Etu-Lyötty scene when
compared to the original implementation.
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5.1.2. Indoor Scene

The CWC corridor experiments were conducted with 1×1m discretization for walls
which resulted in 611 tiles and 245 diffraction edges. The scene has one TX and a RX
grid of 53 points. 110GHz carrier frequency was used, and -100dB power threshold
for the field vector powers.

Table 4 contains general path statistics for this scenario. In the fourth column, the
number of RX points receiving at least one path is given, and in the fifth column, the
average number of paths for those RX points. Figure 30 contains benchmarks of the
original implementation and GPU MT Async, and Figure 31 contains the GPU MT
Async benchmarks conducted on both computer setups. The details can be found in
Tables 12 and 13 of Appendix 1 for System G, and in Table 14 of Appendix 1 for
System R.

As presented in Figure 31, GPU MT Async on System R was outperformed with
higher interaction and diffraction limits by System G which has older hardware. One
interesting exception is the case with the limits of six interactions and one diffraction.
Out of the documented cases, it was the most computationally expensive case, resulting
in over 4 million unique paths. System G was 1.78-7.26 (on average 4.02) times faster
with GPU MT Async when compared to the original implementation with the specified
interaction and diffraction limits presented in Figures 30 and 32. The details for the
execution speed improvement can be found in Table 20 of Appendix 1.

Table 4. Path statistics of the CWC corridor experiments.
#Ia Diffraction Limit #Paths #Receivers #Paths Per Receiver
2 0 318 21 15.1
3 0 1798 28 64.2
4 0 10569 53 199.4
5 0 62476 53 1178.8
6 0 360188 53 6796
2 1 2521 53 47.6
3 1 21410 53 404
4 1 148214 53 2796.5
5 1 858414 53 16196.5
6 1 4053568 53 76482.4
2 2 4535 53 85.6
3 2 41040 53 774.3
4 2 257086 53 4850.7
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Figure 30. Original versus GPU MT Async in the CWC corridor scene on System G
and with a buffer size of 5000. The interaction points are saved.

Figure 31. System G versus System R in the CWC corridor scene with GPU MT Async
and with a buffer size of 5000.
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Figure 32. Speedup of GPU MT Async on System G when compared to the original
implementation in the CWC corridor scene.

5.2. Path Refinement

For the path refinement experiments, CPU and GPU execution time of the refinement
implementation will be benchmarked on System G with the paths from the indoor and
outdoor scenes gathered from the coarse path search experiments. The optimal paths
will then be computed by the path refiner to find the paths fulfilling Fermat’s principle
of least time.

The paths for Etu-Lyötty outdoor scene were saved from the benchmarks that can be
seen in Table 8 of Appendix 1. For the CWC corridor indoor scene, the benchmarks
that generated the paths are presented in Table 13 of Appendix 1.

The path refinement experiments were conducted with γ of 0.5, the number of
maximum iterations was 500, and the convergence threshold was 1e−5.

5.2.1. Outdoor Scene

The Etu-Lyötty benchmarks can be seen in Figure 33 and the details can be found in
Table 15 of Appendix 1. Figure 34 presents the percentage of converged paths, and
the percentage of remaining converged paths after validation can be seen in Figure 35.
The details for converged and validated paths can be found in Tables 16 and 21 of
Appendix 1. As expected, the GPU-based refining implementation was faster. 88.0-
99.8% (on average 96.7%) of paths converged and 31.5-91.2% (on average 62.1%) of
the converged paths remained after validation.
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Figure 33. CPU- and GPU-based path refiner performance in the Etu-Lyötty scene.

Figure 34. Converged paths remaining after refinement in the Etu-Lyötty scene.
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Figure 35. Remaining converged paths after validation in the Etu-Lyötty scene.

5.2.2. Indoor Scene

For the CWC corridor indoor scene, the benchmarks are presented in Figure 36 and
the details are in Table 17 of Appendix 1. 98.3-100% (on average 99.6%) of the initial
paths converged and 1.71-91.2% (on average 30.0%) of the converged paths remained
after validation. The percentage of paths that converged is presented in Figure 37, and
the percentage of remaining converged paths after validation is presented in Figure 38.
The details for converged and validated paths can be found in Tables 18 and 22 of
Appendix 1.

The validation percentages demonstrate the importance of the validation after the
refinement, as many of the computed paths become unsuitable due to occlusion. The
validation percentages in the CWC corridor experiments are lower than in the Etu-
Lyötty experiments. The CWC corridor scene has a lot more details in the geometry,
which leads to more paths being discarded. Another reason for the low CWC corridor
scene validation percentages comes from the infinity bouncing problem of SLVA
described in Section 4.4.2, as in closed small scenes such as the CWC corridor scene,
the problem occurs more frequently, resulting in unsuitable paths. In both scenes, the
benefit of GPU-based refining becomes noticeable when the number of interactions
and diffractions is increased.
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Figure 36. CPU- and GPU-based path refiner performance in the CWC corridor scene.

Figure 37. Converged paths remaining after refinement in the CWC corridor scene.
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Figure 38. Remaining converged paths after validation in the CWC corridor scene.
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6. DISCUSSION

6.1. Results

GPU MT Async on System G was on average over 25 times faster in the outdoor Etu-
Lyötty scene, and on average over 4 times faster in the indoor CWC corridor scene,
as presented in Chapter 5. Comparing the performance to other implementations
is not viable, as nearly all implementations use their own 3D models. Different
implementations also include varying amount of time consuming pre-processing
measures, which might greatly impact the path searching phase. Thus, we have to
assess the developed implementations by considering the found optimization methods
and considerations presented in Chapters 2 and 3.

RT-based algorithms are highly divergent by nature due to multiple interaction types
and the possibility of a ray not hitting anything. Thus, it is important to minimize the
divergence where its possible, as mentioned in 3.1.2. Divergence was considered in the
chaining implementations by handling the different interaction types separately, which
reduces the divergence of the kernel launches. Each kernel for the parents still results
in an invocation for all the relevant discretized elements as described in Section 4.3.2,
which might cause a small performance hit. Fixing this divergence problem would not
come without a cost, as separating the interaction types into separate visibility matrix
pairs would increase the memory usage. As an example, if the first interaction type
is reflection, and we were running the reflection kernel for determining the next valid
reflections, we could have a visibility matrix between all the reflecting elements, which
could then be used in the first-level visibility analysis.

When comparing the results of indoor and outdoor performance gains presented in
Tables 19 and 20 of Appendix 1, it can be seen that GPU MT Async performs better
in the outdoor scenarios. This is most likely caused by the additional computations
required in the outdoor scene, as there are more tiles and edges that need to be checked
for visibility.

In the indoor scene, the overhead of launching a kernel seems to become quite
high when comparing to the computation of the following interactions. For example,
the case with 5 interactions and 1 diffraction limit in the original implementation,
presented in Table 12 of Appendix 1, results in faster propagation time. However,
in this case the removal of duplicates is nearly twice as slow as the time required for
propagation.

The potential overhead of launching could be reduced with Vulkan API, as the
synchronization between kernel executions is explicitly determined by the user, which
means that the launched kernels in each launching context would potentially be
executing concurrently [65]. In CUDA, all kernels launched within a same CUDA
stream are guaranteed to be executed in the order they were launched [66].

For both scenes, increasing the number of diffractions had a positive impact on the
converged paths passing the validation. This is most likely caused by the fact that
diffractions can only move along the edge, unlike reflections that can move along the
orthonormal vectors of the surface normal. As a result, reflecting points are more likely
to move outside the wall it was originally in, thus, failing the validation.

The difference between the Etu-Lyötty and CWC corridor average validation
percentage stems from the scene complexity. We can see in Figure 18 that the CWC
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corridor scene has a lot of details. For example, every door along the corridor is a
recessed door, which could easily cause the validation to fail. Etu-Lyötty scene on the
other hand mostly consists of large planes, as we can see in Figure 17. Another factor
is the infinity bounce problem of SLVA described in Section 4.4.2, which often results
in unsuitable refined paths.

6.2. Future Work

Implementing support for refraction would be useful for indoor environments, as the
indoor models often contain a lot more details than the outdoor scenes, which allows
for correctly approximating the contribution of refraction. Refraction might also be the
only way to reach a RX in an indoor scene. For large outdoor scenes in urban areas,
simulating refraction correctly is difficult, as modeling large buildings from the inside
is extremely time consuming and hard, even if access to the floor plans is granted.
Modeling large buildings from the inside also significantly increases the complexity of
the scene. Another reason to disregard refraction in urban outdoor scenes is that the
buildings are large, which means that the contribution of refraction to the field strength
might be minimal due to the attenuation.

The effect of diffuse scattering in NLOS areas in urban environments was deemed
significant in [17], as mentioned in Section 2.1.1. Thus, implementing support
for diffuse scattering would be beneficial. Supporting it would also increase the
complexity of the models as the roughness of materials would have to be defined.

Researching the efficiency of hardware accelerated RT could be interesting, as
hardware accelerated RT has been gaining support since 2018 on modern hardware
[55]. It would be interesting to see if the performance of RL could be improved by
utilizing RT cores in the coarse path search. Of course, due to the nature of diffuse
scattering and diffractions some form of discretization is needed, but perhaps the
performance of querying the valid scatterers or diffracting elements could be increased
by hardware accelerated RT on modern hardware.

The current tile-based discretization model is suitable for scenes where a low amount
of detail is acceptable, such as in large urban outdoor environments. Each object
has to be represented using tiles, which leads to crude approximations. In the indoor
scenes where the details are important, support for round and curved objects is ideal,
which is limited with the tile-based discretization. Thus, the discretization could be
modified to be triangle- or point-based, allowing for the introduction of triangle-based
models without limitations. Changing the discretization would require quite a bit of
work, as many components such as the automatic detection of diffraction edges assume
models that are suitable for tile-based discretization. Another possible issue is that the
increased number of details would most likely result in a decrease of optimal paths
passing the validation phase of the path refiner.

The current gradient descent implementation presented in Section 4.4.1 has step
size halving every 25 iterations. An algorithm for calculating the step size, such as
backtracking line-search should be integrated for a more robust approach.

In terms of optimization, the usage of shared GPU memory could be researched, as
access to the shared GPU memory is much faster than global access [67]. Coming up
with more ways to reduce divergence should be researched as well.
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Vulkan API could potentially bring performance improvements, as well as provide
support on platforms that do not support CUDA. On top of the potential advantages in
terms of performance, Vulkan would also bring compute, rendering, and RT under the
same API that could be abstracted into a reusable library, which would speed up the
development of future tools and features for radio channel modeling.
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7. SUMMARY

In this thesis, tools for radio channel propagation modeling were optimized and
developed. The general theory of radio channel propagation modeling in the context
of RT was studied. We optimized the existing environment discretization-based
path search implementation by developing multiple new optimized versions, which
utilize features such as MT and GPU-based launching. As the second task, we
developed a path refinement solution for computing the optimal paths fulfilling the
Fermat’s principle of least time, as the paths generated by the path search are coarse
approximations due to the discretized environment. We integrated the path refiner with
RT-based path validation, which is needed as many of the paths can be unsuitable due
to the geometric characteristics of the scene.

Experiments were conducted on two different computer setups with the different
optimized path search versions, and the best performing version, as well as the path
refiner were evaluated using an indoor and an outdoor model. The best performing path
search version was on average 25 times faster in the outdoor scene, and on average 4
times faster in the indoor scene when compared to the original implementation. The
path refiner found optimal paths on average for over 96% of the paths in the outdoor
scene, and for over 99% in the indoor scene. Out of these paths, on average about 62%
passed the validation phase in the outdoor case, and around 30% in the indoor case.

In future work, refraction support could be developed, as it might be the only way
to reach a RX, and thus, it plays an important role in indoor simulations. Scattering
support would be beneficial for outdoor scenarios, as its effect to the channel was
deemed significant in the literature. Studies should also address improvements and
extensions in dealing with the geometry, increasing the computational efficiency, and
providing a better cross-platform support.
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Table 1. Propagation benchmarks in milliseconds of the different implementations on
System G with diffractions limited to 0 and with a buffer size of 10000.

#Ia Original Optimized CPU ST GPU ST CPU MT GPU MT
2 640 510 664 312 657 308
3 8310 5542 941 404 916 358
4 20960 17253 1409 782 1387 573
5 72695 57600 2967 2563 3014 1734
6 Halted 209601 9243 10413 10385 8249

Table 2. Propagation benchmarks in milliseconds of the different implementations on
System G with diffractions limited to 1 and with a buffer size of 10000.

#Ia Original Optimized CPU ST GPU ST CPU MT GPU MT
2 13617 1024 1581 771 1535 505
3 40231 10992 4445 3432 4158 2160
4 Halted 163138 17815 19245 19288 14710
5 Halted Halted 95766 118760 106384 86973
6 Halted Halted Halted Halted Halted Halted

Table 3. Propagation benchmarks in milliseconds of the different implementations on
System G with diffractions limited to 2 and with a buffer size of 10000.

#Ia Original Optimized CPU ST GPU ST CPU MT GPU MT
2 28159 1366 2027 1091 1966 882
3 Halted 21408 23452 26738 24903 18081
4 Halted Halted 216092 271137 241188 187057
5 Halted Halted Halted Halted Halted Halted
6 Halted Halted Halted Halted Halted Halted

Table 4. Benchmarks of GPU MT on System R in the Etu-Lyötty scene with varying
parameters.

#Ia Diffraction Limit Buffer Size Propagation Time (ms)
2 0 10000 121
3 0 10000 237
4 0 10000 446
5 0 10000 1603
6 0 10000 9602
2 1 10000 346
3 1 5000 2316
3 1 10000 2000
3 1 20000 2192
4 1 10000 16010
5 1 10000 109211
6 1 10000 Halted
2 2 10000 473
3 2 10000 21205
4 2 5000 234385
4 2 10000 239934
4 2 20000 255416
5 2 10000 Halted
6 2 10000 Halted
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Table 5. Execution times of the duplicate path removal algorithm with GPU MT on
System G in the Etu-Lyötty scene.

#Ia Diffraction Limit #Paths Duplicate Path Removal Time (ms)
2 0 1170 2.3
3 0 4527 2.7
4 0 17295 9.3
2 1 33085 11
5 0 64683 61
2 2 88009 38
3 1 153041 120
6 0 242087 797
3 2 379181 530
4 1 510818 1657
4 2 1118404 6497
5 1 1286550 14621
6 1 2807669 88460

Table 6. Propagation time with GPU MT Async on System G in the Etu-Lyötty scene
with hashing included and with varying parameters.

#Ia Diffraction Limit Buffer Size Propagation Time (ms)
2 0 10000 111
3 0 10000 166
4 0 10000 374
5 0 10000 1618
6 0 10000 9086
2 1 10000 312
3 1 10000 2210
4 1 10000 15921
5 1 10000 89460
2 2 10000 571
3 2 5000 17130
3 2 10000 16762
4 2 5000 173815
4 2 10000 174743

Table 7. Execution times in the Etu-Lyötty scene with the original implementation on
System G with a buffer size of 5000. Interaction points are saved.

#Ia Diffraction Limit Propagation Time (ms) Duplicate Removal Time (ms)
2 0 1455 1.5
3 0 8861 2.2
4 0 21581 7.6
5 0 73450 58
6 0 298271 855
2 1 14240 9.5
3 1 40636 115
4 1 230517 1858
2 2 28763 35.7
3 2 265855 582
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Table 8. Propagation times in the Etu-Lyötty scene with GPU MT Async on System G
with a buffer size of 5000. Interaction points are included.

#Ia Diffraction Limit Propagation Time (ms)
2 0 120
3 0 169
4 0 498
5 0 2629
6 0 14927
2 1 478
3 1 3035
4 1 20013
5 1 110060
6 1 584607
2 2 897
3 2 21257
4 2 192136

Table 9. Propagation times in the Etu-Lyötty scene with GPU MT Async on System G
with a buffer size of 7500. Interaction points are included.

#Ia Diffraction Limit Propagation Time (ms)
2 0 171
3 0 217
4 0 565
5 0 2451
6 0 13385
2 1 386
3 1 2651
4 1 17679
5 1 99891
6 1 557467
2 2 909
3 2 19938
4 2 193499

Table 10. Propagation times in the Etu-Lyötty scene with GPU MT Async on System
R with a buffer size of 5000. Interaction points are included.

#Ia Diffraction Limit Propagation Time (ms)
2 0 71
3 0 184
4 0 495
5 0 3230
6 0 24014
2 1 379
3 1 3870
4 1 27183
5 1 143718
6 1 745547
2 2 797
3 2 26787
4 2 259400
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Table 11. Propagation times in the Etu-Lyötty scene with GPU MT Async on System
R with a buffer size of 7500. Interaction points are included.

#Ia Diffraction Limit Propagation Time (ms)
2 0 96
3 0 192
4 0 500
5 0 2705
6 0 18509
2 1 327
3 1 3021
4 1 22597
5 1 125282
6 1 703627
2 2 685
3 2 23792
4 2 251548

Table 12. Propagation times in the CWC corridor scene with the original
implementation on System G with a buffer size of 5000. Interaction points are
included.

#Ia Diffraction Limit Propagation Time (ms) Duplicate Removal Time (ms)
2 0 95 1.7
3 0 237 1.8
4 0 1042 21
5 0 6101 610
6 0 40175 26697
2 1 216 1.9
3 1 904 26
4 1 7453 1551
5 1 59435 114347
6 1 408421 Halted
2 2 309 2.3
3 2 2904 84
4 2 17627 4349

Table 13. Propagation times in the CWC corridor scene with GPU MT Async on
System G with a buffer size of 5000. Interaction points are included.

#Ia Diffraction Limit Propagation Time (ms)
2 0 20
3 0 44
4 0 242
5 0 3082
6 0 37566
2 1 30
3 1 224
4 1 3934
5 1 85529
6 1 1614140
2 2 46
3 2 579
4 2 11173
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Table 14. Propagation times in the CWC corridor scene with GPU MT Async on
System R with a buffer size of 5000. Interaction points are included.

#Ia Diffraction Limit Propagation Time (ms)
2 0 9
3 0 30
4 0 350
5 0 7678
6 0 79980
2 1 19
3 1 249
4 1 6785
5 1 117538
6 1 1174540
2 2 30
3 2 1134
4 2 22093

Table 15. Refinement and validation benchmarks in the Etu-Lyötty scene on System
G.

#Ia Diffraction Limit Paths CPU Based
(ms)

GPU Based
(ms)

Validation &
EM (ms)

2 0 1170 33 532 134
3 0 4527 174 962 179
4 0 17295 827 1819 219
5 0 64683 3713 2396 252
6 0 242087 16677 3149 266
2 1 33085 662 1104 236
3 1 153401 4731 1796 264
4 1 510818 21105 3035 318
5 1 1286550 65662 6124 412
6 1 2807669 172165 13439 606
2 2 88009 1617 1378 262
3 2 379181 10878 2212 291
4 2 1118404 43275 4312 427

Table 16. Remaining paths after refinement and validation for the Etu-Lyötty scene.
#Ia Diffraction

Limit
Total Paths Converged

Paths
Validated

Paths
2 0 1170 1165 747
3 0 4527 4452 2550
4 0 17295 16453 7917
5 0 64683 59215 23308
6 0 242087 213155 67230
2 1 33085 32997 29596
3 1 153401 151848 110324
4 1 510818 499700 308578
5 1 1286550 1237246 667380
6 1 2807669 2642573 1228086
2 2 88009 87852 80154
3 2 379181 376961 307673
4 2 1118404 1100826 768697
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Table 17. Refinement and validation benchmarks in the CWC corridor scene on System
G.

#Ia Diffraction Limit Paths CPU Based
(ms)

GPU Based
(ms)

Validation &
EM (ms)

2 0 318 5 45 52
3 0 1798 54 79 56
4 0 10569 472 203 60
5 0 62476 3713 335 72
6 0 360188 25201 1451 102
2 1 2521 30 111 58
3 1 21410 562 181 67
4 1 148213 5702 466 81
5 1 858413 43926 2866 162
6 1 4053563 260994 16557 826
2 2 4535 49 144 67
3 2 41040 964 234 76
4 2 257085 9230 739 105

Table 18. Remaining paths after refinement and validation in the CWC corridor scene.
#Ia Diffraction

Limit
Total Paths Converged

Paths
Validated

Paths
2 0 318 318 160
3 0 1798 1798 442
4 0 10569 10511 1110
5 0 62476 61875 2606
6 0 360188 353906 6039
2 1 2521 2521 1732
3 1 21410 21402 8815
4 1 148213 147977 33951
5 1 858413 854876 103317
6 1 4053563 4016950 250199
2 2 4535 4521 3374
3 2 41040 40858 18970
4 2 257085 255873 67727

Table 19. Speedup of GPU MT Async with a buffer size of 5000 on System G when
compared to the original implementation in the Etu-Lyötty scene.

#Ia Diffraction Limit Original (ms) GPU MT
Async (ms)

Speedup multiplier

2 0 1456.5 120 12.14
3 0 8863.2 169 52.44
4 0 21588.6 498 43.35
5 0 73508 2629 27.96
6 0 299126 14927 20.04
2 1 14249.5 478 29.81
3 1 40751 3035 13.43
4 1 232375 20013 11.61
2 2 28798.7 897 32.11
3 2 266437 21257 12.53
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Table 20. Speedup of GPU MT Async with a buffer size of 5000 on System G when
compared to the original implementation in the CWC corridor scene.

#Ia Diffraction Limit Original (ms) GPU MT
Async (ms)

Speedup multiplier

2 0 96.7 20 4.84
3 0 238.8 44 5.43
4 0 1063 242 4.39
5 0 6711 3082 2.18
6 0 66872 37566 1.78
2 1 217.9 30 7.26
3 1 930 224 4.15
4 1 9004 3934 2.29
5 1 173782 85529 2.03
2 2 311.3 46 6.77
3 2 2988 579 5.16
4 2 21976 11173 1.97

Table 21. Refinement statistics for different interaction and diffraction limits in the
Etu-Lyötty scene.

#Ia Diffraction Limit Initial Paths Converged (%) Validation (%)
2 0 1170 99.6 64.1
3 0 4527 98.3 57.3
4 0 17295 95.1 48.1
5 0 64683 91.5 39.4
6 0 242087 88.0 31.5
2 1 33085 99.7 89.7
3 1 153401 99.0 72.7
4 1 510818 97.8 61.8
5 1 1286550 96.2 53.9
6 1 2807669 94.1 46.5
2 2 88009 99.8 91.2
3 2 379181 99.4 81.6
4 2 1118404 98.4 69.8

Table 22. Refinement statistics for different interaction and diffraction limits in the
CWC corridor scene.

#Ia Diffraction Limit Initial Paths Converged (%) Validation (%)
2 0 318 100 50.3
3 0 1798 100 24.6
4 0 10569 99.5 10.6
5 0 62476 99.0 4.21
6 0 360188 98.3 1.71
2 1 2521 100 68.7
3 1 21410 100 41.2
4 1 148213 99.8 22.9
5 1 858413 99.6 12.1
6 1 4053563 99.1 6.23
2 2 4535 100 74.6
3 2 41040 99.6 46.4
4 2 257085 99.5 26.5


	
	
	
	
	
	

	
	
	


	
	
	
	
	

	
	
	
	
	


	
	
	
	
	
	

	
	
	


	
	
	
	

	
	
	


	
	
	

	
	REFERENCES
	

