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ABSTRACT 

Zero-touch network architecture (ZSM) is proposed to cater to unprecedented 

performance requirements, including network automation. 5G and beyond networks 

include exceptional latency, reliability, and bandwidth requirements. As a result, network 

automation is a necessity. ZSM architecture combines closed-loop mechanisms and 

artificial intelligence (AI) to meet the network automation requirement. Even though AI 

is prevalent, privacy concerns and resource limitations are growing concerns. However, 

techniques such as federated learning (FL) can be applied to address such issues. The 

proposed solution is a hierarchical anomaly detection mechanism based on the ZSM 

architecture, divided into domains by considering technical or business features. The 

network flow is categorized as an anomaly or not, and abnormal flows are removed from 

both stages. Detectors and aggregation servers are placed inside the network based on 

their purpose. The proposed detector is simulated with the UNSW-NB15 Dataset. The 

simulation results show accuracy improvement after the 2nd stage, and the detection 

accuracy varies with training data composition. 
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1 INTRODUCTION 

The fifth-generation (5G) and beyond 5G networks are projected to meet previously unheard-

of network requirements. Its primary goal is to enable game-changing applications that require 

high-quality, low-latency visual and auditory telepresence, as well as massive connectivity and 

capacity. Because 5G networks are ultra-reliable, always-on, and have low latency, they have 

the potential to enable new services that will change industries. Medical operations, remote 

control of infrastructure, and automobiles are a few examples. 5G mobile technology has the 

potential to usher in new immersive experiences such as virtual reality and augmented reality 

(VR and AR) due to more consistent and faster data rates, lower cost, and lower latency. It is 

expected that 6G will raise the bar even higher, with speeds predicted to be 100 times quicker 

than 5G and increased bandwidth to keep people more connected than they have ever been. 

Both network generations are expected to be sustainable, stable, scalable, efficient, dependable, 

and agile. However, as technology advances, network architecture becomes more complex. 

 New network architectures include elements such as network function virtualization 

(NFV), network slicing, and multi-access edge computing to meet expectations (MEC). 5G uses 

a much smarter architecture, with radio access networks (RANs) no longer limited by base 

station proximity or the complexity of the infrastructure required [1].5G enables a 

flexible, disaggregated, and virtualized RAN, with new interfaces producing new data entry 

points. Modern edge computing (MEC) is a cloud computing trend in which applications are 

moved from data centers to the edge of the network, bringing them closer to the consumers and 

the devices they use. This creates a content delivery shortcut between the user and the host, 

eliminating the need for the previously lengthy network path. NFV enables virtualization in the 

5G infrastructure. Network slicing technology enables running multiple virtual 

networks concurrently on a single physical infrastructure. NFV can help with the 5G challenges 

by enabling the provisioning of storage, virtualized computing, and resources tailored to the 

specific needs of customer segments and applications [1]. Similarly, 6G is expected to include 

a plethora of new elements. Researchers in both types of networks are interested in artificial 

intelligence (AI). 

However, as technology advances, it is becoming increasingly difficult to operate the 

network manually. As a result, network automation has become a requirement. It has become 

clear over recent years that using AI technology to enable fully automated network operations 

and maintenance is essential for lowering operating expenses while improving network key 

performance indicators (KPIs) for 5G and beyond 5G (B5G) and 6G networks, as well as for 

lowering costs of capital. The use of AI technology has already been adopted by many operators 

to automate some repetitive operations tasks and reduce dependence on employee expertise, 

such as implementation simplification, troubleshooting, and KPI optimization. There have been 

numerous research efforts from both industry and academia in order to develop network 

automation solutions that are powered by AI. 

  The European Telecommunications Standards Institute (ETSI)-proposed Zero-touch 

network and Service Management (ZSM) architecture can be viewed as an effort by both 

industries and universities to create a network capable of self-optimization, self-configuration, 

self-healing, and self-monitoring without human involvement. It is optimized for AI algorithms 

and data-driven machine learning (ML) and utilizes closed-loop automation. The ZSM 

architecture is designed to protect the privacy and security of data transmitted, processed, or 

stored within the ZSM network and includes data analytics and related services, allowing ML 

techniques to be widely used for a variety of purposes. Federated Learning (FL) is a relatively 

new branch of ML that is well known for protecting user data privacy. As a result, FL-based 
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solutions can also be used in the ZSM architecture. In an automated network, FL and closed-

loop operations can be used to successfully secure a network. 

 

1.1 Background and Motivation 

Beyond 5G or 6G mobile networks, intelligent security and automated security management 

are two critical features to consider [1], and the ZSM network architecture is built to cater to 

both these features. The ZSM framework was proposed by ETSI to fulfill the automation 

requirements of network management [2]. 

 In the ZSM architecture, the network is divided into domains based on operational, 

business, and technological needs. A management domain consolidates administrative duties 

within a ZSM deployment. It manages resources and resource-facing services for each ZSM 

network division. Each management domain has service endpoints with various capabilities. 

Dividing the network into RAN, core, transport, and application domains is a common way to 

create domains. The AI and ML algorithms are two primary components that play a vital role 

in supporting the functionalities of closed-loop operations proposed in the ZSM architecture 

[3]. The closed-loop functions can be used for attack detection, cyber threat intelligence for 

attack mitigation or prevention, security analytics, security policy updates, and security 

orchestration [4]. Even though ML is used frequently in many applications, problems must be 

addressed, including user data privacy. In such instances, FL can be used effectively. It is a 

relatively novel form of ML algorithm that allows decentralized processing with higher 

communication efficiency and higher privacy [5]. 

 

1.2 Research Problem 

The ZSM architecture is intended to include data analytics as well as related data services. A 

few related services found in the architecture design are the AI model management service, the 

deployed AI model assessment service, the knowledge base service, the analytics services in 

management domains, and the end-to-end (E2E) management domain [2]. As a result, it is 

simple to create ML-based solutions for a variety of purposes. Because the ZSM architecture is 

divided into domains, detectors can be deployed to monitor the network in each domain. 

If ML models are used in the network, the models must be generated and kept up-to-

date. To ensure that a model can be created from the data, it is necessary to store all the data in 

a data center. The process of successfully deploying and operating an ML model can be 

complicated due to a variety of challenges, such as ensuring the privacy of customers' data. As 

a result, FL is proposed, which trains the model in end devices using locally available data. 

However, deploying a sufficient number of detectors in any network inspired by the ZSM 

architecture is critical for security monitoring and data collection tasks. To successfully detect 

anomalies, such detectors must be empowered by ML algorithms. To properly protect networks 

from all types of possible attacks, each detector must have a local database or similar structure 

that stores relevant network flow data. As a result, resources like processing power and storage 

space may be limited. As a result, a hierarchical detection mechanism based on FL is proposed. 

 

1.3 Selected Scope 

In its architecture, the ZSM architecture facilitates AI-based solutions. As a result, an infinite 

number of applications for self-monitoring, self-configuration, self-optimization, and self-

healing are possible. Security is often prioritized over other requirements in most network 
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architectures. It is possible to create a security application that is AI-powered and analyses user 

data. However, it is possible that users will be concerned about data privacy when using the 

network. Therefore, an anomaly detector based on FL to protect the network is proposed. 

 The Fl algorithm is made up of several components, including aggregation criteria, a 

ML model, and a data set. By changing each element, different cases can be generated, and a 

suitable setup can be found based on the application. The proposed application was not followed 

in all possible scenarios. Averaging was the only aggregation criterion used. To produce the 

final model parameters, all of the parameters sent by the client devices are averaged. It was not 

necessary to consider the number of samples each client had because the data set was distributed 

independently and identically among the number of clients. Neural networks were used in both 

stages 1 and 2. The model in stage 1 has two hidden layers, for a total of four layers. Likewise, 

the stage 2 model had four hidden layers, for a total of six layers. It was not attempted to change 

the number of layers of the model as the developed system generated sufficient accuracy. The 

detection algorithm was developed to detect the nine types of attacks available in the used data 

set. For the simulation, the number of rounds was limited to 100. 

 

1.4 Methodology of the work 

As the proposed anomaly detector is based on an FL model, the methodology of this thesis is 

primarily comprised of steps required to generate an ML or FL model. It consists of three steps: 

data preparation, model training, and model testing. The data set in use contains a variety of 

data types, including network types and protocol names. Only numerical values, however, can 

be fed into the neural network. As a result, all of these values must first be assigned a numerical 

value, which is then normalized to fall within a predetermined range of values. There may also 

be extraneous values, such as anomaly types. This data column was removed because it is 

sufficient to determine whether or not an anomaly exists. After the data set was prepared, it was 

divided into testing and training data. Various training data sets were made by changing the 

amount of anomaly data in each. 

Two models were developed for each training data set during the training step. The first 

step of the cycle in the FL-based training model is to train the model in end devices, which are 

then communicated back to the central server. The model parameters are aggregated at the 

central server before being sent back to the end devices for training. After training, it will be 

sent back to aggregation. This is considered one full cycle in this thesis. The models were 

trained in this manner for 100 rounds. The model that is generated for each round in each case 

is saved, and this model is then used to test the model's performance. 

The last phase of the thesis is testing the generated model. First, generated model 

parameters were loaded onto two models. Then the accuracies after stages 1 and 2 were 

recorded after testing with the 10,000 flows of data allocated beforehand. The results observed 

were recorded for each case. 

 

1.5 Contribution  

This thesis's main contribution is an FL-based anomaly detector that can be successfully 

deployed in the ZSM architecture. Network automation is still in its early stages, and the ZSM 

architecture is relatively new. As a result, there aren't many applications related to the 

aforementioned architecture. The proposed solution is tightly integrated into the new 

architecture and demonstrates how applications can benefit from closed-loop and FL. The 

majority of the work presented in the literature for FL-based applications is related to internet 



 

 

10 

of things (IoT) applications. Only a few have been introduced for other wireless communication 

applications. This thesis shows how FL can be used in network security applications. 

The performance of the model is evaluated using two parameters: overall system 

accuracy and accuracy improvement from stage 1 to stage 2. The multistage detector identifies 

anomalies in the used data set with up to 93.6% accuracy. It also shows how the use of two 

stages improved the accuracy. As a result, the proposed system can successfully defend the 

network against attacks. The results also show the effect of the composition of the training and 

testing data. The results emphasize the importance of having enough data flows to cover all 

possible scenarios. 

 

1.6 Organization of the Thesis 

This thesis consists of six chapters, and it is organized in the following manner: 

Chapter 2 contains details of the existing literature related to the ZSM architecture, FL, and 

anomaly detection. This section consists of three sections dedicated to ZSM architecture, FL, 

and anomaly detection using FL. The last section describes the current work related to detecting 

anomalies using FL. 

Chapter 3 describes the proposed anomaly detector. The detection and training phases are 

explained in this section, and how they are positioned in the ZSM architecture. This chapter 

also describes how the proposed detector reacts if any anomaly is undetected, and if it disturbs 

network operations. 

Chapter 4 describes how the simulation is carried out to generate the results for the defined 

set of test cases. It starts with the data set description, and later the simulation setup is described 

under training and testing topics. 

Chapter 5 contains the results, and it demonstrates how the network’s accuracy varies with 

the training data composition. Three graphs included also show how the accuracy varies along 

with the number of training rounds. 

Chapter 6 critically analyses the thesis work. It also contains a comparison to the thesis 

results of similar research work. Apart from future directions, this chapter also includes how 

much success was achieved in reaching the objective of the thesis.  

Chapter 7 contains the thesis summary, including research objectives, a summary of the 

related work, results, and analysis.  
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2 LITERATURE REVIEW 

End-to-end network automation is becoming increasingly important as network complexity 

rises to meet unprecedented network demands. The domain-based architecture is a key feature 

of the ZSM architecture. Domains in ZSM deployment divide administrative responsibilities 

and create a separation of concerns based on functional, operational, and governance constraints 

[2]. For management purposes, security functions can be grouped together, and AI-enabled 

components can also be used for security functions. Because of the critical role it plays in the 

network, researchers are paying close attention to security automation. Combining AI/ML 

techniques with the closed-loop process proposed in the ZSM architecture can make security 

automation a reality, which also includes data analytic services for many other functions. 

 

2.1 ZSM Architecture 

 

The ZSM architecture is proposed with the intention of making a fully automated network 

a reality, and as mentioned in the reference architecture [2], it is more flexible and moves away 

from tightly coupled management systems. Figure 1 shows the proposed architecture and key 

building blocks described above, as shown in [2]. The key architectural building blocks are 

management functions, management services, the integration fabric, management domains, the 

end-to-end (E2E) service management domain, and data services. Each of these components is 

described below. 

• Management services 

This is also the most fundamental building block in the ZSM architecture. Service 

consumers can use standardized management endpoints offered by management services. 

Management services may communicate with resources directly using the management 

interface or by using other management services. In addition, all of these services provide a set 

of communication and invocation capabilities, that allows for a high degree of automation and 

continuity to be achieved within management domains. It is also possible to combine a bunch 

of management services to form a new service management service. 

• Management functions 

Entities that produce or consume management services are known as "management 

functions." A management function is categorized as a service producer or a service consumer 

if it produces or consumes services, respectively, and a function can play both roles 

simultaneously. 

• Integration fabric 

The integration fabric, as the name suggests, manages the communication between 

management domains. The set of functions includes registration, discovery, and invocation of 

management services. As mentioned in [7], the integration fabric offers services such as service 

registration, service discovery, communication services, and service invocation routing service. 

• Data service 

The data service enables the sharing of data among the authorized users across 

management services, eliminating the requirement for the management functions to handle their 

own data. The services offered by this building block can be categorized as data storage 

management service, data processing service, and data persistence service. 

• Management domains 

A management domain federates administrative responsibilities within a given ZSM 

deployment. It manages the resources and the resource-facing services based on the division in 

each ZSM network. Physical and virtual network functions (VNF) and cloud-based services are 
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some of the resources that each domain can manage. Each management domain provides 

service endpoints that offer one or more service capabilities. A management domain can 

consume management services offered by another management domain. 

 

As mentioned in [6], the primary service categories of a management domain include 

domain data collections, domain control, domain orchestration, domain intelligence, and 

domain analytics. Each of these components is further described below as appearing in [2], [6], 

and [7]. 

• Domain data collections 

This service monitors the network and provides data such as performance matrices and fault 

reports to the closed-loop operations. As shown in Figure 1, domain data collection interacts 

with domain control services, domain intelligence services, domain analytics, and domain 

orchestration services to generate changes required in the management domain. A service in 

Figure 1 ZSM reference architecture [2] 
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one management domain may indirectly consume data services in other domains if a service 

that belongs to the second management domain consumes its data services. The services offered 

by the data collection services are processing incoming events, inputs related to faults, data 

objects, security, and performance of the managed entities and managed services consumed. It 

also generates notifications and data related to the said services. Domain data collections also 

have the capability to create performance indicators by combining information. The provided 

services can be further categorized as event notification services, performance measurement 

services, and performance measurement streaming services. 

Event notification services create an notification called asynchronous event notification 

to report status changes and problems with the managed services promptly. The subscribed 

services will communicate with the other services via the integration fabric. The list of 

notifications generated includes fault event service, security event service, and performance 

management service. The fault events service generates a notification when there is a fault in 

the system or an abnormal system state in the infrastructure or services related to it. As the 

name implies, the security events service provides notifications about security-related events. 

The events service sends notifications about events that it monitors. For example, if the 

predefined threshold is crossed, the performance events service will notify it. The performance 

measurements streaming service is responsible for generating performance measurements 

created by the network services and infrastructure resources. This is generated in a streaming 

fashion. It also configures control information such as subscription and data to be measured and 

provides the collected performance data. This service also includes information about the 

available measurements. 

The performance measurements collection service is another service offered by the 

domain data collection service. It also offers performance measurements from network 

resources and infrastructure in batches. It will collect the data from the resources during a 

configured time duration and provide it to authorized consumers. Authorized consumers may 

include producers of other management services. This service also allows configuring control 

information such as data to be reported, subscriptions, and how to provide and collect 

performance data. 

The log collection service collects logs, including data about the system's running, 

security, and operations events. These logs can be used for the health, security, and performance 

monitoring of software entities. Data optimization services preprocess the data to provide clean, 

structured, and aggregated data. 

 

• Domain analytics 

These services use the information collected by the data collection services and any available 

data to generate domain-specific insights and predictions. The provided services can be further 

categorized as data optimization services, analytics services, and domain condition detection 

services.  

Analytics services derive insight from the collected data. Apart from the generic 

analytics services such as managing subscriptions and configuring analytics, it also offers 

capabilities such as anomaly detection services, deployed AI model evaluation services, 

reactive incident analysis services, and proactive incident analysis services. Anomalies in the 

resources or services are detected by the anomaly detection service using the collected fault, 

performance, usage information, etc. Anomalies detected may include security violations, 

short-term fault conditions, and service capacity degradation, even though KPIs indicate that 

the services are working properly, indicating that the resources need to be scaled or healed. In 

the event of detecting anomalies, domain intelligence will be triggered to make appropriate 
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decisions regarding the service or to analyze it further. AI is integrated into the ZSM 

architecture, and the same needs to be monitored to maintain the required level of performance. 

This is conducted by the deployed AI model performance evaluation services. It will monitor 

AI-related services to detect performance degradation, sudden performance drops, irregular 

performance, etc. Proactive incident analysis services offer services such as collection and 

classification of data, insights, and inputs to take proactive measures. It also analyses the 

network structure and performance to produce insights. The reactive incident analysis service 

collects and classifies data for performing corrective actions. In addition, the proactive network 

optimization service gathers information from other services in order to produce the metrics 

required for network performance optimization and optimization. 

The domain condition detection service is another primary service offered by the data 

analytics services, and it monitors domain-specific conditions. Breaking down the set of 

conditions that need to be monitored is also done by the domain condition detection service. It 

will also generate a notification of the status of its changes. It is possible to define these cases 

as case-by-case. 

Data optimization services in data analytics services offer the capability of 

preprocessing the data to be consumed by the data analytics applications directly. It is also 

possible to provide alternative views of the data and remove irrelevant or redundant data. The 

services offered by the data optimization services can be further divided into redundancy 

removal services, irrelevancy removal services, and data aggregation services. The data 

aggregation service aggregates the data according to different dimensions such as locations, 

time periods, and topology. 

 

• Domain intelligence 

The main function of the domain intelligence service is to make decisions to drive the closed-

loop automation process. The decision-making is automated to various levels. It can further be 

categorized as decision-making, decision support, and action planning. Decision-making with 

the aid of technologies such as AI is considered a decision support service. Decision-making 

services generate decisions based on data made available to them. Defining an action plan or 

orchestration that the ZSM services will execute is also known as action planning. The services 

offered by domain intelligence services include AI model management services, deployed AI 

model assessment services, knowledge base services, and AI training data management 

services. 

 As the name suggests, AI model management services manage AI models used by the 

network. It is possible to update the model periodically or at any time as desired by the 

administrator. It is possible to degrade the performance of the deployed model for reasons such 

as a change in reality. In such instances, AI model assessment services determine the actions to 

be taken. A deployed AI model may undergo measures such as retraining, reconfiguring, 

upgrading, replacement, pause, and termination. The AI training data management service 

manages the data required for training the model and retraining the model. Training data may 

contain labelled data as well. Knowledge base services create and maintain a machine-readable 

knowledge base. It has known problems and descriptions of the underlying course. The health 

issue-reporting service generates reports that need to be sent to higher-order entities. It contains 

reports about health issues, faults, and security issues. 

 

• Domain orchestration  

The services offered by the domain orchestration services allow automation of workflows and 

processes inside a management domain. It maintains the inventory of network services and 
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other virtualized resources of the management domain. It also maintains an updated view of the 

related topology. Discovery, topology, and inventory management services are used for this. It 

should be noted that, as per the proposed architecture, inventory of the hardware resources and 

hardware installation or removal is not managed by the orchestration services. The consumers 

of the orchestration services include services from the other domains, consumers that provide 

E2E service orchestration services, and ZSM framework consumers. As depicted in the closed-

loop in Figure 2, domain orchestration services will be consumed only by the management 

functions of domain intelligence services. The services provided by the domain orchestration 

service can be further divided into feasibility check services, domain orchestration services, 

managed service catalog management services, domain inventory information services, domain 

inventory management services, testing services, and domain topology information services. 

Domain orchestration services control the accessibility of domain-level network 

services. It allows only authorized consumers to create, modify, or terminate the network 

services. A dedicated domain service stores the complete description of the resources and 

services, topology, configurations, and related policies. It may contain the orchestration 

workflows that need to be executed. 

The feasibility check service can be used to check whether a particular parameterized 

managed service is deployable. It may indicate whether the requirements of the service can be 

met with existing resources in the management domain. It is also possible to make necessary 

reservations in the domain if the requirements can be fulfilled. 

The catalog management service maintains a catalog of the services managed by each 

management domain. It also exposes the catalog to the required management domains. It may 

include supported coverage areas, supported SLS services, and service templates. The main 

three functions of this service include managing service models, managing service categories, 

and providing catalog notifications. This service carries out operations such as creating, 

reading, updating, deleting, and listing as part of the managed service models. Managing service 

categories also refers to creating, reading, updating, deleting, and listing service categories. 

This service also notifies you of catalog changes. 

Domain orchestration also offers a testing service. It executes tests based on policies, 

configurations, and performance data before adding them to the live network. This testing 

service can be triggered when required. However, a test specification needs to be designed. The 

service allows checking the status of the ongoing test, its status, and results. The service 

provided includes managing test specifications, test resources, query tests, and providing test 

notifications. 

The domain inventory information service allows querying information about the 

infrastructure resources and services offered by the management domains required for end-to-

end service management. It is also possible to provide information at different abstraction levels 

based on the requirements. 

The domain inventory management service gathers information about available 

infrastructure resources and managed services. However, this is a service provided for 

consumers in the domain only. The domain topology information service is also a service 

offered by the orchestration service, and it provides information about the topology of the 

resources and services in the management domain. It is made available via cross-domain data 

services. The configuration service is responsible for configurations such as setting policies. 

Query topology information is responsible for allowing querying information about the 

topology of the infrastructure. Resources include services, physical and virtual resources, 

physical or virtual links, or network connections. The level of abstraction of the information 

depends on the requirements of the service.   
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• Domain control 

This service allows you to steer the state of the managed entity. The domain control service will 

be controlled based on the relevant entities' configuration settings. The service offered by the 

domain control service can be consumed by the services of the domain orchestration group, 

which intends to change the state or configuration of a managed entity in the domain. The 

control group can also control virtualized resources. Domain control services are further 

classified into three types: resource configuration management services, resource lifecycle 

management services, and configuration data generation services. 

 The resource configuration management service is for managing the configurations of 

the resources. Domain control also manages the life cycle of the resources of the domain. The 

lifecycle includes operations such as instantiating, updating, scaling, healing, and termination. 

However, it may vary with the application involved. Apart from the generic services such as 

managing resource lifecycles, providing notifications of life cycle changes, and managing 

subscriptions to lifecycle changes, domain control services are also capable of handling the 

virtualized resource lifecycle. 

 

• E2E management domain 

The E2E management domain is a significant component of the ZSM architecture. Similar to 

the management domain, it can be further divided into E2E service orchestration, E2E service 

intelligence, E2E service analytics, and E2E service data collection. Each of these is described 

below as appearing in [2], [6], and [7]. 

E2E service data collection monitors the availability and quality of the customer-facing 

services. I.e., the E2E service quality is monitored, and the end-user experience is verified based 

on data provided by the data collection services. This service provides performance data such 

as KPIs to authorized consumers. 

E2E service analytics handles E2E service impact analysis, and root cause analysis 

generates service-specific predictions. It also includes service level specifications (SLS) 

monitoring and KPI monitoring. The analytics services of the domain process incoming events 

and event information related to faults to analyze the data and derive insights. Analytics services 

also keep track of the end-to-end service KPIs and user experience. Probes or the underlying 

service-specific observation mechanism are used for this purpose. It is possible to determine 

when and how the analysis results are provided. The capabilities offered by the E2E analytics 

service include the E2E anomaly detection service, root cause analysis service, deployed AI 

model performance and evaluation service, impact analysis service, security analytics, and 

service performance analysis service. Each of these is described in Table 1. 

 

Table 1 Specific analytics services defined by the ZSM framework 

Service name capability 

E2E anomaly 

detection service 

The capabilities of this service include detecting anomalous 

conditions related to the E2E service by using the information made 

available by the data collection services.  

Conditions such as security violations, fault conditions leading to 

short-term unavailability of the E2E services, and inconsistency of 

the services are monitored by these services.  

In the event an anomaly is detected, the service will trigger the E2E 

service intelligence services to take appropriate actions. It is also 
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Service name capability 

possible to carry out further analysis rather than conclude with the 

available data. 

Deployed AI 

model 

performance 

evaluation service 

Similar to the domain level, this service also has the capability to 

detect the performance level of the deployed AI models and to detect 

performance degradation. This service monitors the model for 

performance degradation, sudden performance drops, irregular 

performances, etc. 

Root cause 

analysis service 

This service investigates the root cause of the service by correlating 

available information. The available information includes multiple 

fault information, dependency information, and additional insights 

offered by other services. 

Impact analysis 

service 

This includes determining the impact of the faults or other problems 

on the service. 

Performance 

analysis service 

The performance analysis service analyses the data provided by the 

data collection services of the underlying domain to obtain insights 

into the service performance. 

Security analytics 

service 

This service processes security events to recognize specific attack 

patterns, suspicious behavior, and threats that may lead to security 

implications. 

 

The E2E service quality management service is another service that belongs to E2E service 

analytics. It is responsible for allowing only authorized consumers to manage the service level 

objectives (SLO) and SLS of the E2E services. SLS or SLO are related to the service level 

agreements that determine network performance. A Service Level Agreement (SLA) is often a 

legally binding contract between the service provider and any other network user. 

The E2E service condition detection service is responsible for decomposing the 

conditions into parts supported by individual management domains; for example, decomposing 

the SLS can be done. This service then tracks whether these conditions are met and generates 

notifications if the conditions change. It is also possible for other services to consume this 

service. 

Service intelligence drives the closed-loop automation in the E2E domain with AI. The 

level of automation may differ to various degrees based on the application requirements. It is 

also further categorized as decision support, decision-making, and action planning. Decision 

support services support making decisions with the help of technologies such as AI and ML. 

E2E service data collection information is used for E2E service management decision-making. 

The other sources used for information include E2E service data collection, E2E service 

analytics, and domain data services in the E2E service management domain. The services 

provided by the E2E service intelligence service include the AI model management service, the 

deployed AI model assessment service, the AI training data management service, the AI 

training data management services, and the E2E service health issue-reporting service. 
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Table 2 Service capabilities of E2E service intelligence 

Service name capability 

AI model 

management 

service 

The main capability is managing AI models and updating the model 

based on new inputs. Managing means creating, reading, updating, 

deleting, and listing the AI models. 

Deployed AI model 

assessment service 

Monitoring the performance of the AI models. This is because the 

model may degrade over time. This service allows determining the 

most appropriate action for the model which has been indicated as 

degraded. 

AI training data 

management 

service 

The main functionality of this module is to store the data for training 

and retraining data. This service is capable of creating, reading, 

updating, deleting, and updating the data. 

E2E service health 

issue-reporting 

service 

This generates reports about the health of the E2E services. 

 

E2E service orchestration manages catalog-driven E2E orchestration of multiple management 

domains for the creation, deletion, or modification of customer-facing services. In the same 

way that management has a service model that illustrates how the various services are 

interconnected, this domain has a service model as well. 

 

Table 3 Service capabilities of E2E service orchestration 

Service name capability 

E2E service 

orchestration 

service 

This service allows consumers to create, modify, and terminate E2E 

services. It also allows for the automation of workflows. This service 

applies to the E2E service model and is managed by the managed 

service catalog management service in the E2E management domain. 

ZSM framework consumers can deploy E2E services by using E2E 

orchestration services. 

Feasibility check 

service 

The feasibility check service checks whether the E2E services can be 

deployed at the expected service level. In the same way as the 

management domain, the feasibility check of the E2E management 

domain includes things like checking deployment capabilities and 

checking and reserving services. 

 

Managed services 

catalog 

management 

service 

This service manages the catalog of the service models of the available 

E2E services operated by the E2E service management domain. It also 

makes the catalog available to other consumers. The service models 

can be grouped into service categories and may include information 

such as supported coverage areas, associated SLSs, service templates, 

etc. Service models typically have a life cycle as well. 

E2E testing service The testing service carries out active and passive tests to determine 

whether the end-to-end services or parts of them are functioning 
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Service name capability 

properly. Tests are executed based on the test specifications and can 

be triggered as required by the administrator. It also shows the test 

status and results of all performed tests. 

 

E2E services 

inventory 

information service 

This service allows for querying information about E2E services. This 

information is based on the aggregating inventory information given 

by the relevant management domain. 

 

E2E services 

inventory 

management 

service 

The E2E service inventory services collect information about E2E 

services. However, this service can only be consumed by consumers 

inside the E2E service management domain. 

E2E services 

topology 

information service 

This service is responsible for providing information about the 

topology of the infrastructure from the perspective of E2E services. It 

is provided at different abstraction levels based on the application 

requirements.  

 

 

In the architecture described here, closed-loop operations play a significant role in network 

automation. Apart from automation, closed-loop operations make network optimization and 

behavior adaptation possible. The domain-level security closed loop, as shown in Figure 1, also 

has five stages: knowledge, orient, observe, decide, and act[6]. 

Closed loops are essential for end-to-end automation and zero-touch management of 

network services and infrastructure [2]. Figure 2 shows the indicative mapping between 

architectural building blocks and closed-loop steps [2]. 
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Observation and collection of relevant resources are carried out as part of a closed-loop, after 

which the data is oriented so that its meaning and significance can be understood. Filtering, 

correlation, or any other similar mechanism based on application is used in analysis or 

orientation. Decisions are made using AI/ML mechanisms that can recognize patterns or trends 

and predict them. Based on the circumstances, the decision-making component also makes 

plans, determines root causes, or performs similar processes, which are then implemented. 

Based on the requirements, it is also possible to work collaboratively with other closed loops 

[2]. 

 Similarly, in a security closed loop, security agents located throughout the network 

collect data and submit it to the security data collector, who monitors the data. Data processing 

and analysis are performed by the security analytic service. The inferred information is then 

provided to the decision engine, which can decide the best course of action to run the network 

optimally while mitigating any risk signaled by the data. Following that, the security 

orchestrator will impose the decision engine's recommendations on the relevant entities. The 

Figure 2 Indicative mapping between architectural building blocks and closed-loop steps [2] 
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data analytic engine will then examine the outcomes of the data collected by security agents 

and security data collectors [6]. As Benzaid et al. [7] have mentioned, open application 

programming interface (API) security threats, intent-based interface security threats, security 

threat-driven network automation, AI, ML-based attacks, and security threats due to the 

adaptation of programmable network technologies are the threat surfaces in the ZSM 

architecture [6]. 

 Apart from single-closed loops, it is also possible to use cross-closed loops as well. As 

per Xie et al. [8], crossed closed loops can be used in applications such as URLLC where strict 

latency requirements are required. They also recommend APIs, intent and policies, stimuli, and 

workflows as some of the elements required for cross-closed-loop collaborations. There could 

be other elements as well, depending upon the requirement. However, as Vaishnavi et al. [9] 

highlight, the use of closed loops in 5G has challenges such as fewer or no standards among 

closed loops used by different vendors/applications, the possibility of influencing the closed-

loop operations, operator reluctance to trust the closed-loop, and conflicts arising due to 

unplanned interactions. 

 

2.2 Security Threats in ZSM architecture 

Due to the architecture shifts in the network to adapt automation, new threats can emerge 

along with the existing threats. Table 1 shows the summary of the threat landscape as explained 

by Benzaid et al. [4] in the ZSM architecture. 

 

Table 4 Security Threats in ZSM architecture 

Enabler Security threat Mitigation measures 

AI/ML Adversarial attacks - 

attempting to change the 

model by injecting malicious 

data. 

• Input validation  

• Adversarial training: Exposing the 

model to adversarial examples in order 

for it to become more resistant to 

them. 

• Defensive distillation: increasing the 

ML model's robustness by using its 

own knowledge on adversarial 

examples. 

• Défense Generative adversarial 

networks (GANs): Prior to sending the 

input samples to the ML model, the 

samples are passed through the GAN's 

generator to ensure that adversarial 

examples are not included. 

• Concept drift 

• Model extraction 

attacks: stealing the 

model parameters to 

recreate the model 

• Control the information provided by 

APIs to the ML  

• Adding noise to the ML prediction  



 

 

22 

Enabler Security threat Mitigation measures 

• Model inversion attacks- 

infer training data 

• Adding noise to the execution time of 

the ML model 

Software-

defined 

networking 

(SDN)/NFV 

• Spoofing – 

impersonating 

OpenFlow 

switch/controller[10] 

• Privilege escalation 

• Information disclosure 

• Tampering – tampering 

with configuration data, 

etc. 

• Mutual authentication to prevent 

impersonation of SDN applications, 

controllers, and switches. [11] 

• Authorization mechanisms such as 

Base Closure and Realignment (BRAC) 

to control access levels to prevent 

privilege abuse. 

• Secure communication by using 

techniques such as digital signatures, 

encryption, and message authentication 

algorithms. (MAC) 

• Trusted Platform Module (TPM), 

Virtual Trusted Platform Module 

(vTPM) for sheltering sensitive data 

such as passwords and encryption keys. 

• DoS [12],[13],[14] • Malicious traffic monitoring using 

intrusion detection service (IDS) and 

firewalls 

• Limiting the number of flow requests 

• Resource monitoring and usage 

limitation 

• Resource isolation  

• Distributed SDN controller 

architecture 

• Introspection Attacks: 

threats due to combining 

networking with 

virtualization technology 

• TEE – hardware solution made for 

providing confidentiality and integrity 

• Software vulnerabilities • Secure software patching procedures  

• System hardening techniques – 

removing unnecessary services, 

enabling operation systems (OS)-level 

access, and customizing default 

configurations. 

Open API 

APIs are to be 

used for 

communication 

Parameter attacks: take 

advantage of data sent into 

the API, such as Uniform 

Resource Locator (URL)s, 

query parameters, and HTTP 

headers. 

• Input validation 
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Enabler Security threat Mitigation measures 

between 

interfaces 

• Identity attacks: 

exploiting the flaws in 

authentication, 

authorization, and 

session tracking, they 

could gain control of the 

management domain and 

E2E domain. 

• Authentication and authorization 

controls: empowering authentication by 

OAuth2.0 or JSON Web Token (JWT) 

token, RBAC, ABAC, and ACL for 

authorization. 

• Message encryption and using 

protocols such as Transport Layer 

Security (TLS) 1.2 for secure 

communication. • Tampering attacks 

• Man in the middle 

(MITM) attack: 

exploiting data by a third 

party positioned between 

API consumer and 

producer, especially the 

unencrypted data, 

• (D)DoS – A massive 

volume of requests can 

lead to a denial of 

service. 

• Rate limiting/throttling the usage of 

APIs,  

• Use of API gateways and micro 

gateways. 

Intent-based 

interfaces-  

is used to 

achieve a high 

level of 

interactions 

• Information exposure, 

intent tampering – 

expose information such 

as application desires 

• Authentication (OpenID Connect, 

signed JWT tokens etc.) and authorization 

(OAuth2.0, RBAC, etc.) mechanisms for 

ensuring authentication between intent 

producer and intent consumer and 

controlling the access to the intent-based 

interface. 

• Malformed intent- could 

interfere with service, 

especially orchestration 

services 

• Intent format validation- providing an 

intent engine with capabilities to 

validate the intent format. 

• Conflicting intents • Conflict detection/resolution 

 

Apart from the security threats inherited from the ZSM architecture, it is also possible to have 

the security threats and anomalies that were available in the previous architectures as well. 

Analysis, DoS, Backdoors, Exploits, Reconnaissance, Generic, Shellcode, Fuzzers, and Worms 

are some of the possible types of attacks. While there can be many more, the same set of attacks 

has been used for the data set as well. Therefore, each of those is described below. 

• DoS 

DoS is the act of making service unavailable to valid users through interruptions or by 

suspending the service. According to Moustafa et al. [15], it is a malicious attempt to make a 

server/network resource unavailable by temporarily interrupting or suspending the services of 
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an Internet-connected host. Sending many requests to a server is a well-known attack type. 

Buffer overflow attacks, ICMP floods, and SYN floods are very popular types of attacks that 

lead to service unavailability. 

• Analysis 

As per Moustafa et al. [15], port scanning, spam, and HTML file penetrations fall under this 

category.  

• Backdoors 

A back door is usually a hidden way by which access can be gained to the system. It is possible 

to bypass system security mechanisms to access the data or service.[16] 

• Exploits 

The attacker manipulates the known security issues in various systems, such as operating 

systems or software programs, and conducts malicious activities. [17] 

• Reconnaissance  

This refers to collecting information from tools such as debugging tools and configuration tools 

to gather information about the target. Some common examples are packet snipping and port 

scanning.  

• Generic 

It is stated as a technique that works against block ciphers that have a given block and key size, 

and the structure of the block cipher is not considered. 

• Shellcode 

Shellcode is a piece of code inserted that can be used by attackers to exploit software 

vulnerabilities. 

• Fuzzers 

Fuzzers feed randomly generated data and attempt to suspend a program or network. [18]  

• Worms 

A computer software that replicates itself or self-propagates in order to reach other targets. 

Code Red, Slammer, and Nimda are a few examples of worms. [19] 

 

2.3 Federated Learning 

 

FL is a novel ML technique that utilizes decentralized edge devices for training models. As the 

model is trained on the device using locally available data, privacy is preserved. FL has been 

used for many IoT applications for anomaly detection. However, FL techniques also have a set 

of security threats that need to be considered when adapting them for any application. 

As described by McMahan et al. [20], the first use case of FL is to take advantage of the 

rich data available on mobile devices without affecting the customer's privacy. The authors 

suggest FL as a technique to be used for training on real data from mobile devices. The data to 

be used or labels can be determined by the user interactions for supervised tasks. 

As in any ML model, there is an optimization problem in FL. The model proposed by 

McMahan et al. [20] mainly targets the photos or language-related applications on mobile 

phones, tabs, or devices of a similar kind. Therefore, the optimization problem has properties 

such as non-IID, unbalanced, massively distributed, and limited communication [21]. The ML 

optimization problem is stated as below in McMahan et al. [20], which is the loss of the 

prediction on (𝑥𝑖,𝑦𝑖) for the weight set w.  

 

     𝑚𝑖𝑛𝑤 𝜖 𝑅(𝐷) 𝑓(𝑤) 

 

𝑓𝑖(𝑤) = 𝑙(𝑥𝑖,𝑦𝑖,: 𝑤) 
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For FL, the problem can be mathematically demonstrated as below. 

 

𝑓(𝑤) = ∑
𝑛𝑘

𝑛

𝐾

𝑘=1

𝐹𝑘(𝑤) 

 

Where,  

 

𝐹𝑘(𝑤) =
1

𝑛𝑘
∑ 𝑓𝑖(𝑤)

𝑖𝜖 𝑝𝑘

 

 

‘k’ is the number of clients, and 𝑝𝑘 is the number of samples available for each client, and 𝑛𝑘 

is defined as 𝑛𝑘 = |𝑝𝑘|. They also propose using a federated stochastic gradient descent (SGD) 

algorithm for the optimization. Nevertheless, as presented in the results, simple averaging 

techniques have shown better accuracy for the used test data and training data. 

Kairouz et al. [22] explain how the life cycle of a federated model takes place. It starts with 

the problem identification done by a model engineer. The next step is client instrumentation, 

where clients locally store the necessary data for training. Then the model engineer prototypes 

a model and sends it for federated model training. The trained models that are received are 

further evaluated for the purpose of selecting the best models. Finally, the best model is 

deployed on all devices. Figure 3 shows the federated model as presented by Kairouz et al. [22], 

 

 

The federated training process in the cycle above plays a significant role, and its components 

are as below. 

1. Client selection: The server selects a set of clients meeting eligibility criteria. 

2. Broadcast: The selected set of clients download the set of current model weights and the 

training program from the server. 

3. Client computation: The set of devices locally computes a model. 

4. Aggregation: The server aggregates the parameters received from the devices. 

5. Model update: The server shares the aggregate model back with the clients. 

 

Figure 3 The FL model [22] 
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It is possible to change the model type used in FL. The proposed model uses artificial 

neural networks (ANN) for detection. Neural networks are a subset of ML that mimic the human 

brain [23]. It optimizes the set of weights assigned to each neural network. ANN can be further 

divided into types, such as recurrent neural networks and convolution neural networks. An 

ANN model is made up of three layers: an input layer, a hidden layer or layers, and an output 

layer. Apart from the weights assigned to each layer, optimization and activation functions also 

play a significant role. 

 Long Short-Term Memory (LSTM) is also a commonly used network model for 

intrusion detection. For example, Malhotra et al. [24] use LSTM in anomaly detection. In 

LSTM, a new activation layer known as “gates” is introduced to ensure that the network retains 

a memory of the previous event [25]. A gated recurrent unit (GRU) is also similar to LSTM and 

is considered a recurrent neural network [26]. Qu et al. [27] have successfully used GRU for 

their anomaly detection algorithm. 

FL can be used for wireless communication applications, as highlighted in Niknam et al. 

[28]. Edge computing and caching, autonomous driving, federated ML for spectrum 

management, the coexistence of heterogeneous systems (e.g., DSRC and c-V2X), and federated 

ML in 5G core networks are among the applications highlighted by the authors. 

While using FL for various purposes can generate many benefits, it also inherits some 

challenges. As Niknam et al. [28] mentioned, even though FL preserves privacy, it is also 

possible to analyze the global data and disclose clients who participated. The FL models may 

undergo model re-training with new data. An attacker can carry out model-poisoning attacks 

during this instance. I.e., training data is carefully altered to generate a result expected by an 

intruder. For example, Bhagoji et al. [29] demonstrate how model poisoning can be done in FL-

based applications. The FL models are also susceptible to membership inference attacks. As 

described by Melis et al. [30], during an inference attack, one of the adversaries pretends to be 

an honest client and infers the training data by participating in the training algorithm. Inference 

can be further classified as parameter inference, input inference, and attribute inference attack.  

Apart from the privacy breaching or security breaching incidents mentioned above, it is 

also possible to have challenges relevant to the algorithm, as highlighted in Nikman et al. [28]. 

Some of them are related to convergence and optimization problems, such as deciding the 

optimum number of participants. Nikman et al. [28] also mention a few issues related to 

wireless communication in the wireless channels. Due to network capacity, information is 

quantized before being sent over the wireless network; as a result, parameter quantization needs 

to be considered for FL. As a result, it will naturally inherit quantization errors. Wireless 

channel quality could also affect convergence [28]. Liu et al. [5] also explain using FL in 6G. 

High security and privacy, and high operational, service, and application intelligence are key 

features of the 6G network. Apart from the benefits, there are challenges such as expensive 

communication, security problems, privacy concerns, and effectiveness issues. 

Apart from the challenges, Liu et al. [5] also highlight the possible remedies, such as using 

a communication-efficient FL algorithm. An asynchronous FL system could reduce the 

computation time of devices by asynchronously aggregating the model updates to increase 

communication efficiency. Xie et al. [31]., Chai et al. [32], van Dijk et al. [33], and Chen et al. 

[34], present some of the algorithms available for asynchronous FL. To increase the efficiency 

level at the algorithm level, it is also possible to increase the communication efficiency by using 

gradient compression techniques. For the SGD algorithm based on zero, first, or second-order, 

optimization can be used for gradient compression [35]. It is also possible to reduce the 

communication overhead by gradient sparsification and gradient quantization, which lead to 

efficiency. Lin et al. [36] propose a top-k selection-based gradient compression scheme. 
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To secure the FL mechanism from malicious attacks, Liu et al. [37] suggest using robust 

aggregation algorithms, robust detection algorithms, and reliable reputation management. Liu 

et al. [37] propose a smart contract technique using blockchain to detect malicious devices. A 

reputation management scheme can be found in [38], which calculates the historical reputation 

of the device. Differential privacy (DP) techniques, such as deep net pruning and gradient 

compression, are popular techniques for preserving privacy, as presented in related work. To 

increase the effectiveness of FL, it is also possible to use techniques such as federated 

parallelization, federated distillation, and efficient inference [39], [40]. 

FL-based applications also face an inevitable set of challenges such as system and 

statistical heterogeneity other than security-related problems. System heterogeneity refers to 

the difference between storage, computational, and communication capabilities in devices 

participating in FL-based applications [21]. As a result, unreliable results are possible, and the 

number of participating devices may be drastically reduced. Each device may collect non-

identically distributed data, and it may not be possible to assume that the data is independent 

and identical. Therefore, each of these needs to be anticipated when designing the application. 

As highlighted by Trab et al. [41], uncertainty in the wireless channel could also contribute to 

the algorithm, and it needs to be considered in the optimization technique. 

 

2.4 FL-based anomaly detection 

 

FL has been used for anomaly detection, mostly in IoT devices. Ferrag et al. [42] provide a 

summary of the set of IoT-related applications that use FL. Some of the available work is 

presented here. 

Wang et al. [43] developed a hierarchical FL anomaly detector for industrial IoT devices 

that uses deep reinforcement learning to train the local model on each device. They have used 

three types of anomaly detectors: the global anomaly detection center (GADC), the local 

anomaly detection center (LADC), and the regional anomaly detection center (RADC). FL 

enables the use of anomaly detectors. It is proposed to check for anomalies in internal users and 

use an FL-trained model. The model used consists of both reinforcement learning and deep 

learning algorithms. Most of the other cases where FL is used are IoT-related applications. 

To address the growing number of devices, Nguyen et al. [44] suggest a federated-based 

solution for anomaly detection in the IoT. The proposed model, which is built for a small office 

or home office, consists of a security gateway and an IoT security service. The security gateway 

monitors the systems and identifies compromised or malicious devices. IoT devices connect to 

the internet via these security gateways, and anomaly detectors placed in the gateways monitor 

devices for anomalies. The IoT security service maintains a repository of device-type-specific 

anomaly detection models. The security gateway trains a local model with available data and 

shares the parameters with the aggregation server. The aggregation server caters to a set of 

security gateways, and it aggregates similar parameters sent by other servers. GRU models were 

used for detection. 

Yadav et al. [45] also present an unsupervised FL-based IoT intrusion detection system. 

For detection, they used an autoencoder and an ANN model, and the CICIDS 2017 data set was 

used to test and train the proposed model. The IoT devices connected to the network first receive 

a random set of weights, which are then trained with locally available data. The new parameters 

are then shared with the server, as in any FL model. The anomalies detected include brute force 

(File Transfer Protocol (FTP)-Patator and SSH Patator), DoS Solaris, DoS Slow HTTP Test, 

DoS Hulk, DoS Golden Eye, Heartbleed, Web attack-Brute Force, Web attack-XSS, Web 
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attack-SQL Injection, Botnet, Port Scan, Infiltration, and Distributed Denial of Service (DDoS) 

LIoT. The maximum accuracy achieved is mentioned as 97.75%. 

Liu et al. [46] use a FL framework to train a deep anomaly detection (DAD) model in a 

collaborative manner in industrial IoT applications. The proposed system consists of a cloud 

aggregator, and the main two mechanisms mentioned are anomaly detection and gradient 

compression. The cloud aggregator server is responsible for initializing the global model, 

sending it to the local devices, and aggregating the model parameters received from the end 

devices. The gradient compression mechanism, which reduces the number of gradients 

exchanged between server and end device by compressing, is a significant feature. The tested 

model types include LSTM, GRU, stacked autoencoders, and support vector mechanisms. 

Wei et al. [47] present a FL-based anomaly detection solution for 5G heterogeneous 

networks, which includes three major components: user end devices, the edge, and the cloud. 

The proposed system focuses on a network with end devices, edge devices, and a cloud. The 

anomaly detecting mechanisms are distributed on edge and end devices. The end devices use 

deep reinforcement learning to train models to detect attacks. The model parameters of the 

trained models are shared with the aggregator server located at the edge. The detectors situated 

on the edge have their aggregator servers in the cloud. 

Li et al. [48] present “DeepFed”, a system for utilizing federated deep learning for 

intrusion detection in industrial cyber-physical systems. It consists of three major entities: trust 

authorities, cloud servers, and industrial agents. The trust authority is responsible for generating 

public keys and private keys as the proposed system uses a Paillier public-key cryptosystem-

based secure communication protocol. The cloud server is used as the aggregator server, and 

industrial agents are the local devices for building local models based on available data. The 

proposed system is built to handle attacks such as reconnaissance attacks, response injection 

attacks, command injection attacks, and DoS and DDoS attacks. They are proposing a CNN-

GRU-based intrusion detection system. 

The proposed model in [49] is a deep learning-based self-adaptive algorithm with two 

stages for detecting anomalies in 5G networks. However, FL is not used in this scenario. They 

have used the ETSI NFV architecture as the basis with two VNFs, namely Anomaly Symptom 

detection (ASD) and Network Anomaly Detection (NAD). ASD is located in the RAN, and it 

inspects the network flows to identify anomalies. NAD collects timestamped and RAN-

associated symptoms. There is also a central process that analyses the timeline and the 

relationship between these symptoms. They have proposed using input performance monitoring 

indicators as inputs to the security policy manager in the 5G network. The security policy 

manager will be able to adapt RAN resources, extending ASD and NAD functions. Each 

function is described below. 

• Adapting RAN resources: deploying new virtual resources if an overload of any single 

resource is detected. 

• Optimizing ASD and NAD functions – implies changing the deep learning framework or 

detection model to suit the variations in the network flow volume. 

• Extending ASD and NAD – deploying the specific detection component allowing 

inspection of L2/3 flows etc. 

The proposed system consists of two stages. In the first stage, detectors do not have the 

capability to figure out the responsible party. This task is done by the second stage of the 

proposed model, which is placed in the evolved packet core. The proposed system also allows 

the deployment of symptom detectors in the network where the network traffic increases. 

In addition to security, there are also AI models in the proposed architecture that are used 

for things like network resource optimization and proactive and reactive incident analysis in the 
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domain analytic service. AI can help with service management, and Rizwan et al. [50] show 

how to use AI-enabled CDR analysis for service management in zero-touch networks. For 

identifying suboptimal network performance and root causes, they used k-means clustering, 

support vector mechanisms, and their own algorithm.  
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3 PROPOSED ARCHITECTURE 

The ZSM architecture includes data analytics services, and many of the components are 

equipped with ML techniques. As a result, ML can be used for network security, among other 

things. However, it also brings with it unavoidable issues such as resource constraints and 

emerging privacy concerns. FL provides advantages such as privacy protection and improved 

communication efficiency. As a result, the mechanism presented here employs FL in the ZSM 

architecture for anomaly detection. Model training and detection are the two major components 

of the proposed mechanism. 

 

 

It is possible to build a domain inside another domain if it is useful to group a set of functions 

together. Therefore, for this purpose, the proposed system is placed inside the security 

management domain of each domain. Figure 4 depicts the security management domain only. 

It is important to note that it resides inside the domains, such as RAN, described in the early 

chapters. There are two types of detectors placed inside each domain: type A and type B. Type 

A detectors communicate with the parameter aggregation server placed inside the domain. 

However, anomaly detector B communicates with the aggregation server placed in the E2E 

management domain. The aggregation server inside the domain communicates with the type A 

detectors inside each security management domain. The servers inside the E2E management 

domain communicate with the type B detectors of all domains. 

 As illustrated in Figure 4, each detector consists of a database, a model, and a detector. 

The database stores a set of network flows that could be used for training the model. The model 

represents the training component of each detector. The model, communicated by the relevant 

aggregation server, will be trained using the data available in the database. Both type A and 

Figure 4 Proposed hierarchical FL based anomaly detection mechanism and its mapping with 

the ZSM architecture 
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type B detectors have the same structure. Type B detectors, on the other hand, are more capable. 

I.e., the databases of type B detectors are capable of storing more network flows, and models 

can be made more complex compared with stage A. 

The proposed model is an FL-based hierarchical security scheme that detects anomalies 

in network traffic in two stages. The two stages each have a different ML model, and the idea 

is inspired by two reference security schemes proposed for IoT networks [49] and [47]. As 

shown in Figure 4, and in compliance with the ZSM architecture, network traffic anomaly 

detection is performed at the management domain and the E2E management domain levels, 

respectively. Each anomaly detector comes with an FL-based model and a database, as well as 

two types of parameter aggregating servers that are positioned for detection. The setup is further 

described in the following sections, which cover two major mechanisms. 

 

3.1 The detection mechanism 

The network flow will be routed through two anomaly detectors as it enters the network. 

The first anomaly detector in the security management domain uses a simple ML model with 

smaller databases. It enables the placement of an adequate number of detectors in the network 

while adhering to resource constraints and addressing privacy concerns. The ML models of all 

the anomaly detectors relate to an aggregation server. Each stage of a domain has a single 

aggregation server that serves a set of anomaly detectors that aggregate the model parameters 

based on a pre-determined criterion. Network flows that are confirmed to be anomalies will be 

dropped from stage 1, anomaly detector A, and the remaining data will be analyzed at stage 2, 

detector B. 

The data filtered from stage 1 will be sent through the detector in stage 2, and it is marked 

as detector B in Figure 4. As per the proposed model, detector B has a complex ML model and 

a larger database compared with the stage 1 detector. Stage 2 detectors serve as a set of detectors 

that belong to stage 1. Stage 1 detectors and stage 2 detectors are considered part of the security 

management domain. However, the stage 2 aggregation servers are placed in the E2E 

management domain. Like in stage 1, the network flow identified as anomalies will be dropped 

from the network, allowing the regular traffic to continue to its destination. 

 

3.2 The training mechanism 

A training mechanism is required to generate the model parameters for the anomaly 

detectors in stages 1 and 2. The training mechanism can be further divided into initial training 

and training in case of a missed anomaly. It is required to train the model at the start of the 

detector in the network, and it is necessary to train the model if any anomaly goes through the 

network undetected. 

As expected in an FL-based model, model parameters generated by the model at each 

detector will be aggregated at the aggregation server based on a predefined criterion. Initially, 

a set of data will be stored in the database of each model, allowing it to generate parameters 

that are eventually shared with the aggregation server. The aggregation server will take the 

average of the parameters shared with it and transmit them back to the detectors as the new set 

of parameters for detection. 

Future networks are expected to experience unprecedented events, and ZSM is no 

exception. A mechanism is proposed to prevent recurrences if the detectors fail to identify it as 

an anomaly during an unknown attack. A security analytics engine in each domain can generate 

alarms if any undetected anomaly affects the network performance. As per the proposed 
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mechanisms, two messages will be generated by the same. A notification containing the 

undetected anomaly will be sent to both the stage 1 aggregation server and the E2E 

orchestration engine. Two mechanisms for both messages are demonstrated in Figures 5 and 6, 

respectively. 

Figure 5 demonstrates how the components related to stage 1 react to the notification from 

the security analytics engine. The message will be first received by the stage 1 aggregation 

server. The aggregation server will communicate it to the model of stage 1 detector, which will 

train the model with the network flows relevant to the period as directed by the stage 1 

aggregation server. After completing the training, the generated parameters will be sent to the 

stage 1 aggregation server. The aggregation server will generate a set of parameters based on 

the received values and will communicate them back to the stage 1 anomaly detector model. 

Even though only one cycle is depicted in Figure 5, several rounds of communication will take 

place as configured in the network. After completing the given number of rounds, the final set 

of parameters will be sent to the stage 1 anomaly detector to be used for future detection. 

Meanwhile, as a part of the closed-loop mechanism embedded in the ZSM architecture, the 

effect of the new parameters will be observed by the network, and modification will take place 

if required.  

 

 

A notification will be sent to the E2E aggregation server, similar to the message sent to the 

stage 1 aggregation detector. The mechanism that takes place after receiving the notification is 

demonstrated in Figure 6. It should be noted that components such as integration fabric are not 

represented in the diagram for simplicity. The E2E orchestration engine will send two 

notifications, which are received by stage 2 aggregation servers and security analytics engines 

of other domains. Upon receiving the notification, the security analytics engines in other 

domains will check for similar events. The process explained above will take place if there is 

any undetected anomaly that is identified. The stage 2 aggregation server of the domain for 

which the anomaly is relevant will begin training when the notification from the security 

analytics engine is received. Similar to the process demonstrated above for stage 1, only one 

cycle for model training is indicated in the image for simplicity. However, several rounds will 

take place as expected in any FL-based application. 

Figure 5: Flow diagram for stage 1 if anomaly is not detected 
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Figure 6 Flow diagram for stage 2 if anomaly is not detected 
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4 SIMULATION 

This section describes the simulation setup used for two-stage anomaly detection. The 

simulation is described first, followed by the data set used for it. The simulation setup is further 

subdivided into model training and model testing. The data set was first chosen and prepared 

for the purpose. Then, the proposed model was trained and tested to see how well it worked. 

 The Jupyter notebook is the interface used for the simulation. An environment was 

created by installing the set of packages and libraries as required. A set of packages installed is 

shown in Figure 7, and a complete list is attached to the appendices. TensorFlow federated is 

the library used for developing FL environments. A set of programs were written for processing 

data, training, and testing the environment. The written program can be found in the appendices. 

 

 

4.1 The UNSW-NB 15 data set 

The data set contains 257673 data flows related to 49 features. Source and destination IP 

addresses, source and destination port numbers, protocols, destination to source, and source to 

destination transaction bytes are among the features. Table 2 shows the complete list of features 

[15], [51]. 

 

 

 

Figure 7 Packages installed in the Jupyter notebook environment 
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Table 5 List of Features described in the data set [15] 
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However, some of the features, such as the Attack category, were removed during the 

simulation process. Before beginning the simulation, 10,000 randomly selected samples of the 

data set were allocated for testing, while the remaining data was used to train the two models. 

The number of samples used to train the stage 1 model was in the 6000–14000 range, and 

around 99,000 samples were used to train the stage 2 model. 

 

4.2 Simulation set-up 

Model training and model testing are two major parts of the simulation. First, model parameters 

for different scenarios were generated and saved. In the training phase, the saved parameters 

Figure 8 : Algorithm for training and testing the system 
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were used for detection. This section describes two phases separately. Figure 8 shows the 

algorithm for training and testing. 

 

4.2.1 Model training   

The first task was to develop an FL-based model that will be used as a detection model in 

anomaly detectors in each stage. Before starting the training, different scenarios were designed 

by changing the number of anomaly network flows in the training data. For example, 20% of 

the data flows were taken from the available anomaly network flows, and 80% were taken from 

normal network flows. The training data composition was changed similarly in both the stage 

1 and stage 2 training data. Anomaly data percentages were kept at 6 values: 20%, 30%, 40%, 

50%, 60%, and 70%. These different sets of training data were sent through the proposed model, 

and model parameters were generated and saved for use during the testing phase. 

 FL was used to train the models used in stages one and two. Devices (also known 

as clients) have a small data set and train models for a number of local rounds, or epochs. The 

parameters are then shared by each client with a central server, which aggregates the model 

parameters and redistributes them to the client. Clients train the model again, starting with the 

model created using the parameters sent by the central server, and they share the parameters 

with the central server once more. A simulation round is defined as the process of generating 

model parameters from clients, sharing them with the central server, and aggregating them. For 

each case, hundreds of such rounds were used. 

The ML model used for stage 1 has four layers, two of which are hidden. The number 

of data samples was divided into ten groups independently and identically for training model 1. 

After receiving a set of data, each client trains a model, and the parameters generated are shared 

with a central server. For training, each client employs five epochs. The central server 

aggregates the parameters, computes the average, and sends it back to the devices. For each 

case, the model parameters for 100 such rounds were recorded. 

In stage 2, a similar methodology was used to train the model. The second-stage model 

consists of six layers, four of which are hidden, and 99,200 samples are used for training. As a 

result, each client receives approximately 9920 data flows that are used for training with five 

epochs to generate model parameters. It will then be shared with the central server for 

aggregation in the following step. For each case, one hundred such rounds are used, which is 

generated by changing the anomaly percentage of the training data. 

 

4.2.2  Model testing 

A set of testing data randomly picked from the data pool available was used to test the model 

parameter generated. First, the model parameters generated for each case were given to the 

stage 1 and stage 2 models. Then the testing data was classified as anomalous or not by the 

stage 1 detector. The parameters that were detected as normal flow were again classified by the 

stage 2 model. After sending through both models, the accuracies for each model were recorded. 

Stage 1 accuracy is simply the number of false positives and false negatives. The accuracy after 

the 2nd stage consists of false positives for the location 1 model, which was not analyzed 

further. 
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5 RESULTS 

The results generated from the simulation process described above are included and analyzed 

in this section. It can be considered under two categories: overall system accuracy and 

improvement due to the use of two stages. First, as described in the simulation section, the 

anomaly percentage of stage 1 and stage 2 was fixed at a certain percentage, and stage 1 and 

overall accuracy were recorded. Then, the outcome of the 100 rounds in each case is included 

and followed by a description. Finally, a summary of the data is presented. 

 First, the anomaly data ratio is fixed at 20%, and the stage 2 ratio is changed from 20% 

to 70%. Figures 9, 10, 11, 12,13, and 14 show how the stage 1 and stage 2 accuracy change 

with the stage 2 anomaly percentage. It should be noted that stage 2 accuracy is the same as 

overall system accuracy. Upon inspecting the figures, it is clear that in each case, overall system 

accuracy reaches a value of around 90% after ten or more rounds. The value remains stable 

while fluctuating only by an insignificant amount from the mean value. Stage 1 accuracy 

remains around 0.85 for all cases, but it shows a slight improvement within 10 and 100 rounds. 

Also, both stage 2 accuracy and the gap between stage 1 and stage 2 accuracy have increased 

as the anomaly percentage in stage 2 training has increased. 

 

 

 

 

  

Figure 9 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 20, Stage 2: 20 

Figure 11 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 20, Stage 2: 40 

Figure 10 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 20, Stage 2: 30 

Figure 12 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 20, Stage 2: 50 



 

 
Figure 11 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 20, Stage 2: 60 

 
Figure 12 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 20, Stage 2: 70 

 

 

Next, the anomaly ratio in stage 1 is set at 30%, and in stage 2, the anomaly ratio is varied from 

20% to 70%. Figures 15, 16, 17, 18, 19, and 20 show how the overall system accuracy varies 

for 100 rounds. The proposed system behavior is similar to the previous case, where the stage 

1 anomaly ratio is 20%. Both stage 1 and stage 2 accuracy values show only a small 

improvement after the initial rounds. Stage 1 shows very small improvement within 100 rounds. 

Overall system accuracy has improved when the stage 2 anomaly ratio is varied from 20% to 

70%. 

 

Figure 15 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 30, Stage 2: 20 

Figure 16 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 30, Stage 2: 30 

Figure 17 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 30, Stage 2: 40 
Figure 18 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 30, Stage 2: 50 



 

  

Figures 21, 22, 23, 24, 25, and 26 demonstrate the system's behavior when the stage 1 anomaly 

ratio is fixed at 40% and the stage 2 anomaly ratio is varied from 20% to 70%. As per the 

figures, stage 1 accuracy reaches 90% after 20 rounds. There is a significant reduction in the 

gap between stage 1 and stage 2 accuracy. When there are more than 20 rounds, the total 

accuracy stays above 90%, even though the number of rounds has gone up. 

 

 

Figure 22 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 40, Stage 2: 30 

Figure 13 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 30, Stage 2: 60 

Figure 14 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 30, Stage 2: 70 

Figure 16 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 40, Stage 2: 40 

Figure 15 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 40, Stage 2: 20 

Figure 24 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 40, Stage 2: 50 
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The anomaly percentage in the training data for stage 1 is set to 50% for the next scenario, and 

the anomaly ratio of training data in stage 2 is varied. As per the set of figures from Figures 27 

to 32, there is a significant reduction in the gap between stage 1 and stage 2 accuracy. However, 

the accuracy of stage 1 and stage 2 remains higher than 90% for almost all cases when the 

number of rounds is greater than 20.

  

 

Figure 17 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 50, Stage 2: 20 
Figure 18 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 50, Stage 2: 30 

Figure 25 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 40, Stage 2: 60 

Figure 26 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 40, Stage 2: 70 

Figure 30 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 50, Stage 2: 50 

Figure 29 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 50, Stage 2: 40 



 

 

Figures 33, 34, 35, 36, 37, and 38 are included here to show the system's behavior when the 

stage 1 anomaly data ratio is set to 60%, and the stage 2 anomaly ratio is varied from 20% to 

70%. The accuracy of all cases has reached a value closer to 90%, and the gap between stage 1 

and stage 2 accuracy has further reduced. Also, for all cases, the number of rounds taken to 

reach a stable value seems to be lower than in the previous cases. Also, almost all the graphs 

seem to be identical. 

 

 

 

 

Figure 31 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 50, Stage 2: 60 
Figure 32 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 50, Stage 2: 70 

Figure 33 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 60, Stage 2: 20 

Figure 36 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 60, Stage 2: 50 

Figure 35 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 60, Stage 2: 40 

Figure 34 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 60, Stage 2: 30 
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The anomaly ratio of the training data was changed to 70% at the final stage. Similar to the 

above instances, the system response when the stage 2 anomaly ratio is changed from 20% to 

70% is observed. The most significant outcome of this scenario is that the stage 1 accuracy 

exceeds or overlaps with the overall accuracy in certain cases. In all other cases, there is no 

significant difference between stage 1 accuracy and stage 2 accuracy. However, it should be 

noted that the overall system accuracy of all situations remains as low as 90%, and it does not 

improve with the number of rounds after the 20th.   

  

Figure 19 Accuracy vs Number of rounds, 

Anomaly ratio of Stage 1: 60, Stage 2:70 

Figure 39 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 70, Stage 2: 20 

Figure 40 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 70, Stage 2: 30 

Figure 22 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 70, Stage 2: 40 

Figure 20 Accuracy vs Number of rounds, 

Anomaly ratio of Stage 1: 60, Stage 2: 60 

Figure 21 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 70, Stage 2: 50 
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Figure 9 to 44 shows how the proposed system accuracy changes with the anomaly data ratio 

in training data in stages 1 and 2. The results of simulations can be displayed in a variety of 

ways, allowing different aspects to be evaluated. The rest of the section looks at the results with 

the help of different graphs. 

Figure 25 shows the overall accuracy of the system when the stage 2 accuracy is varied 

from 20% to 70% in one figure. All the cases presented in figures 45 and 46 are presented in 

table 6. It is drawn for the case where the stage 1 anomaly data percentage is 20%. The highest 

accuracy stage is recorded when the stage 2 percentage is 60%. Both have the second-highest 

accuracy stage. When the percentage is 50% and 70% remains equal. The lowest accuracy is 

recorded when the stage 2 anomaly percentage is 20%. 

Figure 23 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 70, Stage 2: 60 
Figure 24 Accuracy vs. Number of rounds, 

Anomaly ratio of Stage 1: 70, Stage 2: 70 

Figure 25 Overall Testing accuracy against anomaly data percentage in training data stage 2 



 

It is also possible to evaluate the results by keeping the anomaly data rate in stage 2 fixed and 

by varying the anomaly data percentage in stage 1 data as well. However, as per the data 

presented in the above figures, the accuracy values remain the same when the number of rounds 

reaches a value of around twenty. Therefore, to investigate the overall performances, the 

accuracy recorded after 100 rounds is included in Table 3. Table 3 is colored based on the 

accuracy levels as presented in Table 6. The highest rates are indicated in green, and the lowest 

rates are indicated in orange. 

When the anomaly percentage in stage 2 is 20% or 30%, accuracy has gradually 

increased with the anomaly percentage in the stage 1 training data. The highest values were 

recorded at around 50% and 60%. However, it has dropped slightly when 70% of the training 

data for stage 1 are anomalies. In the case where the stage 2 percentage is 40%, the rate 

fluctuates around 92.6% for all stage 1 percentages except for 70%. However, it should be noted 

that the accuracy rate remains relatively high in comparison with the two cases discussed above. 

When the anomaly rate is increased to 50% in stage 2, it is visible that accuracy has the highest 

value when the stage 1 value is set at 30%. Still, the accuracy has gradually decreased when the 

stage 1 percentage is increased from 30% to 70%. When the stage 2 percentage is 60% or 70%, 

the highest accuracy is shown when the percentage of anomaly data in stage 1 is 20%. Figure 

44 shows how the overall accuracy has behaved during all 100 rounds for the case where stage 

2 percentage is fixed at 60%, and stage 2 anomaly percentage is varied from 20% to 70%. 

Similar to the pattern observed in the table, the highest percentage of accuracy is observed when 

stage 1 percentage is around 30% for all 100 rounds. 

 When inspecting the pattern along with the columns of Table 6, it is visible that accuracy 

gradually increases for most of the cases, reaching a peak when stage 2 percentage is around 

60%. The values fluctuate when the stage 1 percentage is 70%. Figure 43 shows how the 

accuracy changes when the stage 2 anomaly percentage is varied from 20% to 70% and the 

stage 1 percentage is kept at 20%. The same pattern observed in the table is displayed in the 

graph throughout 100 rounds. In addition to the table, to show how the stage 1 accuracy varies 

when the stage 2 anomaly ratio is fixed, see Figure 44. 

 

Table 6 Overall Testing accuracy against anomaly data percentage in training data stage 1 and 

stage 2 

Anomaly data 

percentage in 

training data-Stage 2 

Anomaly data percentage in training data- stage 1 

20% 30% 40% 50% 60% 70% 

20% 90.5% 91.0% 92.0% 92.2% 92.4% 91.9% 

30% 91.9% 92.3% 92.4% 92.8% 92.8% 91.3% 

40% 92.7% 92.6% 92.7% 92.6% 92.7% 91.9% 

50% 93.2% 93.4% 93.2% 93.1% 92.7% 91.9% 

60% 93.6% 93.5% 93.4% 93.2% 93.0% 91.7% 

70% 93.0% 93.1% 93.0% 92.8% 92.7% 91.6% 

 

Table 7 Legend for table 4 

Colour Accuracy percentage 

 93.1-:94.0% 

 92.1-93.0% 

 90.0-92.0% 
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Table 8 Set of cases shown in Figures 45 and 46 

Case 
Anomaly data percentage in training data 

Stage 1 Stage 2 

Case ST1:20 ST2:60 20 60 

Case ST1:30 ST2:60 30 60 

Case ST1:40 ST2:60 40 60 

Case ST1:50 ST2:60 50 60 

Case ST1:60 ST2:60 60 60 

Case ST1:70 ST2:60 70 60 

Case ST1:20 ST2:20 20 20 

Case ST1:20 ST2:30 20 30 

Case ST1:20 ST2:40 20 40 

Case ST1:20 ST2:50 20 50 

Case ST1:20 ST2:60 20 60 

Case ST1:20 ST2:70 20 70 

 

The measure of effectiveness of the proposed system can be measured by the improvement in 

accuracy between stage 1 and stage 2. Table 9 shows that overall system accuracy has increased 

after the two stages. The highest increment from stage 1 to stage 2 is recorded when the anomaly 

percentage in stage 1 is 20%. Even though there is an increment for all the cases except for one, 

the amount gradually reduces when the stage 1 anomaly percentage increases from 20% to 70%. 

A significantly higher increment is observed when the stage 1 percentage is as low as 20%. 

 

 

 

Figure 26 Overall Testing accuracy against anomaly data percentage in training data stage 1 
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Table 9 Overall Testing accuracy increase after stage 2 against anomaly data percentage in 

training data stage 1 and stage 2 

Anomaly data 

percentage in 

training data-Stage 2 

Anomaly data percentage in training data- stage 1 

20% 30% 40% 50% 60% 70% 

20% 3.6% 1.7% 1.5% 0.8% 0.4% 0% 

30% 5.7% 3.6% 2.3% 1.3% 0.7% 0.3% 

40% 6.4% 3.6% 2.7% 1.6% 0.8% 0.3% 

50% 6.5% 3.6% 2.2% 1.9% 0.9% 0.6% 

60% 5.5% 4.4% 3.1% 1.5% 1.1% 0.4% 

70% 6.3% 4.3% 2.6% 1.5% 0.1% -0.5% 

 

Table 10 Legend for table 6 

Colour Increment percentage 

 5.0-7.0% 

 3.0-5.0% 

 1.1-3.0% 

 -1.0-1.0% 

 

The testing data was drawn at random from the set of data, with 50–60% of the data being 

anomalies. As a result, naturally tested data will follow the same distribution. According to the 

data, accuracy improves when the training data for stage 1 is the same as the testing data. When 

stage 2 percent is around 60%, the accuracy is at its best. In stage 2, the number of training 

samples is 99,200, which is ten times the number of data samples in stage 1. When 60% of the 

anomalies are taken, the majority of the anomalies are included in the training data, allowing 

the system to detect the greatest number of anomalies accurately. When the anomaly percentage 

reaches 70%, there is insufficient normal data in the training data. As a result, accuracy suffers. 

In the proposed system, only the network flow that is marked as "normal flow" is sent to 

the 2nd stage. However, it is also possible to analyze the anomalies in the 2nd stage as well. In 

this case, first, all the data is filtered by stage 1, and then all anomalies are directed to the 2nd 

stage for filtering. The results similar to table 6 and table 9 were obtained in order to check the 

feasibility of a similar scenario and are presented in table 11 and table 13. Based on tables 12 

and 14, coloring cells for tables 11 and 13 have taken place. 

 

Table 11 Overall Testing accuracy against anomaly data percentage in training data stage 1 

and stage 2- Anomalies sent to 2nd stage 

Anomaly data 

percentage in 

training data-Stage 2 

Anomaly data percentage in training data- stage 1 

20% 30% 40% 50% 60% 70% 

20% 83.2% 85.6% 87.6% 88.4% 88.7% 89.0% 

30% 83.1% 85.8% 88.0% 89.3% 89.7% 90.3% 

40% 83.7% 87.2% 90.1% 90.5% 91.0% 91.8% 

50% 83.8% 87.5% 89.3% 91.3% 91.5% 92.4% 

60% 83.9% 86.7% 90.8% 91.8% 92.4% 93% 

70% 83.2% 88.0% 90.0% 92.0% 92.4% 93.1% 
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Table 12 Legend for table 10 

Colour Accuracy percentage 

 90.1-:93.5% 

 86.5-90.0% 

 96.4-83.0% 

 

 

Table 13 Overall Testing accuracy increase after stage 2 against anomaly data percentage in 

training data stage 1 and stage 2 - Anomalies sent to 2nd stage 

Anomaly data 

percentage in 

training data-Stage 2 

Anomaly data percentage in training data- stage 1 

20% 30% 40% 50% 60% 70% 

20% -0.3% -0.6% -2.1% -0.3% -2.4% -1.3% 

30% -0.3% -0.4% -1.3% -1.8% -1.3% -0.3% 

40% -0.1% -0.2% -0.3% -0.2% 0.2% 1.4% 

50% 0% 0% -0.3% 0.4% 0.4% 1.6% 

60% 0% 0.2% 0.2% 0.8% 1.7% 2.3% 

70% 0.1% 0.1% 0.2% 0.4% 1.1% 2.8% 

 

 

Table 14 Legend for table 12 

Colour Increment percentage 

 3.0-1.6% 

 1.5-0% 

 0 - (-1.5)% 

 (-1.6)- (-3.0)% 

 

 

As per table 8, when the anomaly percentage in training data takes a higher value, the 

accuracy has significantly improved. When the anomaly percentage in both stages 1 and 2 is 

70%, the highest accuracy is recorded at 93.1 percent. A similar observation can be made when 

considering Table 9 as well. A reasonable improvement can be observed when the stage 2 

anomaly percentage is 60% or above. However, compared with the case where normal data is 

evaluated at the 2nd stage, only half of the cases record positive improvement. As a result, 

evaluating the anomalies at the second stage may be inefficient. 

 Model training and model testing are the two major components of the simulation 

process. After defining a set of cases, model parameters were generated using a set of pre-

selected training data. The testing data was then passed through the models with the generated 

model parameters, which are used to classify network flows as anomalous or not. It is possible 

to send both anomalous and normal data to the second stage. In the simulation, both of these 

approaches were demonstrated. According to the results, it is more efficient to analyze the data 

marked as normal traffic in stage 2 to achieve higher accuracy. The use of training data that 

includes all possible scenarios in its database is critical for the success of the system. 
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6 DISCUSSION 

The purpose of this section is to critically analyze the results obtained in this thesis. First, the 

work carried out is critically analyzed with similar work. This is followed by an examination 

of the thesis's objectives and the extent to which they were met after the thesis's completion. 

The final section focuses on the possible future directions of the thesis. 

 

6.1 Comparative analysis with Similar Work 

This thesis presents an anomaly detector for the ZSM architecture developed based on 

FL. Even though network automation has been discussed for a while, the ZSM architecture is 

one of the very first architectures proposed. It is designed with wireless networks in mind, 

including 5G and beyond 5G networks. Therefore, only a few security algorithms designed for 

the ZSM architecture can be found in the current state-of-the-art. 

FL has been used in many applications on the wireless network, especially in IoT-related 

applications. A comprehensive list of such applications is available in [42]. However, most of 

the applications are developed to identify the devices that are affected by a third party. Secure 

industrial IoT things, secure internet of drones, and secure internet of health care things are 

some of the applications available in the literature. Most of these applications use servers at the 

edge as aggregation servers and are not embedded in the architecture of the network, nor do 

they consider the ML-enabled networks as their architecture. However, ML, or AI, is an integral 

part of the network in the ZSM architecture, which allows using ML-based applications at the 

core of the network as well. The proposed system is embedded in the ZSM architecture, and 

aggregation servers can be found inside the network as well. 

Two algorithms presented in [47] and [49] are based on wireless networks. The first 

mechanism [47] demonstrates an FL-based end-edge cloud corporation for network security. 

The attack detection takes place at the end devices, the edge, and the cloud. As only the 

aggregation server is at the higher level of the network, this work is different from the proposed 

setup. The self-adaptive algorithm proposed in [49] uses the ETSI NFV architecture. If an 

anomaly is detected, they propose using a virtual IDS set up to specifically analyze the network 

flow that is considered an anomaly. However, FL is not used for developing the system. 

 There are relatively more anomaly detectors that use ML than FL for detection. The 

used algorithms include but are not limited to neural networks, support vector mechanisms, 

decision trees, and recurrent neural networks. The proposed system uses a simple neural 

network, However, it is easily adaptable to network models that are available in the literature. 

The most suitable network model can vary with the application and data set and other practical 

constraints that could affect the deployment. It is possible to measure the accuracy and other 

outcomes based on the network model. This will be further discussed in future research 

directions. 

6.2 Evaluation on Meeting the Thesis Objectives 

The main objective of the thesis is to develop an FL-based anomaly detector for the ZSM 

architecture, which is to be used along with the ZSM architecture for 5G and beyond 5G 

networks. The proposed model incorporates the ZSM architecture and makes use of the 

components proposed in the architecture. The thesis also proposes how the anomaly detector is 

updated when the detector fails to identify any possible threats, thus incorporating a closed-

loop mechanism along with AI, which are two major enablers in the ZSM architecture. 
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The performance of the proposed system can be measured by two values: the system 

accuracy and the accuracy improvement from stage 1 to stage 2. The highest recorded system 

accuracy is 93.6%, and the value remains above 90% for all cases. Most of the proposed 

algorithms presented in the literature review were able to achieve an accuracy higher than 90%. 

Therefore, the proposed system accuracy can be considered adequate compared with the 

previous work. The maximum improvement from stage 1 to stage 2 is 6.5%. There is a positive 

improvement in all cases except the case where the anomaly data percentage in both stage 1 

and stage 2 is 70%. Therefore, it can be said that the proposed system performance is within 

the expected range. 

According to the observations, training data should adequately cover all possible 

scenarios encountered by the detector. The proposed method allows for a larger database at the 

second stage, allowing for coverage of all possible scenarios. As a result, even if an abnormal 

flow is marked as normal data and sent to the second stage, the second stage can detect it. As a 

result, the two-stage model improves detector accuracy while maintaining data privacy and 

communication efficiency. Aside from the benefits derived from using the FL model, it also 

allows for the accommodation of unavoidable resource constraints. 

 

6.3 Future Research Directions 

This thesis proposes an anomaly detector for the ZSM network architecture, which is being 

developed for 5G and beyond 5G networks. The development of 6G networks is still in its early 

stages, and it is possible that it will change over time. AI for everything is one of the 

technological research areas being investigated by 6G. As a result, the ZSM architecture can be 

modified to work with both 6G and 5G networks. It is possible, however, that it will be modified 

in response to new research directions. To account for this, the proposed anomaly detector will 

need to be modified. 

The UNSW-NB 15 is used as the data set for training and testing models. The proposed 

system can be further modified by using a different data set. The proposed system is intended 

for 5G and beyond 5G networks. However, data sets related to wireless communication that 

can be used for AI-related applications are rare. One research direction is to develop a data set 

by utilizing 5G and beyond 5G network data and to use the new data set along with the proposed 

model. The ZSM architecture divides the network into domains. RAN and core are two major 

domains that can be used. If a suitable data set can be found, it is possible to test the solution 

and find the functionality in one domain specifically. For example, a data set that is based on 

the data collected from the RAN network can be utilized to test the functionality in the RAN 

domain. 

Further modifications that can be made to the proposed system include changing 

aggregation techniques and changing model types. “FedSGD” is a popular algorithm that can 

be used instead of averaging for aggregation. There are many aggregation techniques proposed 

in the literature for various applications. Therefore, it is possible to use various aggregation 

techniques to find the best aggregation technique. Apart from the aggregation technique, it is 

also possible to change the network model used for FL. LSTM, GRU, and RNN models have 

been frequently used in other proposed algorithms and can be adapted to the system proposed 

in this thesis too. 

 As highlighted in the literature review, there can be many threats arising from the use 

of AI for network applications. It is also important to pay attention to both generic and new 

threats that might affect the network's security. However, the proposed model did not 

specifically concentrate on the protection of the network models from possible threats such as 
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poisoning and inference attacks. It is also possible to conduct research on practical implications 

arising from the research, such as quantization, done before sending the model parameters. 
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7 SUMMARY 

Network automation is a critical component in future networks that must fulfill unprecedented 

demands. The ZSM architecture is one such architecture designed to meet the needs of network 

automation. Multi-domain network architecture, closed-loop, AI, and data analytics services 

embedded in the architecture are pivotal for network automation. Networks can be protected 

from attacks by using AI and closed loops. They can also be used for tasks like optimizing 

network resources. 

Based on technological or business requirements, the ZSM architecture is divided into 

multiple domains. Edge, RAN, and Core are a few examples of possible multi-domains. End-

to-end management domains oversee these domains. Each domain includes functions such as 

domain analytics, and domain data services. The closed-loop is a critical enabler for network 

automation. Orient, decide, act, observe, and knowledge is the proposed closed loops for the 

ZSM architecture. The network's security mechanism is built on the same closed-loops other 

components, such as AI. Security threats to the ZSM architecture include those resulting from 

the use of new enablers such as API, SDN, NFV, and AI/ML, as well as previous network 

attacks such as DoS. 

FL is a relatively new field in ML that provides advantages such as privacy protection. 

FL models are developed on end devices with locally available data, as opposed to the 

centralized training used in other ML models. The model trained, on the other hand, is 

determined by a central server, also known as an aggregation server. The model parameters are 

generated based on the model sent by the end devices. The aggregation criterion can be 

determined by the central server. Model parameters, for example, can be weighted based on the 

number of samples found in each client. FL is vulnerable to attacks such as adversarial attacks 

and member poisoning. There are already mechanisms in the literature to prevent this from 

happening. FL is also employed in a variety of applications for anomaly detection. However, 

because of the large number of devices, the majority of it is applied to IoT applications. 

The proposed system makes use of FL as an enabler and a hierarchical detection 

mechanism. It is made up of two stages, each with its own set of detectors. The first detector is 

straightforward and close to the end user. The central server in each domain serves these 

detectors. The network flow that passes through a single detector will come into contact with 

another detector in stage 2 that is located in the same domain. The detector at the top of the 

hierarchy, on the other hand, has a more complex model and a larger database to accommodate 

more data. Aside from the detection mechanism, a training mechanism is proposed because 

unprecedented events may occur in 5G and beyond networks. 

The proposed system was then run through a simulation using the Jupiter notebook and 

TensorFlow federated libraries. For the simulation, the UNSW-NB 15 data set was used. For 

this purpose, 42 features describing nine types of attacks were used. The testing consists of 

10,000 samples drawn at random from the data set. The training set was then created based on 

the required anomaly percentage for each stage for the presented test cases. The proposed 

system was then run through a simulation using the Jupiter notebook and TensorFlow federated 

libraries. For the simulation, the UNSW-NB 15 data set was used. For this purpose, 42 features 

describing nine types of attacks were used. The testing consists of 10,000 samples drawn at 

random from the data set. The training set was then created based on the required anomaly 

percentage for each stage for the presented test cases. 

According to the findings, the network's accuracy has improved following the two-stage 

mechanism. However, as shown in the results section, there was a greater improvement in 

accuracy in certain cases. The overall system accuracy followed a similar pattern. The highest 
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recorded accuracy is 93.6 percent, with anomaly percentages of 20% and 60%, respectively, in 

stages 1 and 2. Upon inspection of the results, it is clear that when the test data composition is 

similar to the training data, higher accuracy can be obtained. If unknown threats or network 

flows are detected, the closed-loop mechanism ensures that the relevant flows are added to the 

database and that models are updated accordingly. It is also important to include all the possible 

network flow types in the training data. Due to limitations such as resource limitations, it can 

be difficult to include a larger database for each detector. However, the proposed system 

contains a two-stage system, and the database of the stage 2 detector is capable of storing more 

network flows. As a result, it can successfully deal with resource constraints. 

It has been demonstrated that the proposed detector can successfully protect the network 

from a variety of threats. The closed-loop mechanism, in conjunction with the anomaly detector, 

ensures that the network is safe from unprecedented attacks. Future networks, including 6G, 

will include AI-related network automation mechanisms. As a result, the proposed mechanism, 

along with the ZSM architecture, can be successfully adapted to such networks while adhering 

to resource constraints. 
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Appendix 4 Code for training stage 1 
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Appendix 5 Code for processing data 
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Appendix 7 List of packages installed in the simulation environment. 
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