

DEGREE PROGRAMME IN ELECTRICAL ENGINEERING

MASTER’S THESIS

Service-Oriented Approach in Base Transceiver

Station Platform Software Design Utilizing Domain-

Specific Modeling

 Author Veikka Grekula

 Supervisor Mika Ylianttila

 Second Examiner Timo Bräysy

 Technical Advisor Tiina Rantala

February 2018

Grekula V. (2018). Service-Oriented Approach in Base Transceiver Station

Platform Software Design Utilizing Domain-Specific Modeling. University of

Oulu, Degree Programme in Electrical Engineering. Master’s Thesis, 80 p.

ABSTRACT

Software (SW) systems are becoming more and more complex due to the need of

functionalities in the systems. In the component-based SW design approach, the

software is modeled as software components and these components are

becoming too extensive to be able to model a SW feature efficiently. A service-

based approach can offer an alternative for solving the rising problem of an

inefficiency among the component-based SW modeling. Instead of being

responsible for the different SW components, in the service-based approach, the

SW functionalities are divided into one or more services and further into micro-

services.

In this thesis, the possibility of replacing the component-based software

modeling approach with the service-based SW modeling approach is studied. In

this work, an existing set of SW features, that are modeled with a component-

based approach, is modeled using the service-based approach. Model-driven

software development (MDSD) methods, such as Model Driven Architecture

(MDA) and domain-specific modeling (DSM), are utilized to create a service-

based solution. The aim of this thesis was to implement a functional service-

based model from which the reports can be generated as an output.

The created domain-specific modeling language (DSML) and the different

abstraction layers of the created model are described in detail. The modeling

language and the proposed metamodel were created using MetaEdit+

metamodeling tool provided by MetaCase. The code generators were

implemented using MetaEdit+ reporting language (MERL) which is an object-

based scripting language. The created service-oriented architecture and the

modeling language were evaluated based on the theory, user experience and the

reviews of the SW specialists.

The evaluation of the proposed metamodel, modeling language and the

service-oriented architecture (SOA) stated that the created modeling language

and the service-based approach for the SW modeling fulfils the requirements of

the DSML and SOA. However, some questions emerged concerning the size of

the service and the possibility to create functional entities simultaneously in a

faster and efficient way. Due to the promising results of this thesis, future work

could investigate the suitable size of a service that the component-based

approach can be replaced by the service-based approach by means of efficiency.

Key words: Model-driven software development, code generation,

metamodeling.

Grekula V. (2018) Palvelupohjainen lähestymistapa tukiasema-alustan

ohjelmistosuunnittelussa hyödyntäen aluekohtaista mallinnusta. Oulun yliopisto,

sähkötekniikan tutkinto-ohjelma. Diplomityö, 80 s.

TIIVISTELMÄ

Erilaisten toiminnallisuuksien ja ominaisuuksien kasvanut tarve tekee

ohjelmistoista yhä vaativampia toteuttaa. Komponenttipohjaisessa

lähestymistavassa ohjelmistosuunnittelussa ohjelmistot on mallinnettu

komponentteina. Näiden komponenttien sisältö on tullut liian laajaksi, jotta

niitä voidaan hyödyntää tehokkaasti erilaisten ohjelmistotoiminnallisuuksien

mallintamiseen. Myös eri komponenttien yhtäaikaisesta hallinnasta on tullut

haasteellista komponenttien rakenteen vuoksi. Palvelupohjainen lähestymistapa

voi tarjota ratkaisun komponenttipohjaisen lähestymistavan tehottomuuteen

toiminnallisuuksien mallintamisessa. Palvelupohjaisessa lähestymistavassa

ohjelmistotoiminnallisuudet on jaettu eri palveluihin, joista jokainen on

vastuussa yhdestä laajemmasta osa-alueesta.

Tässä diplomityössä tutkitaan mahdollisuutta korvata nykyinen

komponenttipohjainen ohjelmistosuunnittelun lähestymistapa

palvelupohjaisella lähestymistavalla. Työssä mallinnetaan olemassa oleva

komponenttikohtaisella lähestymistavalla mallinnettu toiminnallisuusjoukko

palvelukohtaisella lähestymistavalla. MDSD-menetelmiä (Model-Driven

Software Development), kuten MDA (Model Driven Architecture) sekä DSM

(Domain-Specific Modeling), on hyödynnetty luomaan palvelupohjainen

ratkaisu. Diplomityön tavoite on toteuttaa toimiva palvelupohjainen malli

käyttäen aluekohtaista mallinnuskieltä, josta koodigeneroinnin avulla voidaan

generoida raportteja.

Luotu aluekohtainen mallinnuskieli ja luodun metamallin eritasoiset

abstraktiokerrokset on kuvattu yksityiskohtaisesti. Metamalli ja mallinnuskieli

on kehitetty käyttäen MetaCase:n tarjoamaa MetaEdit+-

metamallinnustyökalua. Koodigeneraattorit on luotu olio-ohjelmointiin

perustuvalla MERL-ohjelmointikielellä (MetaEdit+ Reporting Language).

Luodun palvelupohjaisen arkkitehtuurin ja mallinnuskielen arviointi perustui

niiden taustalla olevaan teoriaan, käyttäjäkokemukseen sekä

ohjelmistoasiantuntijoiden katselmointikommentteihin.

Luodun metamallin ja mallinnuskielen arviointi osoitti, että molemmat

täyttivät hyvin niille asetetut vaatimukset. Arviointi herätti myös kysymyksiä

koskien palveluiden kokoa ja mahdollisuutta luoda yhtäaikaisesti useita

toiminnallisia ohjelmistokokonaisuuksia nopeammin ja tehokkaammin.

Lupaavien tulosten myötä jatkossa voitaisiin tutkia palveluiden laajuutta ja

mahdollisuutta löytää optimikoko palveluille, jotta nykyinen

komponenttipohjainen lähestymistapa voitaisiin korvata palvelupohjaisella

lähestymistavalla, jolloin mallinnuksesta tulisi tehokkaampaa.

Avainsanat: MDSD-menetelmä, koodigenerointi, metamallinnus.

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

LIST OF ABBREVIATIONS AND SYMBOLS

1. INTRODUCTION .. 9

2. SOFTWARE SYSTEM DEVELOPMENT AND TESTING 11

2.1. Basic Information of the BTS System Platform SW 11

2.2. Software Technology Evolution .. 14

2.2.1. Object-Oriented Software .. 15

2.2.2. Component-Based Software .. 17

2.2.3. Service-Oriented Software... 18

2.3. Software Testing Strategies ... 20

2.4. Model-Based Testing ... 20

2.5. Software Development Methods ... 22

2.5.1. Waterfall Model ... 22

2.5.2. Iterative and Incremental Development....................................... 23

2.5.3. Spiral Model .. 23

2.5.4. Prototyping .. 23

2.5.5. Agile .. 24

3. MODEL-DRIVEN SOFTWARE DEVELOPMENT 26

3.1. MDSD with MDA ... 26

3.1.1. Metalevels .. 27

3.1.2. Levels of Abstraction ... 29

3.1.3. Diagrams vs. Models ... 29

3.2. MDSD with DSM (Language) .. 30

3.2.1. DSML Development Process .. 31

3.2.2. DSML Designing Guidelines .. 32

3.2.3. DSM Tool: MetaEdit+ ... 34

4. SERVICE-BASED MODELING AND DSML ... 38

4.1. Introduction to Example Feature ... 38

4.2. Current Component-Based Structure .. 39

4.3. Proposed SOA ... 40

4.3.1. Service Group Graph ... 42

4.3.2. External Micro-Service Graph and Micro-Service Graph 43

4.3.3. Interface Description Graph .. 44

4.3.4. Micro-Service Description Graph.. 45

4.4. Structure of the created DSML .. 46

4.4.1. Objects and Relationships of the Service Domain: Black Box ... 47

4.4.2. Objects and Relationships of the Service Domain: White Box ... 48

4.4.3. Rules and Restrictions ... 52

4.5. Service-Based Modeling with the Created DSML 52

4.5.1. Service Group Graph (1
st
 layer) ... 53

4.5.2. Micro-Service and External Micro-Service Graphs (2
nd

 layer) ... 54

4.5.3. Interface Description Graph (3
rd

 layer).. 56

4.5.4. Micro-Service Description Graph (3
rd

 layer) 59

4.5.5. Report and Code Generation ... 62

5. DISCUSSION ... 66

5.1. Discussion of SOA .. 66

5.1.1. Requirements ... 67

5.1.2. Hypothesis ... 68

5.2. Discussion of DSML ... 69

5.3. Tool Evaluation ... 71

6. SUMMARY .. 73

7. REFERENCES ... 76

FOREWORD

This Master’s thesis was done for Nokia in Oulu from September 2017 to February

2018. In addition, this thesis was part of the ECSEL JU funded MegaM@Rt2 project.

The aim of this thesis was to develop a new service-oriented architecture that could

replace the current component-based structure in the modeling environment by

utilizing domain-specific modeling languages. Moreover, this thesis was done in a

software development team. The work was implemented by using MetaEdit+

software. The consulting from MetaCase during the writing of this thesis was

indispensable. Especially, I sincerely thank the CEO of MetaCase, Dr. Juha-Pekka

Tolvanen, for the advice and support during the writing of the thesis. His

contribution to this thesis and knowledge of metamodeling was priceless.

I would like to thank my supervisor, prof. Mika Ylianttila, and second examiner,

Timo Bräysy, from the Centre for Wireless Communications at the University of

Oulu. Their contribution helped me to finalize this thesis.

The biggest thanks go to Sami Ansamaa and Orvo Mikkola for offering me the

opportunity to work at Nokia. Their organizing skills were valuable to this thesis. I

want to thank my team mates at Nokia for supporting me. Especially, I want to thank

Janne Mäkäräinen for giving me technical support during the work. In addition, I

would like to thank my technical advisor Tiina Rantala. Her contribution through the

work was irreplaceable.

At last, I want to thank my family, friends and fellow students for their support.

The biggest thanks go to my girlfriend for providing me with not only support but

also the proofreading of this thesis.

Oulu, 21.2.2018

Veikka Grekula

LIST OF ABBREVIATIONS AND SYMBOLS

3GPP 3
rd

 generation partnership project

API application programming interface

BB baseband block

BIP BTS intranet protocol

BTS base transceiver station

BVA boundary value analysis

CASE computer-aided software engineering

CBSE component-based software engineering

CCB control and clock block

CIM computational independent model

DSL domain-specific language

DSM domain-specific modeling

DSML domain-specific modeling language

ECP equivalence class portioning

EM event machine

ETSI European Telecommunication Standards Institute

FDD feature-driven development

GOPPRR graph object property port relationship role

GPML general purpose modeling language

HTML hypertext markup language

HW hardware

HWAPI hardware application programming interface

ICOM internal communication

IDE integrated development environment

IF interface

IT information technology

LTE long term evolution

MBT model-based testing

MDA Model Driven Architecture®

MDD model-driven development

MDSD model-driven software development

MERL MetaEdit+ reporting language

MWB MetaEdit+ workbench

OBSAI open base station architecture initiative

OMG Object Management Group®

OO object-oriented

PIM platform independent model

PSM platform specific model

QoS quality of service

RFB radio frequency block

RNC radio network controller

RP radio platform

RP reference point

SC system component

SDL specification and description language

SE system element

SOA service-oriented architecture

SQL structured query language

sRIO serial rapid input/output

SS subsystem

SUT system under test

SW software

SysCom system internal communication

TB transport block

TDD test-driven development

UML Unified Modeling Language®

XML extensible markup language

XP extreme programming

1. INTRODUCTION

Building a large-scale software (SW) system is a complex task. The increased need

for software and functionalities behind the software has made the system design

work more and more demanding. The aim of SW modeling is to model those

functionalities as efficiently as possible retaining the reusability of the SW models.

When it comes to modeling, the SW techniques are constantly developing. Still, there

is room for a technique to model software by means of efficiency. The currently used

component-based approach in SW modeling is problematic due to the construct of

the large-scale enterprise. The large amount of SW functionalities is divided into SW

components, and these components are becoming too large to be able to work

efficiently. Service-oriented architecture (SOA) is one solution to build an enterprise-

scale software product from services. SOA consists of services that communicate

with each other using well-defined interfaces. Hence, SOA offers an interface-based

approach that concentrates not only on reusable services, but also on defining

interfaces as efficiently as possible. That is, SOA defines the services of which the

software system is composed and describes the interfaces and interactions among the

services to realize a specific behavior. [1]

In this thesis, the possibility to create an alternative for component-based software

design using service-based approach in base transceiver station (BTS) software

development process is researched. One solution to enable SOA is utilizing domain-

specific modeling (DSM) and its domain-specific modeling language (DSML). DSM

is used to model an existing feature of BTS software in internal communication

(ICOM) area, which includes, for example, Serial Rapid Input/Output (sRIO), system

internal communication (SysCom) and Ethernet functionalities. Also, DSM utilizes

model-driven software development (MDSD) approaches such as metamodeling and

agile methods.

DSM is a MDSD approach that has two main targets. First, DSM defines special-

purpose languages to achieve domain concepts. Second, DSM enables the use of

code generators to get a valid code from a model. This thesis concentrates on the first

approach, but also the code generators are investigated and implemented. The tool

support enables DSM. To enable DSM solution, MetaEdit+ tool is used as a DSM

tool in this work. The challenge for SOA is to integrate different models and

abstractions. DSM raises the abstraction level. Thus, DSM is a potential approach to

realize SOA. In this work, the whole modeling process of a SW feature from start to

end, including the theoretical and concrete aspects of the modeling process, is

described in detail. The aim is to implement SOA using MDSD approaches. Models

are designed using MetaEdit+ tool. In addition to creating DSM solution, it is also

evaluated via user experience and via reviews by SW specialists. MetaEdit+ tool

offers also a code generation option that is utilized to demonstrate the correctness of

the proposed SOA. However, in this work, the service-oriented modeling approach is

the priority. [2]

This thesis is structured as follows. In chapter 2, basic information of the BTS

system platform SW is provided. In addition, the phases of software technology

evolution are introduced and software testing strategies are described. Moreover, a

brief introduction to model-based testing and software development methods is

given. Chapter 3 focuses on MDSD and its approaches. Metalevels, levels of

abstraction and the difference between diagrams and models are described.

Furthermore, DSML development processes and guidelines as well as the

10

metamodeling tool MetaEdit+ are introduced. Chapter 4 contains the actual work:

how the SOA, metamodeling and DSML are used to design the SW features. In

chapter 5, the results are gathered and discussed. Also, a brief evaluation of the

metamodeling tool MetaEdit+ is given. Finally, chapter 6 provides the summary and

concludes the work.

11

2. SOFTWARE SYSTEM DEVELOPMENT AND TESTING

This chapter concentrates on the software system development. First, the basic

information of BTS system platform SW is introduced. Second, an overview of the

software technology evolution is described, including object-oriented, component

based and service-oriented software. Finally, a brief introduction to the model based

testing and different software development methods is given.

2.1. Basic Information of the BTS System Platform SW

Base transceiver station (BTS) platform SW is a software system that is discussed in

this work. The main responsibility of the BTS platform SW is to hide the hardware

environment for the SW applications. Figure 1 presents the SW modularization

concept. Network element (NE), e.g. LTE BTS, is a combination of SW and HW and

it consists of different system components (SC) and system elements (SE). SE cannot

be decomposed and it is an independent SW entity. In addition, SCs are software that

can exist independently or further consisting of services. Also, services can be

independent or consist of subsystems (SS). To be able to communicate internally and

externally, every SC provides internal and external interfaces. Moreover, If the SC

wants to communicate with the HW, they need to use interfaces that are provided by

HW components. Table 1 summarizes the SW modularization concept entities.

Figure 1. BTS SW architecture modularization.

12

Table 1. Definition of SW modularization concept entities

Entity Description

Network Element (NE) NE is a network entity in the network

that provides a set of functionalities.

System Element (SE) SE is part of the BTS SW, but cannot be

decomposed. The BTS SW defines

responsibilities for the SE, but it is only

seen through the services and its

interfaces.

System Component (SC) SC encapsulates some functionality area

of the NE. A SC is a collection of

services and SSs and can be further

decomposed into further entities.

Service Service is an implementation of a

functionality that is delimited by a one

interface. Service may have its

implementation modeled via SS.

Subsystem (SS) SS s a realization method of one or

more services. SS can include other

SSs.

Interface (IF) IF is a defined entry point of a

functionality provided by a SE, SC or

service.

BTS consists of radio frequency (RF) modules and of a system module (SM).

Open Base Station Architecture Initiative (OBSAI) has defined a complete reference

architecture for BTS [3]. The following elements are the main elements of the

architecture [3]:

 Functional blocks consisting of the baseband block (BB), RF block (RFB),

control and clock block (CCB) and transport block (TB).

 External network interface, e.g. Iub to the radio network controller (RNC)

for 3
rd

 generation partnership project (3GPP) systems.

 Internal Interfaces between BTS functional blocks, such as reference

points (RP) 1, 2 and 3.

 External radio interface, e.g. Uu to the user equipment (UE) for 3GPP

systems.

The BTS platform SW is part of the SM. Figure 2 shows that SM includes all the

functional blocks except for RF Blocks [3]. The Transport block consists of at least

one module that performs functions such as external networks interface, internal

networking, quality of service (QoS), synchronization and security functions. The

control and clock block is the primary control processor for the BTS and it consists

of at least one module. The BTS status and resources are controlled by the CBB. The

13

baseband block also consists of at least one module that executes baseband

processing for the air interfaces. [3]

Figure 2. BTS reference architecture.

The hardware environment is controlled and regulated by using the BTS platform

SW. Moreover, the BTS platform SW provides different services for application

through specific platform Application Programming Interfaces (APIs). These APIs

are used to provide a communication link between the BTS platform the SW and SW

application which can be, for example, radio access technology (RAT) SW. Further,

RAT can be, for example, long term evolution (LTE). By using the communication

link, the BTS platform and the SW application can request different services. The

requests are handled in the SW side of the platform, and decisions of which services

at that point are used are done based on the existing knowledge of the present status

of the SW system. To be able to control the status of the system HW, the BTS

platform SW has multiple specific interfaces. Figure 3 shows an example of the

interfaces, and how they are linked in the radio platform SW (RPSW). In this figure,

interfaces from IF1 to IFn are considered as external interfaces. The RPSW is

considered to be a black box in such a way that it hides the used SCs. In other words,

the client does not see the SCs inside the RPSW, it only sees the interfaces. In this

case, the links to the SCs of the RPSW are presented as ports. [4]

Figure 3. Example of RPSW external interfaces to RAT SW.

14

Figure 4 shows an example of some of the internal interfaces between the SCs of the

RPSW. There are the provided and the used internal interfaces between the different

SCs. In the example, there are three different SCs, SC1, SC2 and SC3, that can either

provide and/or use an interface. Interfaces SC1 IF1 and SC3 IF2 are external

interfaces, and interfaces SC2 IF1 and SC3 IF1 are internal interfaces. For example,

SC1 provides an interface SC1 IF1 that is used by RAT SW and uses an interface

SC2 IF1 that is provided by SC2. This thesis concentrates on the SW that is part of

the internal communication. [4]

Figure 4. Example of RPSW external and internal interfaces.

2.2. Software Technology Evolution

Like every technology, a software technology and programming languages are

constantly developing. New tools and technologies are needed to fulfil the

requirements and needs of the new software designs and software developments.

Therefore, innovative approaches to software design and development in the

information technology (IT) industry are continuously searched. As a result, software

development and programming languages have experienced an extreme evolution.

[5]

The history of the software technology evolution can be divided into three main

parts. First, in the beginning of the 1990s, the concept of object-oriented (OO)

languages arose to depict the concrete problems. OO languages allow to write

reasonably easy code to relate to concrete problems. Next, the demand for

automation of the complete business process was discussed. To help the automation

process, component-based programming was introduced. Component-based software

engineering (CBSE) arose in the late nineties providing advantages, such as

increased management of complex problems, reduced development and increased

productivity. The limitations of OO development to support component reuse was

15

one of the main reasons to develop CBSE. With component-based programming it

was possible to automatize the whole business process. Finally, the third approach,

service-oriented programming, was introduced. Web-based environment and the

increased demand for software were the basis for developing SOA. In Figure 5 [5],

the different phases of the software technology evolution are gathered under the

technology evolution box. Each of the following technologies are introduced one by

one in the next sub-chapters. The line between the different phases of the SW

technology evolution is indistinct, therefore often there is no clear evolution step that

is being worked with. Therefore, in the SW design and development, there might be

situations where parts of each evolution step are used at the same time. [5]

Figure 5. Software technology evolution.

2.2.1. Object-Oriented Software

The aim of the OO system is to reduce the complexity of the software by using

abstractions. An abstraction is a concept that makes it easier for the software

engineer to deal with details. There are two main types of abstractions that are

combined in object-oriented systems: procedural abstraction and data abstraction. [6]

Procedures, also known as known as functions or routines, is the basis on which

software relies. These procedures enable procedural abstraction. When one procedure

is used, the programmer does not need to care about all the details of how the

computations are performed. The programmer only needs to know how to call the

procedure, and what the result of the computation is. This is known as procedural

abstraction. Procedural abstraction works when the aim is to work with a simple data.

Nowadays, programs and applications are more and more complex. Therefore, an

engineer must work with multiple different data, and the system written by using

procedural abstraction can be very complex. [6], [7]

The other abstraction, data abstraction, is a helpful concept when the complexity

of the system needs to be reduced. The main idea is to gather all the pieces of the

data that are somewhat similar so that the data can be seen as a unit that is easy to

modify as a whole. When a software application was described only by using either

procedure or data abstractions, it was seen that the whole procedure is way too

simplistic. As a solution, the concept of object-oriented programming was presented.

[6], [7]

In OO programming, the software is not divided into data or procedures anymore,

but rather into objects; so called abstract software artifacts. Basically, object-oriented

16

artifacts consist of classes and their instances, which are called objects. In an object-

oriented program, classes are entities of data abstraction and they represent a set of

similar objects. In other words, objects that share the same behavior and properties

are instances of a one class. Usually, a class contains at least a code that describes the

structure of the objects of the class and methods that are procedures to execute the

behavior of the objects. In general, if something could have instances, it should be

considered as a class, and if something is distinctly a member of the set described by

a class, it should be considered as an instance. [6], [7]

As mentioned, objects are instances of a class and they have certain properties.

Classes and objects are tied together and basically cannot be discussed

independently. The values of the properties specify the objects by describing the

current state of the object. The behavior tells how the object acts and reacts when the

state changes. The objects depict all the essential things that are fundamental to the

users of the program. A variable in OO is the place where the data is put. Each class

notifies a group of variables corresponding to the data that belongs to each instance.

In OO program, it is important to realize the differences between variables and

objects. Variables can refer to a specific object or to no object at all. When the

variable refers to an object, it is known as a reference. Variables can refer to multiple

objects at the same time. The type of the variables defines which kind of objects it

could contain. [6]

The next important thing when talking about OO is the concept of instance

variables. Instance variables can be divided into two groups depending on the target

of the implementation. They can be used to implement attributes or to implement

associations. Attribute in this context is a piece of data that is used to depict the

properties of an object, i.e. a name, whereas, an association depicts the relationships

between instances of classes. [6]

Encapsulation is an essential concept in the field of OO software systems. A class

behaves as a container to hold its variables and methods. It also assures that the

object can be handled independently from rest of the software system. In other

words, if there are changes in the software systems, the object keeps its integrity and

functionality. Encapsulation offers simplicity and clarity in such a way that there is

no function or data in the program that is not included into any object. Encapsulation

is highly linked to the information hiding. [6]

Information hiding is achieved by encapsulation. It is a concept that hides the data

which might be affected during the implementing process. The data is insulated from

the direct access by outside objects. The key factor of information hiding is to decide

whether the information is visible or hidden [8]. Information hiding brings up the

concept of access levels. The attributes and methods of a class can be presented as a

public, protected or private access [9]. The process where objects of one class obtain

the properties of objects of another class is called inheritance. The idea of reusability

is provided by inheritance. Thus, additional features can be added to an existing class

without modifying it. This method is achievable by creating new classes from the

existing ones. As a result, new classes have combined features of both classes. The

inheritance mechanism allows to reuse classes without causing any unwanted side

effects. [9]

The final bases of OO are methods, operations and polymorphism. Methods are

procedural abstractions and the behavior of a class is implemented by using methods.

An operation is an even higher-lever procedural abstraction from the methods that is

17

used independently from of any code that is connected to that behavior to depict a

type of behavior [6]. Polymorphism is a concept whose aim is to separate classes and

their instances to be accessed in the same way. Thus, by definition, it can be said that

a single object can appear in multiple forms. Therefore, under different

circumstances, an object can behave differently even if the given message is the

same. [7]

To summarize, OO is strongly related to the concept of modularity. This concept

consists of various independent components which are implemented to function

together. Modularity is a concept which increases the reusability, workability and

efficiency of the software components by partitioning programs into smaller

modules, while at the same time reducing complexity. [7]

2.2.2. Component-Based Software

The main idea of CBSE is to design and develop software by systems using reusable

components. These components in the SW environment are quite abstract and

capable of achieving a specific functionality. The component is selected based on its

characteristic, such as reusability, and then assembled with a well-defined SW

architecture. The concept of reuse is in a central role when CBSE is discussed.

Components are created in such a way that they can be reused in other similar

applications. The aim is that the system consists mainly of components. [3]

A component is a software object that is made to interact with other components

by sealing a certain set of functionalities. It is important that a component has a well-

defined interface in order to be able to communicate with other components.

Therefore, interfaces are the most essential part in the component-based structure.

All the services and functionality of the component are provided through its

interface. The interfaces include services and describe the interaction of the client

and the component. At the same time, the underlying details are hidden. Based on the

predefined schema, the interfaces are specified. [10] The component-based approach

does not build systems from a scratch; therefore, the reuse of components is the key

factor [3]. Thus, the focus from a new system development is shifted to the

integration of existing components to perform new tasks [10]. Moreover, in the

visual language based system development environment, particularly in modeling

environments, components can be further divided into metamodel, model and code

components. Modeling and metamodeling are discussed in more detail in chapter 3.

Commonly, components are standardized, independent, composable, deployable and

documented. [3], [10]

As previously said, the concept of reusability is in a central role in the component-

based software. There are several techniques for reuse. In this context, white box,

gray box and black box reuse is discussed. For example, if the exact required code

component can be found, the black box technique is adapted during the reuse

procedure. Otherwise, the gray or white box techniques are applied. On the contrast,

in the modeling environment, on which this thesis focuses, model component and

metamodel component are more interested in the process, transitions and rules are

defined inside the components. Hence, the component content needs to be visible

during the reuse process. Therefore, the main approach for model component and

metamodel components is the white box testing in the means of reuse. [10]

18

2.2.3. Service-Oriented Software

Service-oriented architecture (SOA) is a collection of services that communicate

with each other. Each of these services has a certain collection of well-defined

functions that are provided for other services via interfaces. Interfaces are typically

expressed as messages and functions including their limitations. Further in this work,

the word “operation” includes both messages and functions. In other words,

operations are defined by an interface. These operations move between a service and

a client. These movements of operations between services and client follow some set

of patterns, of which the most commonly used pattern is known as the request and

reply pattern. With this pattern the client sends a request message to service and the

service responds with a reply message that is retuned to client. In addition, the

request and reply pattern works also between services. Operations are used to

provide services to end-user applications and other services in the SOA. Together,

the services implement the entire system by interacting with each other. [1]

According to [1], service is defined as “… generally implemented as a course-

grained, discoverable software entity that exists a single instance and interacts with

applications and other services through a loosely coupled (often asynchronous),

message-based communication model.” From a SOA point of view, a service is some

set of an application functionality.

The SOA is not an entity that can just be collected as if it was a grocery item on a

shelf. There is no clear line whether the SOA is defined just to a specific technology

or a product. The SOA is a bigger aspect. Further, the SOA is more than just

services; it includes three kinds of participants and their relationships. These

participants are the service provider, the service registry and the service requestor,

also known as a client. A service provider and a client are software entities. The main

task of a service provider is to implement service specifications. The client calls the

service provider through an interface. The service registry is a repository. Figure 6

shows the relationships of those three participants [3]. The relationships between

those three participants involve the publish, find and bind relations. The relations act

upon the service artifacts, the service description and the service implementation [3].

All the constraints and policies of the service are specified by the service description.

Usually, the service description of a service is defined by the service provider which

publishes it to the service registry. The service description defines the information,

such as interfaces and functionalities, that is needed in order to use a service [11].

The client uses a find relation to get the service description from the service registry.

Finally, the client uses the service description to bind with the service provider. [3],

[12]

19

Figure 6. Basic SOA architecture.

To use services effectively, some of the characteristics need to be taken into

account. By the means of effectiveness, the SOA and services need to be coarse-

grained, interface-based designed, discoverable, single instance, loosely coupled,

reusable, autonomy and asynchronous. The aim of coarse-grained services is to

enlarge the functionality and operability with larger data sets. Interface-based design

is one of the key factors in the SOA. It helps the implementation of a common

interface by using multiple services. The idea behind discoverability is that services

are found at both design time and run time. Single instance means that each service is

a single instance with which multiple clients can communicate with. Loosely coupled

services are implemented to be services that are connected to other services and

clients using specific methods. Instead of communicating directly, a client and

services use operations as a communication method. This procedure avoids any

direct technical connections between a client and services. Typically, services use an

asynchronous message passing approach. Additionally, the SOA is characterized by

an abstraction. An abstraction is an important characteristic of the SOA by easing the

understating of the complex systems and hiding the details of the implementation. By

an abstraction, services of the system can be shown as black boxes by hiding the

internal logic that can be accessed through an interface. Table 2 concludes the

requirement for SOA. These requirements are later used to evaluate the proposed

SOA. [1], [12], [13]

 Table 2. Requirements for a SOA

ID Requirement

REQ1 Loose coupling

REQ2 Autonomy of services

REQ3 Abstraction

REQ4 Reusability

REQ5 Discoverability

REQ6 Coarse-grained

REQ7 Interface-based

To summarize, the SOA is an enhancement of the CBSE. An individual service

can be seen as a single component. They both aim at providing a base for loosely

joined and vastly interoperable SW architecture enabling efficient SW development.

There is no clear line between the SOA and the CBSE. Compared to the CBSE, there

20

are two main points: services need to be publicly accessible and services need to be

mostly independent from implementation specific attributes.

2.3. Software Testing Strategies

A test strategy is a systematic method which is used to select and generate different

tests to be included in a test suite. Test strategies can be divided into three different

categories: Behavioral test strategy, structural test strategy and hybrid test strategy.

[14]

Behavioral testing or black-box testing is a testing method which is done under a

behavioral test strategy. Black-box testing is based on requirements and is done in

total ignorance of the construction of the object. There is no knowledge of the

structure of the system or the component inside the box. Thus, the tester only wants

to know how the software behaves, not how the software does it. The functional

aspects of software systems are checked by black-box testing and the primary aim is

to uncover errors and validate software. There are several types of black-box test

types from which black-box testing can be divided into two best known

methodologies: equivalence class partioning (ECP) or boundary value analysis

(BVA). ECP is a testing technique where input values are divided into valid and

invalid input partition, and from each partition a representative is selected to be a test

data. On the other hand, BVA is a technique which is based on testing on the

boundaries of various partitions. [14], [15]

Structural testing, also known as white-box testing, is a testing method which is

done under a structural test strategy. The logical aspects of a software system are

verified by white-box testing [15]. White-box testing demands full access to the

structure of the system under test (SUT) and it is applied at the early stages of the

testing process. The aim of white-box testing is to exercise a specific set of

conditions, loops or paths. The knowledge of the structure of the SUT is the biggest

difference between black-box and white-box testing. [14]

Hybrid testing or gray-box testing is a combination of black-box and white-box

testing. Gray-box testing combines the benefits of both black-box and white-box

testing, but it cannot execute the whole white-box testing because the inaccessible

nature of the source code. Gray-box testing is said to be the best approach for

functional or domain testing. Usually, unit and low-level components are tested using

structural testing whereas behavioral testing is used to test big components and

systems. Hybrid testing is suitable at all levels. [14]

As a summary, the test strategy is chosen according to the nature of the object that

is tested, the nature of bugs in the object and the state of the knowledge of the

structure. [14]

2.4. Model-Based Testing

Model-based testing (MBT) is an automation of a black-box test design. The main

difference compared to the usual black-box testing is the creation of models [16].

MBT is a testing method that aims to automatically generate test cases from a design

model which describes the functionality of a SUT. As a result, it is possible to

21

automatically generate a large number of test cases from the SUT and there is no

need to do the test cases manually. European Telecommunications Standards

Institute (ETSI) has specified MBT as the umbrella of approaches that generate tests

from models [4]. [17]

The MBT process consists of three main parts, modeling, test generation, and test

execution. Figure 7 shows the MBT process. The modeling phase models the

behavior of the SUT that is based on the predefined system requirements. The model

is assumed to have knowledge of the input and output data of the SUT. The input

data is used for executing the SUT and the output data is used for the validation

purposes. To be efficient, models need to be described at a relatively high abstraction

level. After the modeling phase, the test generation takes place. Test generation is

based on model traversal where test design algorithms are utilized for generating test

scripts from a model. In the end, test execution takes place. Test execution can be

accomplished either online or offline. Online testing is generated step by step using

the SUT output information whereas offline testing generates tests first and then

executes tests separately. [18], [19]

Figure 7. MBT process.

There are various MBT tools which can be identified in the three main types of

licensing: commercial, open-source and self-made. Usually, commercial MBT tools

offer the best support and availability by providing the simplest and the most

customer friendly interfaces for modeling and editing. To avoid licensing fees, there

already are some open source MBT tools that have an ability to modify the tool for

personal needs. This kind of MBT tools might be the best choice when beginning to

adopt the MBT testing process. The third type, self-made MBT tool, is a tool that is

designed for a specific usage and need. [20]

According to [16], there are four main approaches know as model-based testing:

22

1. Generation of test input data from a domain model.

2. Generation of test cases from an environment model.

3. Generation of test cases with oracles from behavior model.

4. Generation of test scripts from abstract tests.

In the first approach, the model includes the information of the domains of the input

values and the test generation implicates the specific combination of subsets of those

input values generating test input information. In the second approach, the expected

usage of the SUT is described by using several models. The difference between the

second and first approach is that the second approach does not model the behavior of

the SUT because the generated use cases do not define the excepted outputs of the

SUT. The third approach uses oracle information to see if the output values are

correct. This approach is somewhat complex because the test generator needs to

know adequately the behavior of the SUT to be able to tell the output values. The

final approach supposes that a general description of the test case is given and it

concentrates on converting that test case into a low-level executable test script. [16]

2.5. Software Development Methods

To be able to develop a system effectively, a well-formed software development

lifecycle is used. The commonly used software development lifecycle models are

waterfall model, iterative and incremental model, prototyping model, spiral model

and agile methods. [21]

2.5.1. Waterfall Model

The waterfall approach is a traditional approach that is used both in small and big

projects. The basic idea is to enable structured software development by executing

sequentially a series of development activities. The waterfall method contains such

development activities as requirements, design, implementation, test and support. In

the waterfall model, the next phase will start when the previous phase is fully

finished. For example, the design part will wait until the requirements are decided.

Because of this, the waterfall approach is quite slow. It is almost impossible to

accomplish bigger projects without making any changes in the previous parts. Thus,

making changes in the previous parts means that the entire process needs to be

started at the beginning. Even today, this method is used with small projects where

the process flow is systematic. There are no problems when the project works as

planned, but when the project is more complex, some other approach needs to be

used. [22], [23]

23

2.5.2. Iterative and Incremental Development

Iterative and incremental development was created due to the problems found in the

waterfall method. The aim of the iterative and incremental model is to develop a

software system incrementally by taking an advance of the previous steps and

knowledge that is being learned during the development process. The learning comes

from both the development and from the use of the system. The key is to start with

the simple implementation of subsets of the software requirements and iteratively

develop more and more advanced versions until the system is fully implemented.

This method can be divided into five steps: requirements, specification, architectural

design, implementation, and maintenance and retirement. In contrast to the waterfall

method, the previous steps can be modified without interrupting the entire process.

[23], [24]

2.5.3. Spiral Model

Spiral model is a software development method that has used waterfall method as an

example. The spiral model has been developed based on the refinement of the

waterfall method. It is close to the iterative and incremental model concentrating

more on the risk analysis. The key feature of the spiral model is that it creates a risk-

driven approach to the software process. The spiral model is usually used when the

risk evaluation and costs plays important role, requirements are complex or

significant changes are expected. The spiral model has four main phases: planning,

risk analysis, developing (engineering) and evaluation. The entire process repeats

these phases in iterations. The process starts with the planning phase. All the

requirements, developments, integration and tests need to be planned. After planning

phase, a risk analysis takes place. In this phase, all the possible risks are identified

and the solutions are proposed. Next, the software is developed in the engineering

phase. At the end of the engineering phase, testing is performed. The final phase,

evaluation, evaluates the results of the project and the project continues to the next

spiral. The spiral model allows the development of a software while decreasing the

software development risks. [23], [25]

2.5.4. Prototyping

According to [26], there are three main approaches to prototyping: exploratory

prototyping, experimental prototyping and evolutionary prototyping. The first

approach, exploratory prototyping, is used when the problem is unclear. In this

approach, initial ideas are used as a basis of requirements. The exploratory approach

uses prototypes as a tool to find requirements in the early phase. Experimental

prototyping uses prototypes to explore specific feasibilities or possibilities within the

process development. The evolutionary approach is a continuous process that updates

the needed requirements if needed. The main idea behind the prototype model is that

a prototype is built despite the fact that all the requirements are not known. The aim

is to provide a system with overall functionality. The main phases of a prototype

24

model are requirement gathering, quick design, prototype building, customer

evaluation, refining prototype and the final product. [23], [26]

2.5.5. Agile

Traditional approaches, such as the waterfall model, iterative incremental

development and spiral model described earlier, have led to the concept of agile

software development. Agile software development aims at enabling the

development of runnable software that is possible to validate by both stakeholders

and end users. Agile software development indicates to a set of methods and

processes that are based on the agile manifesto. The agility concept concentrates not

only on the domain architectures, but also on the modeling and implementation of an

application. Iterative and incremental development is usually part of an agile

strategy. [27]

The agile manifesto describes needed actions to develop software. There are four

main statements that put confrontations to inspection. These confrontations are [27]:

 Individuals and interaction over processes and tools.

 Working software over comprehensive documentation.

 Customer collaboration over contract negotiation.

 Responding to change over following a plan.

According to the agile manifesto, the items on the left are more valuable than the

items on the right. In other words, the main principles of the agile manifesto are to

embrace changes and refactoring through the development process. The process is

measured by the means of working software, where the developing process is

iterative and is delivered in small increments. The first statement of the agile

manifesto states that a team should define its own development process that is suited

best to its specific actions. The main point of the second statement is to keep focus

on delivering runnable software. The diagrams and software need to be up-to-date all

the time. The third statement instructs to allow the customers to participate as much

as possible in the application development, and the fourth statement encourages to be

flexible. [27]

The best known agile techniques are extreme programming (XP), test-driven

development (TDD), feature-driven development (FDD) and scrum. [21]

 XP is a technique where two developers share a terminal and execute the

application together. The approach is based on simplicity and aims to

minimize errors.

 The idea behind test-driven development is to first implement the tests and

based on them, the application is developed.

 Feature-driven development consists of two main stages. The first stage

concentrates on discovering the list of features and the second stage

consists of implementing the discovered lists of features. The first stage

25

defines the quality of work; therefore, the first stage can be said to be the

crucial stage. [28]

 Scrum is the most used agile software technique in the software industry.

It is an iterative, incremental and empirical process that is used to manage

and control the development of a project. The aim of scrum is the ability to

react to the requirement changes. Scrum consists of three main roles:

product owner, scrum master and scrum team. The main task of the

product owner is to create priority based on a list of requirements, backlog.

The scrum master leads the whole process and the scrum team is

responsible of maintaining the process during each sprint. A duration of a

sprint is from two to four weeks. [29]

The popularity of the agile methods has been growing over the last years due to

lower costs and increased quality they provide. According to [27], there is a clear

link between the model-driven software development (MDSD) and the agile

techniques. MDSD can give support to agile techniques through domain knowledge

and provide help through the separation of domain architecture and application

development. To summarize, agile methods offer the biggest benefit when the

environment is volatile. Agile methods aim to collaborate closely with the customer

to be able to offer effective delivery and realize the risks.

26

3. MODEL-DRIVEN SOFTWARE DEVELOPMENT

MDSD has been taking a bigger and bigger role in the programming world and it is a

constantly developing area. The idea of MDSD is to focus on models in software

development instead of computer programs. MDSD offers an effective approach

compared to a ‘basic’ programming language by offering completed, reusable

components and frameworks. MDSD aims the focus of the software development

more to the problem domain over the implementation by raising the abstraction level.

The main goals of the MDSD are [27]:

 Improvement in development speed.

 Enhancement in software quality using automated transformations and

modeling languages.

 Growing reusability once modeling languages, architectures and

transformations have been specified.

 Enabling programmability on a more abstract level using modeling

languages.

 Innovative environment in the engineering, technology, and management

fields.

There are several ways how MDSD can be realized. In this thesis, Model Driven

Architecture® (MDA) and domain-specific modeling (DSM) are presented to

support MDSD [30]. Moreover, MDA and DSM support each other.

Chapter 3 is structured as follows. First, MDSD with MDA approach is

introduced including metalevels, abstraction levels and the differences between

diagrams and models. Second, MDSD with DSM approach is studied including

DSML development processes and DSML designing guidelines. Third, the modeling

tool MetaEdit+ and its concepts, which are used to create a DSM solution, are

introduced.

3.1. MDSD with MDA

The Object Management Group’s (OMG’s) MDA is an approach to support MDSD.

MDA emphasizes that the system must first be modeled before it can be fitted to the

final execution platform. MDA is used to describe the usage of the models within the

software engineering process. By using models, MDA drives people to understand

complex ideas. MDA aims to use the system models efficiently in the software

development process by supporting the reuse of models. There are four principles

that underline OMG’s view of MDA [31]:

 Models are expressed in a well-defined notation to give an understanding

of the systems. MDA drives to shift the focus of the SW development from

the technology domain to the problem domain.

 A set of models are used to build the systems. These models are organized

into an architectural framework of layers.

27

 A formal support for the models in a set of metamodels is the basis for the

automation through tools. Using the tools, models can be transformed to a

code. The aim of a model-to-code transformation is to increase speed and

reduce human errors.

 To accept the model-based approach, it requires industry standards to

provide openness to consumers and to enhance the competition among

suppliers.

The OMG has defined a set of metalevels and levels of abstractions to support these

principles. The following sub-chapters contain the definitions of metalevels and

levels of abstractions as well as comparison of diagrams and models. [31]

3.1.1. Metalevels

This chapter contains the definitions of models, metamodels, meta-metamodels and

mega-models. In addition, metamodels are discussed more detailed, because it is the

most important level in this thesis. Metamodeling is a needed and one of the most

important single steps in MDSD because it is a process of analyzing a domain. In

theory, there could be an infinite amount of metalevels, as each metalevel can be

described by using a higher metalevel [32]. OMG defines the four metalevels to

describe metamodeling to prevent this endless loop. Figure 8 shows the relations

between models, metamodels and meta-metamodels [27]. According to figure,

metamodeling can be seen happen in the three levels M3-M1. From these levels, the

models describing the domain itself are created. This four-layer architecture is a

popular example supported by Meta Object Facility (MOF). [27], [33]

Figure 8. Four-layer metalevel architecture.

28

M3 layer is the meta-metamodel layer and it contains all the metameta-data.

Meta-metamodel is an instantiation of itself and basically it defines itself. In this

thesis, GOPPRR (Graph Object Property Port Relationship Role) is used as a

metamodeling language to define metamodels, and it will be discussed later in

chapter 3.2.3. M2 layer is the metamodel layer and it contains the metadata.

Metamodel is an instance of meta-metamodel and it defines the language for

specifying a model. In abstract way, metamodel defines the structure of models and

modeling language (abstract syntax and semantics), as well as their relationships,

constraints and modeling rules. M1 layer contains the model that is an instance of a

metamodel and it describes a domain that will be implemented. Finally, M0 layer

contains the domain that is an instance of a model. As stated before, the semantics,

concrete syntaxes and rules are defined in metamodel layer. Therefore, the

metamodel layer is the most crucial layer in this work. Thus, metamodeling is

discussed more in the next paragraph. [27]

As mentioned, a metamodel defines the modeling language. According to [33],

modeling language can be defined as “… a set of all possible models that are

conformant with the modeling language’s abstract syntax, represented by one or

more concrete syntaxes that satisfy a given semantics.” An abstract syntax describes

the vocabulary concepts provided by the language and how they are used to create

models. Metamodel defines a one abstract syntax. However, there could be multiple

concrete syntaxes. The concrete syntax refers to its notation and it can be divided

into two main types: textual and graphical notations. For example, the model can be

expressed by using codes (textual) or diagrams (graphical). The abstract syntax needs

to be defined to have a good balance between simplicity and expressiveness. In this

thesis, a graphical notation is used as a concrete syntax. The semantics is needed

because the language is often context dependent. The semantics can be depicted as

constraints, and it blocks its user from creating models that break the rules and the

orchestration of its elements. The semantics needs a proper tool support. To have a

sufficiently specified modeling language using a metamodel, these key parts

(syntaxes and semantics) of the language need to be modeled. If graphical modeling

languages are used, abstract syntax is specified first. After defining an abstract

syntax, a concrete syntax is defined as a mapping of graphical notation onto the

abstract syntax. [34]

When a large number of models need to be handled at the same time, a concept of

mega-model rises. A mega-model is a conceptual framework whose focus is to

model a large-scale software evolution process. Basically, mega-modeling aims to

solve the problem that lies in the large-scale software business: how to handle large

entities that include multiple different models. Behind the four-layer model, there is a

clear concept of OMG’s MOF. In mega-modeling, there is not such a clear base.

There is only a concept or an idea of how those model volumes can be dealt with by

using the expedients that are commonly used in the modeling world to present the

relations between different models. The aim of mega-modeling is to deal with the

models, metamodels and their relations, and also to provide the possibility of

defining relationships between models. In the concept of mega-modeling, the models

can be divided into metamodels or meta-metamodels. [35]

29

3.1.2. Levels of Abstraction

To achieve the independence from SW application platform as well as to achieve

longevity in the software development, MDA defines three levels of abstractions

[36]:

 The computational independent model (CIM): The focus is on the

environment of the system and the structural details concerning the

implementation platform are hidden. Platform in this case is the set of

different technologies and subsystems that provide the needed

functionality.

 The platform independent model (PIM): The system is described from an

independent point of view of the platform. The abstractions of one or more

platforms are captured by hiding the specific data of the platform.

 The platform specific model (PSM): Represents the system and its

platform specific data. The details of the specific platform and

specification of PIM are combined.

Often, MDA is seen as a process where executable software systems are generated

from formal models starting with CIMs extending them to PIMs to be adapted into

PSMs and further resulting in source code. Partition between PIMs and PSMs is one

of the main concept of the OMG’s MDA. This method works as a bridge covering

the traditional gap between human-readable requirements and source code [28]. [27],

[36],[37]

3.1.3. Diagrams vs. Models

Many people consider diagrams and models as synonyms although there is a clear

difference between them. In this context, diagrams can be considered as a part or an

aspect of a model. Usually, diagrams are visual representations, e.g. shapes, lines or

nodes, describing the system, and a model is the whole description of the system that

is machine-readable. Thus, when the modeling process is going on, it is not only

modifying diagrams. Models can also be expressed in other forms, such as matrices,

tables, trees or maps. [30] In this thesis, the models are part of the M1 layer

described in chapter 3.1.1.

To achieve a model-centric environment instead of just drawing diagrams without

any constraints or rules, at least the following points need to be embraced [38]:

 Consistency: When the model is the base for all the modeling perspective,

there should not be any conflicting perspectives. This is due to the fact that

all the perspectives are extracted and governed from the same model

source. Therefore, if the perspective will change, the model will also

change, and vice versa.

 Collaboration: Using models that are well-defined allows others to modify

and add elements to models preserving the functionality of the model.

30

Even though the model can become large and complex, the model is still

consistent.

 Visibility: Using models, the complex mechanisms can be hidden and

expose only the needed information through diagrams to ease the

understanding of the idea behind the model.

 Automatic perspective generation: Diagrams, matrices, reports and many

other perspectives can be directly extracted from the models. Particularly,

automatic code generation is a beneficial approach in SW development

area.

3.2. MDSD with DSM (Language)

Models and modeling languages are used when the abstractions of a software system

are created. Some software systems demand very specific design modeling.

Generally, software modeling can be divided into two categories by means of the

usage purpose of modeling languages: general-purpose modeling languages (GPML)

and DSML. GPMLs are suitable for many software design problems in many

different domains. Using a general set of software concepts, these languages focus on

describing multiple software systems at the same time. One of the well-known

GPML is Unified Modeling Language® (UML) which is standardized by the OMG.

One way to use UML is to describe software system using an independently

separated object-oriented concepts from the programming language. DSM and

DSML have a big role in this thesis so they are described more closely in the

following chapters. In general, DSM and further DSML are used to keep the focus on

one specific, restricted application domain. Using these concepts, suitable modeling

elements for the specific domain can be implemented instead of defining general

standards. [39]

In DSM, the purpose is to enable a modeling language that is suitable for a certain

need and that the modeling, with the created modeling language, is simple and

efficient. DSM with the help of its tools provide precise design analysis and

automatic code generation to achieve better system quality [40]. DSM is a product of

an evolution of MDSD. DSML has been developed due to the next level of

abstraction beyond current programming languages. The modeler first defines the

metamodel including the modeling language and then the possible rules and

constraints are defined to guide the modeling itself. The important thing is, that the

modeler can define exact the kind of metamodel and modeling language that is

needed. The key is to create a (meta)model from which the final code can be

generated by using high level specifications that have specified the solution directly

using the problem domain. This is reached by using DSML that allows the developer

to focus on the solution rather than the technical implementation of the solution by

following domain abstraction semantics. [41], [42], [43]

DSML formalizes the application structure, behavior and requirements using a

specific domain. DSML is often considered as a graphical language which interprets

the ideas and logic using visual diagrams. There is a wide range of possible domains,

e.g. technical domain, user interface, functional, business etc. The smaller the

domain the easier it is to automatize. Basically, the modeling language, code

generator and framework code are domain-specific and are fully under the control of

31

their users. Often DSM and DSML are used as a synonym. To summarize, there are

two main things at which DSM aims. First, to raise the level of abstraction using a

language that is created to solve a problem using concepts and rules. Second, to

develop the final product by using a chosen programming language or other form

from the used specifications. [41], [42], [43]

By using a certain language, a model of a solution, i.e. a specification model, is

created, and which contains all the concepts and rules from the problem domain. The

division between models, code generator and framework code is important.

Generally, the models are used only to describe the behavior of the product while the

framework ensures the interface for the target platform and programming language.

The framework also provides a specific set of services to which the code generator

can interface. Finally, the way how information is extracted from the models and

transformed into code is specified with the code generator. The code and framework

is linked together and as a result, it is executable without any additional manual

work. [41], [42], [44]

Why choose DSM over the other possible choices? Maybe the most significant

benefit of DSM is the increase in development productivity. For example, Nokia [45]

shows the increase of productivity gains of 5 to 10 times of traditional manual

practices. According to test results, DSM makes the specifications easier to read,

understand, remember and validate. [46]

3.2.1. DSML Development Process

Developing a DSML the developer needs to have a valid knowledge about the

domain and the concepts behind the modeling language. Usually, DSML

development process is a collaboration between domain experts and engineers that

develop the modeling language for that domain. Figure 9 shows the development

process [47]. The process starts by capturing the requirements of DSML and

requirements of the system where the DSML is being developed. After the

requirements are clear, based on them, the concrete syntax or abstract syntax is

identified depending whether the language is graphical or not. If the modeling

language is graphical, the abstract syntax is defined first and the concrete syntax is

defined second, and vice versa if the modeling language is textual. After defining the

syntaxes, the language semantics are attached to them. Finally, DSML is verified by

the domain experts based on whether the set requirements for the DSML are fulfilled

or not. This kind of iterative and incremental process for defining DSML grammar

and its semantics is quite a challenging task [48]. According to [47], the aim is to

simplify and automate DSML development using three targets:

1. Capturing the concrete syntax as end-users perform modeling tasks in their

domain.

2. Deducing the abstract syntax from the concrete syntax and model

instances.

3. Attaching the semantics to the abstract syntax.

[49] and [50] added four phases to reach the targets above:

32

1. Identifying abstractions and how they work together.

2. Specifying the language concepts and their rules (metamodel)

3. Creating the visual representation of the language (notation)

4. Defining the generators for model checking.

Figure 9. DSML development process.

The following steps are typical when developing a DSML [51]:

 Analysis

 Implementation

 Use

The first step, analysis, finds the problem domain and then collects all the essential

knowledge in this domain. Then, the knowledge is clustered in a smaller semantic

notions and operations. The final part of the analyzing step is to design a DSML that

briefly describes applications in the domain. The second step, implementation, forms

a library that implements the semantic notions. The language concepts and their rules

are specified. After that, an assembler is implemented to translate DSML programs

to a sequence of library calls. The last step is to create DSML programs to all the

needed applications and to assemble them. To summarize, the analysis step builds up

the core of the application domain. The implementation step is a so called working

step where the theory behind the analysis step is converted into a real DSML.

Finally, DSML is put into use. [51], [52], [53]

3.2.2. DSML Designing Guidelines

The previous chapter presented the development process of DSML. This chapter

focuses on the DSML design guidelines from a software designer point of view:

33

What should be considered when designing DSMLs? DSML design is an iterative

process, therefore the guidelines presented below are part of every step discussed in

the previous chapter. According to [54], DSML design can be divided into five

categories: language purpose, language realization, language content, concrete syntax

and abstract syntax. It needs to be noticed that the line between these categories is

blurry, and the guidelines could overlap. As a language developer, the balance

between the guidelines needs to be found. Some of the guidelines are quite general

and obvious, but at the same time, it must be remembered that the simpler the

language the more effective it usually is. The following paragraphs will describe

each category more closely. [54]

Language purpose category covers the design guidelines in the early phase of the

language designing and development process. This category could be divided into

three guidelines [54]:

 The usage and necessity of the language need to be defined and the aim

should be clear.

 Asking questions: Using simple questions like “Who is going to model in

the DSML, when and for which purposes is the model used?” will help to

notice the necessary decisions.

 Usually DSMLs are designed for certain purposes, so the language should

be consistent.

There are multiple options to realize the new domain-specific language. For

example, it can be implemented from a scratch, existing languages can be utilized

and a graphical or a textual representation can be used. This category could be

divided into the following guidelines [54]:

 It is important to investigate carefully whether the graphical or textual

realization fits to the usage. Pros and cons need to be listed, after which

the decision can be made.

 If it is possible, the utilization of an existing language is recommended.

Reusing an existing language saves a great deal of working hours.

 Even though the existing language is not reusable, the language definitions

are still often valid for reuse.

The language contents will vary a lot among the languages so this is divided into

very basic guidelines [54]:

 The importance of simplicity cannot be overemphasized. The simpler the

language, the smaller probability there is to encounter errors. The content

that is not necessary can be left outside.

 The fewer language elements there are, the easier it is to understand the

language. Thus, the number of language elements needs to be limited.

 The ineffective language elements and conceptual redundancy need to be

avoided to make the language efficient.

34

Concrete and abstract syntaxes were briefly discussed in chapter 3.1.1. Both

syntaxes will be discussed more; first the concrete syntax and then the abstract

syntax. The importance of the concrete syntax is huge when designing a DSML. The

following guidelines encapsulate the concrete syntax [54]:

 Adoption of existing notations: It is recommendable to use existing formal

notations rather than invent new ones if the domain experts already have

notations.

 Usage of descriptive notations: A descriptive notation contributes both

learnability and comprehensibility of a language.

 Distinctiveness of elements: The elements need to be understandable. For

example, in graphical DSMLs, different elements need to have different

representations that depict enough syntactic differences (colors, shapes

etc.).

 Compactness and comprehensibility: Using comments, clear hierarchy, the

comprehensibility of notations, and using the same style everywhere

makes the language easier to read.

The guidelines for abstract syntax could be presented as follows [54]:

 The structure of the abstract syntax should follow closely the concrete

syntax. Thus, the elements that differ in the concrete syntax need to have

their own abstract notations.

 For simplicity, the layout of the programs should not affect their

semantics.

 Using the language, the system should be able to be decomposed into

smaller pieces.

 DSMLs should offer an interface concept similar to the interfaces of

known programming languages.

3.2.3. DSM Tool: MetaEdit+

Martin Fowler introduced the term “Language workbench” in 2006 [52]. Language

workbench is a new category of tools. In this work, MetaEdit+ tool can be

considered as a language workbench. MetaEdit+ is used to implement the domain-

specific solution. Language workbenches were defined as tools which have their own

environment that is created to help people define new DSMLs using high-quality

tools to use DSMLs efficiently. Language workbenches offer an opportunity to

custom editing environment to that language. Language workbenches, like

MetaEdit+, also offer a support for diagrammatic languages and graphical

representations. These tools allow users to define a DSML in three key parts:

schema, editors and generator. Also, language workbenches support syntax

highlighting, code completion and a debugger [55]. Maybe the biggest advantage of

language workbench is that it is possible for non-programmers to program. Even

though language workbenches are quite a new concept, they have a great potential to

become a major tool in the software development field. To summarize, a language

35

workbench is a specialized integrated development environment (IDE) not only for

specifying and constructing DSMLs but also to enable environment to write DSML

scripts that combine the editing environment and the language for writing. [52]

DSM tool frameworks are developed to minimize the effort of developing tools

support for a DSML. Usually DSM frameworks consist of DSM based tools that are

necessary to develop customized tools supporting the development of applications.

DSM framework provides frameworks for designing, editing, validation, analyzing

and testing. One of the basic idea of DSM tool frameworks is to reuse the same

generic tools for many domains in the modeling point of view. The support for a

modeling framework is central. The basic tool support for modeling and support for

automation is defined by DSM tool frameworks. In this thesis, MetaEdit+ is used as

a DSM tool framework and it will be discussed next. [39]

MetaEdit+ is a platform-independent graphical language workbench for DSM that

can be considered as a next generation computer-aided software engineering (CASE)

tool. It is a tool set for creating and using modeling languages and code generators. It

provides a flexible environment that is focused on specific domains and allows

building models and generators without having to write a single line of code. By

configuring the generic tool set with metamodeling, MetaEdit+ offers tool support

for metamodeling languages. GOPPRR metamodeling language is used to define the

models. MetaEdit+ offers simultaneous use of multiple metamodeling languages. An

object-oriented repository system is used to store the data of models. This repository

allows multiuser activity and enables parallel data share. MetaEdit+ Workbench

(MWB) version is used in this thesis. MWB integrates the language and generator

development tools and ordinary modeling tools. Figure 10 shows the architecture of

MetaEdit+. [56], [57]

Figure 10. The tool architecture of MetaEdit+.

The MetaEdit+ environment supports multiple users simultaneously to use

multiple tools. These tools provide a different view of the same objects. The

36

environment also offers a consistency checking as well as providing several

representation formats for the same design objects. MetaEdit+ offers an environment

that aims at improving usability, flexibility and open nature of CASE. These aims

have been the base for the tool architecture. The main principles of the tool

architecture are conceptual modeling, layered data base architectures and object

orientation. These principles make it different compared to the traditional CASE

approach. MetaEdit+ supports generic CASE behavior for objects and relationships,

including different modeling editors, browsers and property dialogs. Furthermore,

compared to CASE approach, MetaEdit+ offers XML import and export capabilities

and an API for data and control access to MetaEdit+ functions. [56], [57]

Modeling of a SW is executed by using diagrams, matrices and table editors.

These three editors offer a different perspective of the underlying domain. The

diagram editor is the main editor in MetaEdit+ because its graphical representation is

a natural choice to work with visual modeling languages. Matrix and table editors are

options for editing modeling data. [56], [57]

Report and code generation is one of the main blocks in the MetaEdit+

architecture (Figure 10). The main idea of code generation is that the generator goes

through the design models, extracts data from them and presents it in some

predefined format as an output. MetaEdit+ supports several generators that the user

can choose from, e.g. C. MetaEdit+ Reporting Language (MERL) scripting language

is used to define generators. MERL is specified for creating code generation

definitions. [56], [57]

GOPPRR

In this thesis, metamodeling language GOPPRR (Graph Object Property Port

Relationship Role) is used. GOPPRR is an own metamodeling language of

MetaEdit+. The aim of GOPPRR technique is to give the method engineers the

maximum degree of freedom. By using this approach, everything that is possible to

define with the metamodeling tools is a valid technique. All the GOPPRR modeling

concepts come directly from MetaEdit+. For example, Object in GOPPRR does not

mean the same as the object defined in the object-oriented software. Next, the

meaning of every capital letter of GOPPRR concept is briefly discussed. [58], [59]

The first letter of GOPPRR, G, stands for Graph. Graph describes only one graph

type, e.g. use case diagram and state diagram. Graphs contain a certain number of

objects and their relationships and they have their own properties. All the

specifications and details of each graph type are modeled with a distinct metamodel.

[59]

The next letter, O, stands for Object. The objects are the key elements of the

design describing the key concepts of a modeling language. Objects are such

elements that are used frequently and commonly reused, e.g. messages and states.

[59]

The letter P in GOPPRR represents the Property. Property defines all the

attributes that characterize the four other language concepts (graph, object, role and

relationship). Properties can show a different data type, such as string or Boolean.

The second P stands for Port. It is an optional part of an object, to which a role, the

37

second letter R in GOPPRR, can be connected. Ports are used when it is wanted to

connect a role to a specific part of an object. [59]

The letter R in GOPPRR represents the Relationship. Objects associate with each

other by using relationships. This concept handles the connectivity, such as

association and inheritance, between the objects. The second R is the Role. Both Rs

are linked together in such a way that Role specifies the lines and end-points of

relationships. Roles define the participation of objects in specific relationships. [59],

[60]

Among the previous concepts, there are several other language concepts that are

important when working and modeling with MetaEdit+. Those language concepts are

binding, object set, inheritance, aggregation, decomposition and explosion. For

example, the aggregation and decomposition methods are used by collecting reusable

elementary method types with the help of the concept Graph. By adding rules to

properties, GOPPRR checks the model decency. These concepts are discussed later

in chapter 4 when the modeling process has been started. [58], [61]

MERL

A code generation is one major part of the MDSD. Thus, MERL provides creation of

code generators. MERL is used to define restrictions, rules and part of the symbols of

the objects. Also, documentations and the reports of the models are done by MERL.

MERL is an own object-based scripting language of MetaEdit+ that has its own

syntax. However, this syntax is quite similar to, for example, C++. The created

language allows to navigate through the models extracting them and generating the

output text. Also, MERL provides a number of commands that enable various user

interventions or execution of external programs. These commands are, for example,

for-loops and if…else statements. All the code generators are done in the generator

editor which provides functionalities such as traceability, debugging and code

highlighting.

The semantics of DSML are defined in the code generator. The code generator of

MetaEdit+ goes through the models and uses the pre-defined information of the

models to generate reports and documentation. The code generator consists of a set

of reports which all can call other reports. Each graph must have an own report. [30]

The biggest benefit to use MetaEdit+ generator is the possibility to integrate the

metamodels with the code generator editor. Therefore, the models and generated

output are always in sync. This results in developing the language and the generator

definition in an agile way. [60], [62]

38

4. SERVICE-BASED MODELING AND DSML

The current component-based point of view in the modeling field is somewhat

problematic due to the construct of the large-scale enterprise. Regardless of whether

or not the construct was component-based or service-based, the construct in the SW

modeling perspective focuses on the different SW teams. Every SW team has their

own responsibility area of which they are in charge. Now, in the component-based

structure, these teams are focused on the different SW components, but the contents

and scopes of the components are becoming too extensive to fulfil the idea of an

efficient way of working as a SW team. A service-based approach in modeling could

offer an alternative to solve the rising problem of inefficiency among the component-

based modeling. Instead of being responsible for the different SW components, in the

service-based approach, every SW team is in charge of one or more services, which

includes, for example, interfaces, development and testability. When a new feature

comes from backlog, it needs to be planned in such a way that the impacts in the

different services are recognized. After a successful planning operation, every SW

team will develop and test their own services and finally the new or updated version

of a service is put into a trunk. Based on the problem stated above, a following

hypothesis is formed:

 H1: A service-based approach might solve the problem that the current

component-based approach has faced.

One of the aims of this thesis is to validate this hypothesis. The expectation is that

using service-based structure, the SW functionalities can be divided in more

organized way to improve the quality of the SW and reduce time in modeling.

In this thesis, an object-oriented based specification and description language

(SDL) has been taken advantage of. SDL is introduced in [63]. Some of the SDL

characteristics, such as the hierarchical language structure and the graphical

presentations of the symbols, have been used when the modeling language concepts

of this work have been developed.

This chapter is structured as follows. First, the used domain and the current SW

structure are introduced. Based on the domain, a service-based solution is

implemented. Because the used domain is large and it contains multiple different

functionalities, to save time, one features of that domain is modeled. Second, all the

phases of developing the DSML are explained in detail. Third, the service-based

models are created using defined DSML and the code generation is introduced.

4.1. Introduction to Example Feature

In 2003, the International Standards Organization (ISO) and the International

Electrical and Electronic Commission (IEC) approved the RapidIO Interconnect

Specification in the BTS area. Since then, RapidIO is the only authorized system of

interconnection technology. RapidIO is an open standard for a high-bandwidth,

packet-switched interconnection supporting data rates up to 60 Gbits/s. There are

both parallel and serial versions for RapidIO, and in this work the serial RapidIO

(sRIO) is investigated. One advantage in using the RapidIO is that it is suitable for

39

embedded systems because it uses low-voltage differential signaling technique to

minimize power usage. The RapidIO protocol consists of three layers: logical,

transport and physical layer. The logical layer controls the end-to-end interaction

between endpoints. It also defines the protocol, packet formats, initiating signals and

ending signals. Transport layer provides a path that enables the transmission of

information to each node. The physical layer defines the packet transmission,

information control and electrical characteristics. The three-layer structure of

RapidIO increases the capacity of the product. [64], [65]

RapidIO includes both serial and parallel versions. The feature in this thesis

define multicasting operations in the serial RapidIO and the aim is to provide

multicasting functionality to the system. Multicasting means the concept of

duplicating a single message and sending it to the multiple defined destinations. In

the sRIO systems, the capability to duplicating messages should scale with the

number of end points in the system. The multicast is defined for switches only,

because the number of the end points scale with the number of switches. The

multicast mechanism has several goals that need to be fulfilled. For example, it must

be simple, compact, robust, scalable and compatible with all the physical layers. The

multicast operations have two control value types: multicast masks and multicast

groups. In this work, multicast groups are studied. The multicast groups are defined

as a set of target end points which all receive a specific multicast packet. Each

multicast group is compound with a unique destination ID. A multicast mask is a

value that decides the association between the multicast groups and the egress ports.

Figure 11 shows the feature under design. [65], [66]

Figure 11. The feature under design.

4.2. Current Component-Based Structure

This chapter describes the current component-based structure of the SW inside the

BTS system model. The current component-based structure utilizes both the services

and the SW components, of which the SW components are the ones that are needed

to be removed in the scope of this thesis. The current component-based BTS system

model consists of RAT specific SW, known as client, and platform SW models. The

platform SW models and RAT specific SW consist of architectural and functional

models. The architectural model specifies the internal SCs as well as their provided

and used interfaces to allow the communication between the components. The

40

functional model focuses on specifying the interaction of components and which

components are needed to complete the feature. The usage and the functional

behavior of the system are defined in the functional model. Also, functional models

place requirements to the interface models, which, for example, defines the type of

operations. In the current component-based structure, the interface models are

specified after defining the architectural and functional models. The interface models

define each interface separately. Also, the interface model specifies the set of

services that can be used via the interfaces that are provided by SCs. The

architectural and functional models are created for each SC. In this work, features

under design consist of all five models described above: platform SW architecture

and functional models, interface models and system component architecture and

functional models. Figure 12 shows the hierarchical structure of the BTS system

model. [4]

Figure 12. The hierarchical structure of the BTS system model.

4.3. Proposed SOA

The agile SW development methods, that is introduced in chapter 2.5.5, are utilized

to develop a service-based SW structure. The proposed SOA was developed in two

to four weeks sprints. After the sprint, a meeting with the team, which includes SW

specialists and line managers, was organized and the development proposals were

discussed and listed. Based on those proposals, the proposed SOA was further

developed.

The proposed SOA consists of three different abstraction layers. The service

group level is the highest abstraction layer, the external service and service level

forms the second abstraction layer and the interface description and micro-service

description level compose the lowest abstraction layer. Each level is either a black

box or white box depending the usage of the level. The black box view means that

the user does not see the functionality inside the object or the level. On the contrary,

white box view shows the internal functionality of the level. A specific graph type is

defined for each level to depict the specific characteristics of each level. These

41

graphs are listed below. The text black box or white box in the brackets denotes

whether the level uses objects from the white box or from the black box view.

 Service group graph (black box)

 External service graph for a certain domain (white box)

 Service graph for a certain domain (white box)

 Interface description graph (black box)

 Micro-service description graph (white box)

Because of the properties of the modeling tool, black box view and white box view

have been divided into two parts. The first part of the black box view describes only

services for a specific service group as a black box and the second part of the black

box contains a UML-like sequence diagram type of functionality to describe

interfaces. The black box views contain the following objects: service, lifeline and

requirement. The second part of the metamodel is called white box view and it

contains all the objects that are used to model the behavior of the service and

relations of the services. The white box view is also divided into two parts. The white

box view includes the objects: micro-service, operation, interface, input, output, call,

start, decision, task and end. As a result, in the proposed metamodel, there are four

possible graph types: BlackBoxI, BlackBoxII, WhiteBoxI and WhiteBoxII.

Briefly, the service group graph is the uppermost abstraction layer that shows all

the services of that service group. This graph is for external user purposes. The

external user sees the overview of the service group graph, but not the details and

functionalities inside the objects. From this graph, the access to external micro-

service graph and micro-service graph is provided. In this thesis, the availability of

the graphs and elements are in the client point of view. Therefore, external micro-

service is external for the client and so on. External micro-service graph shows all

the external micro-services and their relations through an interface. Furthermore,

micro-service graph shows both the external and internal micro-services and their

relations to other internal and/or external micro-services through an interface. This

level shows more detailed functionalities of the domain. The micro-service graph is

for modeler purposes because both internal and external micro-services and their

relationships are depicted. External micro-service graph is meant more for the client

purposes, because this graph does not show the internal functionalities of the micro-

services. From these graphs, the access for interface description graph and micro-

service description graph is provided. The interface description graph shows the

message sequences between micro-services and the micro-service description graph

models the actual behavior of the specific micro-service. Figure 13 shows the

overview of the abstraction layers. Briefly, the main elements of the proposed SOA

are service, micro-service and interface. A service is an implementation of a

functionality that is delimited by a one interface. Micro-service is a service which

functionality is limited into a smaller area. Interface is a defined entry point of a

functionality provided by service or micro-service. Each of these graphs are

discussed and explained in detail in the next chapters.

42

Figure 13. The abstraction layers of SOA.

4.3.1. Service Group Graph

The aim of this graph is to give a client an overview of all the available services and

their properties and to show the behavior of the service group as it is perceived by

external users. The service group is divided into logical entities, services, of which

each service includes specific functionalities. The service object is used to depict

those services. Furthermore, the services are introduced in this graph, but there is no

reference to its internal architecture. Thus, this level should not take a stand on its

internal architecture. That is, this level is black box.

Figure 14 shows an example of a service graph that consists of three different

services; Service1, Service2 and Service3. The figure below also shows the pop-up

window when the Service3 is opened. The figure shows all the possible properties of

the service. For example, the precondition and the description field are editable as a

text, but the other fields will demand either existing or a new object depending on the

property field. In this graph type, there are rules and restrictions. For example,

service is the only object that can be used in this graph. Therefore, there is no

possibility for using other objects than services. The full list of rules and restrictions

of each graph are gathered in chapter 4.5.

43

Figure 14. Overview of the service group graph.

4.3.2. External Micro-Service Graph and Micro-Service Graph

From the service group graph, it is possible to move either to external micro-service

graph or micro-service graph. The aim of the external micro-service graph is to show

the possible external micro-services that are available to the application. The internal

micro-services are so called black box objects to the client. Hence, the client does not

need to know what happens internally in the SW. As said, external micro-service

graph is available for the client. Thus, the external micro-service graph shows the

external micro-services and the relations between them through a well-defined

interface. In addition, this graph type describes functionalities more detailed way

without referencing to its internal architecture. On the contrast, micro-service graph

shows all the micro-services (internal and external) and their relationships through

interfaces. The micro-service graphs give references to its internal architecture. This

layer also shows whether the interface is provided or used. The micro-service graph

is meant for the modeler and the external micro-service graph for the client purposes,

but the graph type does not exclude each other. In other words, the idea of this graph

type is to show the micro-services and the relationships between them via well-

defined interfaces. Both, the external micro-service and micro-service graphs, allow

only to use micro-service and interface objects in the modeling purposes. All the

other objects are restricted.

From the micro-service graph, there are multiple options where to continue. One

can access the interface description graph by double clicking the relationship

between the interface and micro-service. One can also access the interface

description graph by choosing the right interface description graph on the pop-up

window by clicking the interface itself. Therefore, there are two possibilities to

access the interface description graph. The third possible access to the third

abstraction layer from the second layer is from the micro-service. By choosing the

observed micro-service, the micro-service description view can be accessed. From

the external micro-service graph, there is no access to the micro-service description

44

graphs. Therefore, to access the micro-service description graph, the micro-service

graph needs to be accessed first.

Figure 15 shows an example of the micro-service graph and external micro-

service graph. The figure shows that there are two external and two internal micro-

services. Both external micro-services provide the interface IF2 and use the interface

IF1 that are provided by the internal micro-services. The external micro-service

graphs show only the external micro-services and the interfaces that are provided by

them.

Figure 15. The micro-service graph on the left and the external micro-service graph

on the right.

4.3.3. Interface Description Graph

The interface description graph shows the interface description to a specific micro-

service. The aim is to show how the interface is performed to a specific micro-

service. This graph defines the interaction between micro-services via interfaces.

Therefore, interfaces need to be up to date. The interface description is usually based

on the requirement; therefore, it is also shown in this graph type. The requirement

shows the needed characteristics of the interface. In addition, the requirement where

the interface is based on is for modeler purposes. On the other hand, this graph shows

to the client the needed operations, which by the client can use the micro-service in

question. This graph type uses lifelines that show the micro-service for which the

interface description is done, and the interface itself. Usually interface description is

request-response operation pair. In some cases, there is also some indication

message(s). Call and response relations models the request-response operation pair.

45

Call and response can be synchronous and asynchronous; hence the operation type is

also shown in this graph. Basically, this graph type defines the interaction between

micro-services or client and micro-services via interfaces. Figure 16 presents an

example of the interface description graph.

Figure 16. The interface description graph.

4.3.4. Micro-Service Description Graph

The micro-service description graph belongs to the lowest abstraction layer and

shows the actual behavior of the micro-service. This graph defines the internal

behavior of each micro-service during the interaction in the interface description

graph. The aim of this graph is to depict the behavior of the micro-service in such a

way that for a SW engineer it is possible to create a totally functional piece of the

SW feature. The internal behavior of the micro-service is described as a state

machine. Furthermore, this graph models the behavior by using input, output, call,

start, task and decision objects and the transition relationship to show the flow

between the objects. This graph type does not define any service and/or interface

descriptions. It just provides a link to an existing service, interface or operation, for

example, using a call object. Figure 17 presents an example of the micro-service

description graph.

46

Figure 17. Micro-service description graph.

4.4. Structure of the created DSML

Based on the rules, phases and aims defined in chapter 3.2, the DSML is created for

the service-based structure. The very first thing in developing DSMLs is to create a

metamodel, that defines all the elements of the system, relations, restrictions, rules

etc. of the system. The metamodel is based on the GOPPRR metamodeling language

introduced in chapter 3.2.3. Typically, a language consists of three main components:

abstract syntax, concrete syntax and semantic.

The graph tool is the most important tool of MetaEdit+ and it is used to

accomplish the following tasks:

 Defining the names and properties of the graphs.

 Defining which objects, relationships and roles are used in the certain

graph.

 Defining the relationships between the objects. Defining the relationships

requires also defining the roles of each object in the relationship.

 Defining possible explosions and decompositions.

 Defining the constraints of each graph.

The objects and their properties are defined with the object tool, relationships and

their properties with the relationship tool and roles with the role tool. Additionally,

the symbol editor is used to give the finalization of the language. Defining the

symbols is important to offer the easiest graphical usability to the user. Next the

creation of the abstract and concrete syntaxes as well as the semantics of all the

elements of the metamodel are described in detail. Henceforward, all the names of

the graphs, objects and relationships are written in italics to separate them from the

body text. [30]

47

4.4.1. Objects and Relationships of the Service Domain: Black Box

A service is a unique object that gathers micro-services into the logical entities based

on the content of the micro-service. In other words, a service consists of a set of

micro-services (< µ𝑠 >). For example, internal communication (ICOM) area can be

divided into four services (sRIO, Ethernet, Event Machine/BTS Intranet Protocol

(EM/BIP) and system internal communication (SysCom)). A service includes

properties such as preconditions, provided interfaces, contained micro-services and

description. A service can be represented as 𝑆𝑅𝑉𝐶 = {𝑠𝑖𝑑, < 𝑝𝑖 >, < µ𝑠 >, 𝑑, 𝑝𝑟𝑐},

where sid represents a unique service, pi represents the provided interfaces, µ𝑠

represents micro-services that belongs under a specific service, d represents the

description of the service and prc represents the preconditions that the service needs

to fulfill to be a functional service. Graphically it is a small rectangle inside a bigger

rectangle. Figure 18 shows the graphical representation of the service and its

properties.

Figure 18. A service object and its properties.

The sequence diagram needs only lifeline objects that are linked to a certain

micro-service and a requirement that shows the definition for the requirement where

the interface description is based on. In this thesis, lifeline objects are used to

represent objects that are used to model the sequence diagrams. Between lifelines,

call and response message pairs communicates with the services. In the interface

description graph, message pairs are defined by the call and response relationships.

Both relationships have the properties of list of operations and operation sort. The list

of operations property contains only one operation. Operation sort property defines

whether the operation is asynchronous or synchronous.

48

Table 3 summarizes all the objects that belongs to the black box view metamodel.

In this thesis, the data type of the property of the object is either a string, text or

collection. The definitions of the data types string and text are the same as in the

commonly used programming languages, but the collection as a data type is an own

data type of MetaEdit+. Moreover, a collection data type needs an item type to define

the collection. In this work, the item type is always an object.

Table 3. The black box objects

Object Symbol Property

Property

Name

Data type

Service

Name String

Precondition Text

Provided

Interface

Collection:

Interface

List of

Micro-services

Collection:

Micro-service

Description Text

Lifeline

Name String

Interface? Collection:

Interface

Description Text

Requirement

Name String

Description Text

4.4.2. Objects and Relationships of the Service Domain: White Box

The white box view offers the behavior actions for the service-based systems. Like

the black box view, the white box view is also divided into the two parts. In this

work, the first part of the white box view shows the relations between micro-services

through well-defined interfaces. The second part shows a state machine like a

diagram type to describe the behavior of the service itself.

A micro-service is an object that can be accessed through the service. Beside the

services, the micro-services are the base of this work and they can either be internal

or external. The internal micro-services are accessible only for the application

whereas both the client and application have access to the external micro-services.

Micro-service includes the following properties: service availability, requirements,

used interfaces, provided interfaces, used micro-services, description, preconditions

and postconditions. A micro-service can be represented as µ𝑆 = {µ𝑠𝑖𝑑, 𝑠𝑎, 𝑟, < 𝑢𝑖 >
, < 𝑝𝑖 >, 𝑢µ𝑠, 𝑑, 𝑝𝑟𝑐, 𝑝𝑜𝑐}, where µsid represents a unique micro-service, sa

represents service availability, r represents requirement on which the functionality of

the micro-service is based, ui represents the used interface, uµs represents the used

micro-services, prc represents the preconditions and poc represents the

postconditions. Graphically it is represented as an oval with External or Internal as a

label depending on the service availability. Figure 19 shows the graphical

representation of the external micro-service and its properties.

49

Figure 19. Micro-service object and its properties.

An interface is a hierarchical object that can either be provided or used depending

on the relationship between the service and interface. The “main” interface can

contain multiple interfaces which can also contain multiple interfaces and so on. The

interface has properties, such as a list of operations, sub-interfaces and description.

An interface is always linked to at least one service. The interface can be represented

as 𝐼𝐹 = {𝑖𝑓𝑖𝑑, < 𝑜𝑝 >, < 𝑠𝑖 >, 𝑑}, where ifid represents a unique interface, op is

operation and si is sub-interface. Graphically it is represented as a circle with IF as a

label. Figure 20 shows the graphical representation of the interface and its properties.

50

Figure 20. Interface object and its properties.

An operation includes all the messages and functions. It is an object that defines

the interface. Usually messages work as request-response pairs. Parameters define

the operation. An operation can be represented as 𝑂𝑃 = {𝑜𝑝𝑖𝑑, < 𝑝𝑟 >}, where

opid is a unique operation and pr represents parameters. For example, parameters

define the properties information element, priority, value range, information element

type and description. Graphically operation is represented as a flash between the

pointy brackets. Figure 21 shows the graphical representation of the operation and its

properties.

Figure 21. Operation object and its properties.

In this part of the white box view, only one relationship between objects is used.

This relationship is called connection and it is used between micro-services through a

well-defined interface. The role of the connection defines whether the interface is

51

used or provided. A connection can have sub-graphs where the interface description

of the specific micro-service and interface is defined.

The state machine like behavior uses the objects input, output, call, start, task and

decision to describe the functionality of the micro-service. Both input and output are

linked to a certain operation. If there are mandatory parameters, they are shown

under the object. Call is linked to a micro-service that is described elsewhere in the

metamodel. Call object shows, which micro-service is needed to fulfil the micro-

service description. Task object shows the action that belongs only to that service

that is being processed. Table 4 summarizes the white box objects and their symbols

and Table 5 summarizes the white box relationships.

Table 4. Objects of the white box graphs

Object Symbol Property

Property Name Data type

Micro-service

Name String

Service

Availability

String

List of

Requirements

Collection:

Requirement

List of Used

Interfaces

Collection:

Interface

Provided

Interface

Collection:

Interface

Used Micro-

services

Collection:

Micro-service

Precondition Text

Postcondition Text

Description Text

Interface

Interfaces Collection:

Interface

List of Operations Collection:

Operation

Description Text

Operation

Operation name String

List of

Parameters

Collection:

Parameters

Input

List of

Operations

Collection:

Operation

Output

List of

Operations

Collection:

Operation

Call

List of Micro-

services

Collection:

Micro-service

Task

Description Text

52

Start

End

Decision

Table 5. Relationships of the white box graphs

Relationship Symbol Property

Property

Name

Data type

Connection

Type:

Provided/Used

String

Transition

4.4.3. Rules and Restrictions

The rules and restrictions play a significant role in the modeling. As mentioned in

chapter 3, by using rules and restrictions, there is a clear base for the modeling and

the models are made to be functional. There are common rules and restrictions for

each graph, but there are also individual rules and restrictions that are made only for

a specific graph. The rules and restrictions are designed in such a way that they allow

the user to model and use graphs without any problems or complications. Working

with models is clear and easy. For example, naming of the graphs and elements and

avoiding duplicates are more or less common restrictions when the occurrence and

connectivity of the elements are strictly linked to the certain graph. The complete list

of each graph type is introduced in chapter 4.5.

The constraint tool of MetaEdit+ offers four different constraint possibilities:

constraint for connectivity, occurrence, port and uniqueness. The constraint for

connectivity places rules for a certain object and defines how many roles or

relationships of a certain kind that object may have. The constraint for occurrence

defines how many times a certain object can occur in each graph. The constraint for

ports defines the value of property of a certain binding of a port. The constraint for

uniqueness defines which properties of a certain object need to be unique in each

graph. Other rules and restrictions that cannot be defined using the constraints tool of

MetaEdit+ are defined by using MERL. For example, a live check generator that

constantly checks that the defined rules are fulfilled is made using MERL. The report

and code generation is described in detail in chapter 4.5.5.

4.5. Service-Based Modeling with the Created DSML

This chapter contains the concrete modeling process of a feature. The previous

chapter focused on the elements, rules and restrictions of the created DSML. Those

concepts are used in this chapter to create a functional prototype of the SOA using

53

the created DSML. All the elements and their properties of each graph are explained

in detail as well as the report and code generators are introduced by giving concrete

examples.

4.5.1. Service Group Graph (1
st
 layer)

In this thesis, the observed SW area is ICOM. ICOM can be considered as a service

group. As the name says, the service group is an entity where all the services from

one SW area are listed. ICOM consists of four functional services: Ethernet, sRIO,

SysCom and EM/BIP. The best way to present those services is the service group

graph. Therefore, the first abstraction layer consists of four service objects of the

ICOM: Ethernet service, sRIO service, SysCom service and EM/BIP service of which

the sRIO service is investigated. The service objects are named using the exact

service name. Figure 22 shows the service group graph for ICOM. Basically, this

graph consists only of the service objects. The graph type for the service group

graphs is BlackBoxI. The properties of the sRIO service are:

 Precondition: HWAPI (Hardware Application Programming Interface) has

successfully performed a start-up.

 Provided Interface: sRIO service provides an external HWAPI sRIO Service

interface that includes sub-interfaces and their messages.

 List of Micro-services: sRIO service consists of three external micro-

services: Getting of sRIO Multicast GroupID, Removing Endpoint from sRIO

Multicast Group and Adding Endpoint to sRIO Multicast Group.

 Description states the main functionalities and aims of the sRIO service.

Figure 22. Overview of the service group graph for ICOM.

There exist multiple rules and conditions that are needed to consider when

modeling the service group graphs. The service group graphs shall be named Service

group Name - Service_View. In this work, the service group is ICOM, therefore the

graph is named as ICOM - Service_View. The service group graph has constraints for

uniqueness and occurrence as well as restrictions implemented using MERL. In the

service group graph, the service is the only object that can directly be used, therefore

all the other objects can only exist as a property of a service. Also, every service

must have a unique name to avoid duplicates. All the rest of the restrictions of the

properties of the service objects are done by MERL. These are:

 There cannot be used interfaces in this graph. Only provided interfaces are

allowed.

 List of services must match the external micro-services in the second level.

If there are differences between micro-services in the list of service

54

property and micro-services on the second level, the live check pane will

give a warning.

Further, all of the sRIO external micro-services have a relationship to an internal

micro-service. The next chapters will give a close look to all the micro-services,

interfaces and all other objects that are related to the sRIO service.

4.5.2. Micro-Service and External Micro-Service Graphs (2
nd

 layer)

The sRIO service consists of three external micro-services. The second abstraction

layer graphs are used to model the micro-services and their relationships to other

micro-services through an interface. All the external micro-services are linked to an

individual internal micro-service. Figure 23 shows the second abstraction layer

graphs (both, the sRIO micro-service and external sRIO micro-service). The graph

type for the second abstraction layer graphs is WhiteBoxI. As the figure shows, each

of the external micro-services provide the same interface, HWAPI sRIO Service, and

use the rio interface that is provided by the internal micro-services. Each of the

micro-service interfaces are formed with different request-response operation pairs

that are modeled in the 3
rd

 abstraction layer graphs. Next an external micro-service

Adding Endpoint to sRIO Multicast Group is presented more closely.

Figure 23. sRIO micro-service graph on the left and sRIO external micro-service

graph on the right.

Adding Endpoint to sRIO Multicast Group

Adding Endpoint to sRIO Multicast Group is an external micro-service that provides

a HWAPI sRIO Service interface and uses an internal rio interface. Figure 24 shows

the graphical presentation of Adding Endpoint to sRIO Multicast Group micro-

service as well as the provided and used interfaces and its properties. Each internal

55

and external micro-service follows the same structure that the figure depicts,

therefore a one example of a micro-service is enough to present the overview of the

micro-service. As properties in the figure states, the micro-service is either an

external or internal and it has some pre-defined requirement. Moreover, the used and

provided interfaces are shown in the micro-service properties. Preconditions and

postconditions are important for the client and testing point of view. In order to

execute the micro-service, the platform need to be up and running, and the sRIO

traffic need to be available. To maintain the functionalities of the micro-service, the

multicast mapping need to be configured to the sRIO switches. The description gives

the additional information of the micro-service.

Figure 24. Micro-service Adding Endpoint to sRIO Multicast Group.

Rules and Restrictions of the Graph

The following rules and guidelines are needed to consider when modeling the graphs

from the second abstraction layer. The micro-service graphs shall be named Service

Name - Micro-service_View and external service graphs shall be named Service

Name - External_Micro-service_View. In this work, the service name is sRIO,

therefore the micro-service graph is named as sRIO – Micro-service_View and the

external micro-service graph is named as sRIO – External_Micro-service_View. The

micro-service and external micro-service graph, the 2
nd

 layer, allows only a direct

use of service and interface objects. Also, the name of those objects need to be

unique. To provide a better readability of the second level graphs, interface objects

are reused, and therefore, if the name of the interfaces is the same in some cases,

there occurs no errors, because those interfaces are not different objects. The live

check generator gives errors and warnings in the following situations of the second

level graphs:

56

 If the type of the interface object of the list of used interfaces property is

‘provide’.

 If the type of the interface object of the list of provided interfaces property

is ‘used’.

 If a requirement object is missing from the list of requirements property.

 If the used service property includes forbidden services.

Also, in this graph type there are requirements for relationships. The modeling of a

relationship starts always from the interface, so the relationship between a micro-

service and an interface cannot start from the micro-service. As stated before, this

graph type defines whether the interface is provided or used.

4.5.3. Interface Description Graph (3
rd

 layer)

In this thesis, there are two hierarchical interfaces: HWAPI Service and DDAL API

(Device Driver Abstraction Layer API) interfaces of from which HWAPI Service

interface is an external interface and DDAL API interface is an internal interface.

Both main interfaces consist of multiple sub-interfaces. Furthermore, each sub-

interface consists of multiple operations. First, the Figure 25 shows the structure of

HWAPI Service interface. As shown, HWAPI Service interface consists of HWAPI

Ethernet Service, HWAPI sRIO Service and HWAPI SysCom Service interfaces. All

the sub-interfaces consist of operations that specified the certain main interface.

Thus, HWAPI Service interface has access to all of the operations, but the sub-

interfaces have only access to the operations that specify the sub-interface itself.

DDAL API interface follows the similar structure presented in the figure below.

Figure 25. HWAPI service interface structure.

The second abstraction layer provides access to the interface description graph(s).

There are two possibilities to enter the interface description graph. The first

possibility is to get access from the provide relationship role of the interface. Using

this option, there is only one possible interface description graph to access. The

second possibility is to get access directly from the interface. This option gives all

the available micro-service description graphs that are linked to that micro-service.

For example, rio interface is provided by three external interfaces, therefore there are

three separate interface description graphs. Figure 26 shows the two possibilities to

57

access the interface description graph(s). As the figure states, the 1
st
 option gives

only one possible graph to access and the 2
nd

 option shows all three graphs. The

graph type for the interface description graphs is BlackBoxII. Next, the interface

description for one external and one internal service is depicted.

Figure 26. The two possibilities to access to the interface description graph.

Adding Endpoint to sRIO Multicast Group - Interface_Description

The aim of the interface description graph is to show the interface of a specific

micro-service. The interface description is modeled by using lifeline objects and

request-response operation pairs. The lifeline object shows both, the interface and

micro-service. Adding Endpoint to sRIO Multicast Group is an external micro-

service that is provided by HWAPI sRIO Service interface. The interface description

is based on the predefined requirement and the aim is HWAPI sRIO Service interface

to add new sRIO endpoints to the sRIO multicast group. The interface is described

by a request-response message pair:

API_ADD_TO_MULTICAST_GROUP_REQ_MSG and

API_ADD_TO_MULTICAST_GROUP_RESP_MSG. The request message has the

following mandatory parameters:

 transactionId: an integer value that is used to associate all the messages

belonging to the same procedure. All the messages that use the same

procedure must use the same transaction ID.

 endpoint: a parameter that need to be added to the group ID.

 groupId: a parameter that tells the sRIO multicast group ID to where the

given endpoint(s) is added.

The response message has the following mandatory parameters:

 transactionId

 status: a parameter that shows the status for the requested operation.

 endpoint

 groupId

58

Figure 27 shows the interface description as a sequence diagram.

Figure 27. Interface description graph for Adding Endpoint to sRIO Multicast Group

micro-service.

Adding Endpoint ID to sRIO Multicast Group – Interface_Description

Adding Endpoint ID to sRIO Multicast Group is an internal micro-service whose aim

is to add endpoint ID to a multicast group. The interface is described by a function

pair. The first function ddal_rio_multicast_group_add contains the parameters:

 mcastid: a unique integer value which is used to identify the multicast

group ID.

 deviceid: a unique integer value which is used to identify the device ID to

remove.

If the operation is successful, DDAL_OK function is returned. Otherwise an error

code on failure is returned. Figure 28 below describes the interface description for

the Adding Endpoint ID to sRIO Multicast Group micro-service that is provided by

the rio interface. The function pair is modeled between the external and internal

micro-services and their provided interfaces.

59

Figure 28. Interface description graph for Adding Endpoint ID to sRIO Multicast

Group micro-service.

Rules and Restrictions of the Graph

The following rules and guidelines are needed to consider when modeling the

interface description graphs. The interface description graphs shall be named Micro-

service Name – Interface_Description. In the interface description graph, there can

only be lifeline and requirement objects. Also, the name of both objects need to be

unique. The relationship between lifelines is call or response and these relationships

has an operation as a property. The name of the operation need be unique in each

graph. The live check pane alerts if the requirement is missing.

4.5.4. Micro-Service Description Graph (3
rd

 layer)

The second abstraction layer graphs provide access to the micro-service description

graphs. Each micro-service has exactly one micro-service description graph where

the behavior of the micro-service is described in such a way that one part of the

feature can be created. Each of the micro-service description graphs start with the

start object and ends with the end object. Between start and end the whole behavior

of the micro-service is modeled. The graph type for the micro-service description

graphs is WhiteBoxII.

Adding Endpoint sRIO Multicast Group – Micro-service_Description

Figure 29 describes the behavior of the Adding Endpoint to sRIO Multicast Group

external micro-service. The behavior description starts with the start object and ends

with the end object. First, an input message is shown. Also, the mandatory

60

parameter(s) of the message is shown under the input object. In this case,

API_ADD_TO_MULTICAST_GROUP_REQ_MSG has three mandatory parameters:

transactionId, endpoint and groupId. Second, a call object is used to call an internal

micro-service Adding Endpoint ID to sRIO Multicast Group. The call object does not

remodel an internal micro-service, because it has already its own micro-service

description graph existing elsewhere in the metamodel. After the call object, a

decision is made based on the status of the operation. If the operation is successful, a

task is performed where the message routing rules are configured. If the operation

fails, a different task is performed where the endpoint is set to zero. Finally, an

output object that is linked to a response message is modeled. The output object also

shows the mandatory parameters of the operation. In this case there are four

parameters: transactionId, status, endpoint and groupId. If there are no mandatory

parameters, the output and input objects do not show the output pin under the input

or output object. The end object states that the behavior of the micro-service has

come to the end.

Figure 29. Micro-service description graph for Adding Endpoint to sRIO Multicast

Group micro-service.

61

Adding Endpoint to ID to sRIO Multicast Group – Micro-

service_Description

Figure 30 shows the micro-service description graph of the internal micro-service

Adding Endpoint ID to sRIO Multicast Group. The structure of the graph is similar to

the external micro-service description except that in the internal micro-service

description graph there are no call objects used. The other observation is that the

micro-service description graph is an extension of an interface description graph.

Comparing Figure 28 and Figure 30, the same operations are modeled. In the micro-

service description graphs, more information is modeled compared to the interface

description graphs.

Figure 30. Micro-service description graph for Adding Endpoint ID to sRIO

Multicast Group micro-service.

Rules and Restrictions of the Graph

The following rules and guidelines are needed to consider when modeling the micro-

service description graphs. The micro-service description graphs shall be named

Micro-service Name – Micro-service_Description. In the micro-service description

graph, there can only be white box objects. Each graph needs to start with start

object and end with the end object. Moreover, each graph shall have exact one start

and end object. The live check generator gives errors and warnings in the following

situations:

62

 If the start or end object is missing.

 If the task object is empty.

 If the list of operations property of the input or output objects is empty.

4.5.5. Report and Code Generation

The code generation is the other part of the MDSD. The main focus in this work is

not in the code generation. Nevertheless, basic reports and code generation are

accomplished to show that the related models are certainly models, not just sketches.

In this work, three kind of code generations are executed. One by using the constraint

tool of MetaEdit+, one by creating a live check pane that constantly checks whether

there occur errors and warnings or not, and one for the reporting that, for example,

shows the objects and relationships of each graph and the most important properties

of them. Basically, the reports generate the models into a text, therefore it can be

seen as a model-to-text transformation. MetaEdit+ includes several built-in

generators for different uses. For example, there are code generators to export graphs

to HTML (Hypertext Markup Language) or word format, to generate object lists or

to check some functionalities of the objects. In the following paragraphs, each three

options are briefly described.

As stated before, the constraint tool provides constraints for connectivity,

occurrence, ports and uniqueness. The constraints that are set by this tool are not

comprehensive, but they offer the basic constraint functionality to graphs. Figure 31

shows an example of a set of constraints for the WhiteBoxI graphs by using the

constraint tool.

63

Figure 31. Constraint tool of MetaEdit+.

For example, if the modeler is trying to use a new micro-service object whose name

is already used in the other micro-service in some white box graph, a pop-up window

will occur and alert of a forbidden use of an object and the use of a duplicate is

prevented.

One of the main tasks of the code generator is to take care of the constraints that

are not able be set by using the constraint tool. Hence, a live check pane is generated

to show the real-time validity of the graphs. The live check pane reports if there

occur inconsistencies and calculates the amount of the errors and warnings of each

graph type. The live check pane is shown only if there is __LiveCheck (with two ‘_’

as a prefix) generator in the current modeling language. Each of the graph types have

their own live check generator. Figure 32 shows a piece of code that is executed with

MERL. The example code checks whether the list of services property of a service

matches with the external micro-services in the micro-service graph or not. Figure 33

shows the error code that is generated to the live check window pane based on the

code presented below. In this case, the micro-services that are listed as a property of

a service do not match with the micro-services that exist in the micro-service graph.

The key of the code is that it is created to be as simple as possible. The rest of the

constraints that cannot perform by using the constraint tool are executed in an

equivalent way using MERL.

64

Figure 32. An example of MERL.

Figure 33. Live check window pane.

Generating reports is the third option to use code generators. Reports transform

the models to a text format that supports the readability of the models. Figure 34

shows the output of the generated report of the sRIO_Service_View graph (Figure

23). The report shows all the services, both the internal and external interfaces and

the relationships between them. From the report, the highlighted hyperlink of the

object, graph or relationship can be chosen and the hyperlink shows the actual place

of the element in the graph. The hyperlink can be chosen and the properties of the

element can be accessed. Thus, reports offer a traceability among elements and

graphs. The reports show the specified characteristics for each graph type. Therefore,

the generated output of the reports for each graph differs, but the main principle of

generating the reports is the same.

65

Figure 34. Output of the generated report.

66

5. DISCUSSION

The aim of this thesis was first to define a prototype of a SOA and second to create a

prototype of DSML, and use the created DSML to build the proposed SOA. Chapter

4.3 depicts in detail all the abstraction layers and the graphs of each layer that are

used to model a SW feature resulting in an executable service-based architecture.

The requirements for evaluating the proposed SOA are presented in chapter 2.2.3.

All the graphs are reviewed by the SW specialists and the discussion whether the

proposed SOA fulfils the requirements or not is based on the reviews and the user

experience. Also, the created DSML is discussed from a modeling point of view

based on the feedback from the SW specialists and theory. Finally, a short tool

evaluation is given.

5.1. Discussion of SOA

In this chapter, the proposed SOA is evaluated based on the reviews of the SW

specialists and the requirements that were listed in chapter 2.2.3. Based on the

evaluation of the requirements, the hypothesis presented in chapter 4 is validated.

The proposed SOA and the metamodel was introduced to the SW specialists and

the review comments were gathered. The SW specialists have experience on the

component-based modeling, and therefore they could make straight comparisons

between the service-based and the component-based modeling. The review

comments can be divided into two parts:

1. Service-based modeling from the specification perspective.

2. Service-based modeling from the reader and/or service user perspective.

From the SW specialist perspective, the service-based modeling provides

automatically clear and solid structure for the specification, which helps to find the

impact of the new features to the specification, to make new specifications and to

maintain the architecture, interfaces and the design. Moreover, the service-based

approach states making the specifications to the direction where the specifications

are made for the services instead for components. The current way of modeling is

being driven to a similar direction, but still combining services and components,

which makes the specifications somewhat complex to read.

From the reader of the specification perspective, the service-based approach

provides a solid structure which helps the reader to find the services and the needed

specification. Compared to the current component-based approach, the service-based

approach provides much more extra value to the reader of the specification. For

example, comparing the interface definitions, the service-based approach offers

better visibility to the reader than in the current modeling. The current component-

based structure does not offer a black box view for the client because the structure is

done only for the modeler purposes. The proposed SOA offers different views for the

client and modeler which broadens the use of the models.

67

The comments from the SW specialists favor the proposed service-based approach

over the current component-based approach. According to the comments, the

service-based approach offers more logical structure by minimalizing the number of

the abstraction layers. However, the proposed SOA is just a tiny part of the working

SW specification structure. The next step is to expand the definition and usage of

SOA to give a better understanding of the service-based modeling. Based on the

review comments of the SW specialists, a service-based approach in the scope of this

work is a functional product and it is definitely worth further investigation.

5.1.1. Requirements

The requirements are evaluated based on the levels of fulfilment that are [36]:

fulfilled, partly fulfilled and poorly fulfilled depending on how well the proposed

SOA prototype fulfils the requirements.

REQ1 considered the loose coupling. Each element of the SOA should be

autonomous and the relationships between the elements are defined to ensure system

consistency. In the proposed SOA, each element has an important and a well-defined

role. Each element has an important role and the proposed SOA cannot be executed

if one of the element is missing or malfunctional. The communication between the

services and the client is compiled with operations. REQ1 is the base for the

proposed SOA prototype. The aim of the related prototype is to consist of well-

defined independent elements that have relations trough an interface. Thus, each

element is an independent element that has a certain well-defined purpose. Based on

the definition of REQ1, it could be stated that the fulfilment level of this requirement

is fulfilled.

REQ2 considered the autonomy of the services. Each service can control itself

without dealing with many external dependencies to other services. In the related

prototype, there are dependencies between micro-services through an interface.

However, each service and micro-service is implemented individually and they have

their own service and interface descriptions. Based on the definition, REQ2 could be

stated as partly fulfilled.

REQ3 considered the abstraction of SOA. The aim is to hide the implementation

details using abstractions and the interfaces are used as access points. This

requirement is highly linked to the created modeling language. The proposed SOA

provides three different abstraction layers which all have their own aim. Each layer

has certain graph types that have a certain set of objects. For example, the service

objects act like black boxes hiding the information and the logic that are described in

the lower abstraction layers. Moreover, one of the core idea behind the proposed

SOA was that there are different views. In the proposed SOA, there are black box

and white box views. Black box views for client’s purposes and white box views for

SW specialist’s purposes. Based on this, REQ3 could be stated as fulfilled.

REQ4 considered the reusability of the elements of the SOA. The elements,

especially the services and micro-services, should be designed as independent as

possible. In the proposed prototype, all the services and micro-services are somewhat

specific, thus they cannot be designed as fully generic services. Nevertheless, micro-

services can be called from another graph to avoid duplicates. In addition, other

elements such as operations and interfaces are implemented by means of being

68

generic. Each element is designed to be reusable. Based on this, REQ4 could be

stated as fulfilled.

REQ5 considered the discoverability of the services. The SOA needs to provide

the discoverability of the services which is commonly implemented by a service

repository. Compared to other requirements, REQ5 is the most tool-based

requirement. MetaEdit+ is a repository based tool that provides that option. To be

discoverable, the redundant services need to be avoided. The proposed prototype

alerts if the name of the service is already taken, but there are no other mechanisms

to avoid redundant services. Even if there exist redundant elements, repository

should be defined in a such a way that finding the needed elements is easy.

MetaEdit+ offers solid searching possibilities. Thus, REQ5 could be stated as partly

fulfilled.

REQ6 considered the coarse-grained services. There are various levels of

granularity, and finding the right granularity for the observed services is a challenge.

Fine grained services exchange only small amounts of data and are more limited,

whereas coarse-grained services are able to exchange more data, but encapsulate

more functions within a service request. In the proposed porotype, service objects

can be considered as coarse-grained services and micro-service objects as fine-

grained services. Thus, REQ6 could be stated as partly fulfilled.

The final requirement, REQ7, considered the interface-based design of the SOA.

Also, REQ3 and REQ4 partly touched the interface-based design. In the proposed

prototype, each service and micro-service will interact with another service or micro-

service through a well-defined interface. Hence, the interface is one of the key

elements of the proposed metamodel. The one way to observe interface-based design

is that the interfaces will hide the service and micro-service. In the proposed SOA,

interface has its own properties and descriptions. Thus, REQ7 could be stated as

fulfilled.

To summarize, each of the requirements were either fulfilled or partly fulfilled.

Moreover, only REQ2, REQ5 and REQ6 were partly fulfilled. Based on the level of

fulfilment of the requirements, the proposed porotype of the SOA could be

considered successful.

5.1.2. Hypothesis

As stated before, the current component-based modeling approach is problematic due

to the construct of the large-scale enterprise and the responsibility areas of each SW

teams. As a reminder, the hypothesis that this thesis tries to address is:

 H1: A service-based approach might solve the problem that the current

component-based approach has faced.

The hypothesis is validated either as true or false depending on whether the

requirements stated above are fulfilled or not. As stated in the end of chapter 5.1.1,

the SOA prototype was successful. When it comes to the requirements, the

hypothesis is validated. From the seven requirements, four were fulfilled while three

were partly fulfilled resulting to the conclusion that the hypothesis is true. Therefore,

the proposed metamodel fulfils the requirements to be a service-based model. Also,

69

based on the review comments, the proposed SOA is a functional product. Thus,

there are open questions relating to the hypothesis. The hypothesis states that the SW

components are becoming too extensive to be efficient by means of modeling,

because the construct of the components are becoming illogical. Thus, the main key

performance indicators for both service-based and component-based approaches are

the size of the scope per service and the possibility to create functional entities

simultaneously in a faster and efficient way. But what is the right size? Thus, the

question is, can the SW be decomposed into a set of services which have the “right”

size? The prototype presented in this work cannot give a clear answer because the

service set is limited. For the future work, the service-based approach presented in

this work needs to be taken to a broader use to see whether the right size of the

service can be defined in such a way that the modeling work is more efficient

compared to the current component-based structure.

5.2. Discussion of DSML

Before the beginning of the work, the domain was already chosen. The biggest

problem was to limit the domain area in such a way that the work would not expand

too much, but still keep the content of the domain vast enough to be able to model all

the needed characteristics of the problem domain. When developing DSML, both

domain and language development expertise are needed. The author of this thesis did

not have previous experience on any kind of language design, service-oriented

architecture or code generator, and therefore everything was started from a clean

sheet. As a result, a prototype of a service-based architecture using DSML was

successfully created.

The evaluation of the modeling language was based on the user experience and

the theory behind the DSML creation. The requirements for the modeling language

were asked from the SW specialists that use modeling languages in day-to-day use.

The requirements of the created DSML are evaluated with the same scale of level of

fulfilment as the requirements for SOA: fulfilled, partly fulfilled and poorly fulfilled,

based on how well the proposed DSML fulfils the requirement. The following list of

requirements for the modeling language was the outcome:

1. Language REQ1: The created DSML should be graphically good.

2. Language REQ2: Each element of the created DSML should be suitable

named.

3. Language REQ3: Each element of the created DSML should have well-

defined constraints.

4. Language REQ4: The created DSML should be easy to use for the

modeler no matter the modeling experience level.

5. Language REQ5: The created DSML should be easy to modify.

6. Language REQ6: The domain of the created DSML should be well-

defined.

7. Language REQ7: The created DSML should be composed of multiple

layers.

70

DSML should easily be presented via its graphical presentation. The language

REQ1 discussed the graphical presentation of the proposed modeling language. In

this thesis, each object and relationship has their own symbol and icon

representations that cannot be mixed up. The aim was to create as simply graphical

representation for each object as possible. Some of the symbols were learnt from the

available examples, but most of the symbols were the own creation of the writer of

this thesis. As a result, the graphical notation of the objects and relationships were

successfully created. The language REQ1 can be stated as fulfilled.

The naming of the objects, graphs and relationships need to be done in such a way

that the usage of the modeling element is clear. The language REQ2 discussed the

naming of the elements of the proposed DSML. The naming of the elements was

clear because all the elements had their own usage. In this thesis, there were no

lookalike elements. Each element had their own specific usage and area of

responsibility. For example, each of the micro-services were named based on the

main functionality of the micro-service. Therefore, one can see the use of the service

directly from the naming of the object. There is no need to go deeper inside the

objects. Names of the operations and the interfaces were pre-defined; therefore, the

naming of those objects was clear. The language REQ2 can be stated as fulfilled.

The language REQ3 discussed the constraint of the modeling language. Each

graph, object and relationship need to have well-defined constraints to provide a

functional model. The constraints are discussed in detail in chapter 4. The aim of this

thesis was to find a way to define models based on the service-based approach, and

the language creation was performed after the SOA was defined. The constraints of

the modeling language are already defined in the different modeling environment,

therefore most of the constraints could be copied to MetaEdit+ environment. Hence,

these modeling environments differ from each other, and therefore lots of different

constraints compared to the existing ones needed to be defined. The language REQ3

can be stated as partly fulfilled.

The language REQ4 discussed the usability of the language among different

expertise levels of the language developer. As stated before, the writer of this thesis

did not have any previous experiences of DSMLs. Thus, the usage of the language is

defined to be suitable for the DSML experts as well as the novices. Therefore, the

language REQ4 can be stated as fulfilled.

The language REQ5 discussed the ability to modify the DSML. This requirement

is highly related to the modeling tool. In chapter 3.2.3, the main functionalities of

MetaEdit+ modeling tool were discussed. MetaEdit+ consists of the workbench and

modeler licenses where the modeling language is defined using workbench license

and the defined modeling language is used by using modeler license. Therefore,

using the modeler license, the modifications of the DSMLs are restricted. Thus, from

the modeling point of view, all the properties that are allowed to modify using the

modeler license is made easy. For example, the proposed DSML offers different

menus where certain objects can be chosen based on the constraints and restriction of

the language defined with the workbench license. As a result, the language REQ5

can be stated as fulfilled.

The investigated domain was already decided and defined before the work started.

To be a well-defined domain, all the needed elements need to be properly defined to

allow efficient way of modeling. The elements have been investigated thoroughly

71

and the constrains and the rules have been defined to fulfill the requirements of each

element. Therefore, the language REQ6 can be stated as fulfilled.

The final language requirement, language REQ7, discussed the construction of the

proposed DSML. This requirement is similar to the SOA requirement REQ3 where

the abstraction layers of SOA were discussed. Similarly, the proposed DSML is used

in the three different abstraction layers. Each of the layers have their own graph types

that are defined by certain objects. Moreover, in the proposed DSML, there exists

hierarchical elements to provide the abstraction of the language. For example,

interface objects consist of operation objects which consist of parameter objects.

Therefore, the language REQ7 can be stated as fulfilled.

As a result, the language REQ3 was the only language requirement that was not

fully fulfilled. However, the language REQ3 was stated as partly fulfilled. Based on

the level of fulfilment, it can easily be said that the proposed DSML is designed and

developed successfully within the scope of this thesis. Though, because the aim of

this thesis was to concentrate more on the new service-based modeling approach than

on the creation of the language, only the needed structures of the language were

created. The structure of those objects was made as simply as possible to

demonstrate successfully the functionality of the service-based modeling approach.

5.3. Tool Evaluation

Even though the author of this thesis had a limited knowledge of the modeling tools,

MetaEdit+ tool was quite easy to learn. Defining DSML with MetaEdit+ tool was

somewhat slow due to the nature of DSML creation. Hence, every element and

property of the language needed to be created before it could be used, and therefore,

at the beginning of the modeling work there were no existing elements. Thus, this

way of defining the language provides exactly the kind of language that the creator

of the language wants.

The biggest benefit of the tool was that the language developer can develop

exactly that kind of language that the developer wants to. There are infinite number

of possible ways to implement a new DSML. Of course, there are examples of

existing DSMLs therefore there is no reason to invent everything again. For example,

MetaEdit+ provides its own demo repository where different DSML examples can be

found.

When all the basic concepts of using MetaEdit+ were studied and learned, the

language creation was efficient and dynamic. Each element could be developed using

a specific tool for that element. For example, defining objects, an object tool is used

and to define relationships, a relationship tool is used. The most time-consuming part

of the language creation in this thesis was developing the code generators. The

manuals for the MERL were good but the learning of the MERL comes from coding

the language itself. Developing a DSML and code generators is an iterative process.

Thus, a tiny part of the model and a code generator for that at the time need to be

created and tested. If the name of some object, relationship or property was changed,

also the code generators need to be modified. Therefore, changing the names of

DSML elements need to be avoided. If there were problems in the DSML or code

generation creations, the support of MetaCase was always available. Therefore,

before starting the concrete DSML developing work, the background and the aims of

72

the DSML should be clear. This eases the work and significantly reduces the time of

developing the DSML.

Of course, there does not exist a prefect modeling tool. Each of the available tools

have their own weaknesses. In the presented metamodel, the biggest aim of the

development from the tool point of view would be the ability to find specific

information of a specific element. If a specific parameter of a specific operation that

is linked to a specific micro-service wanted to be checked quickly, a lot of clicking

and windows need to be opened. Generally, the navigation between models and

elements were sometimes troublesome. This might be because of the lack of

experience of creating the DSML of the author of this thesis, or just a tool

implementation problem. Moreover, there were found similar cases where a simple

information of the model needed to be found and lots of windows needed to be

opened to find an information source. However, the information was existing, it just

needed a bit more effort to be found. Using code generators more efficiently, the

needed information could be provided to be more visible. Also, the constraint tool

was a bit concise. For example, there is no possibility to restrict that in the graph

there can occur one and only one object of a certain type. For example, start and end

objects needed to have such a restriction. Now, this restriction needed to be made

using MERL. Therefore, in the future, there could be a choice to add constraint to

objects of a certain type that may occur exactly one time in each graph.

In the end, MetaEdit+ is a tool for creating DSMLs and each of the DSMLs are

different. Hence, it would be impossible to create a tool that will fulfil the needs of

every SW developers or enterprises perfectly. Thus, except the minor issues of the

tool, MetaEdit+ is a suitable tool for creating the DSML at least in the small to

medium size complex SW systems.

73

6. SUMMARY

The increased need for software and functionalities behind the software has made the

system design work more and more demanding and the components of the current

component-based structure are becoming too large to be able to work efficiently. The

component-based structure is not any longer the perfect option to create functional

entities simultaneously in a fast and efficient way. The main aim of this thesis was to

find an alternative for a component-based SW modeling. The service-based modeling

approach was a potential choice to replace the component-based approach. DSML

was used to utilize the creation of the service-based modeling. An existing SW

feature, which was implemented by using the component-based modeling approach,

was remodeled from the SOA point of view. The hypothesis of the thesis was that a

service-based approach might solve the problems that the current component-based

approach has faced.

Software technology has evolved over the years. At the beginning of this thesis

this evolution is introduced from object-oriented SW to service-oriented SW. The

focus of this thesis was in the SW system development. The SW system discussed in

this thesis was BTS platform SW and its functionality was briefly explained by

giving theory and examples. The common SW development methods were also

introduced. Waterfall method is the base of the different SW development methods.

More up-to-date SW development methods such as spiral model, prototyping and

iterative and incremental development are evolved from the waterfall method. The

last introduced SW development method in this thesis was agile and its different

variations such as scrum, XP, FDD and TDD. Moreover, different SW testing

strategies and MBT were briefly discussed.

MDSD is one of the key aspects on which this thesis relies. There are several

ways how MDSD can be realized. In this thesis, MDA and DSM are presented to

support MDSD. MDA approach introduces the metamodeling and different

metalevels. In addition, levels of abstractions are introduced and the differences

between diagrams and models are explained to avoid misunderstanding.

DSM has a couple of main aims. First, to raise the level of abstraction using a

modeling language that is created to solve a problem using concepts and rules.

Second, to develop the final product by using a chosen programming language or

other form from the used specifications. Third, to enable code generation. DSM and

DSML are used for modeling the SOA. The DSML development process and

designing guidelines to define the DSML are introduced. Moreover, the DSM tool

MetaEdit+ is used to create the DSML. In this thesis, an overview of MetaEdit+ and

its main properties is given.

In the practical part of this thesis, a feature of BTS platform SW was modeled

using the created DSML and proposed service-based modeling approach. The feature

was taken from ICOM area and the feature was related to defining multicast

operations of sRIO. The feature was modeled based on the model elements and

graphs defined via the created DSML. The aim was to remove the SW components

and replace them with the services resulting in a more efficient way of modeling

features. The SOA and all the elements of the SOA need to be defined. First, the

different abstraction layers of the service domain and the graph types that belongs to

the specific layer were described. Then, the SOA metamodel was divided into two

parts based on the usage of the objects: black box and white box. Further, both were

74

again divided into two parts because of the properties of the modeling tool. Black

box parts contain objects service, lifeline and requirement and the first part of the

white box part contains objects micro-service, interface and operation. The black box

elements are used to provide an overview of the feature without showing the internal

functionalities of the services. The second part of the white box contains all the

objects that models the behavior of the micro-service. These objects were start, end,

input, output, decision, call and task. The white box elements are used to describe the

internal functionality of the services.

The proposed SOA prototype consists of three abstraction layers. The first layer

contains the service group graphs. The second layer contains both the external micro-

service graphs and the micro-service graphs. The lowest layer contains the interface

description graphs and the micro-service description graphs. The service group

graphs and interface description graphs are considered black boxes and other graphs

white boxes. After the graphs and objects of each graph were defined, all the

constraints and restrictions were defined to prevent the misuse of the elements.

MetaEdit+ offers two possibilities to create constraints. One is by using the

constraint tool of MetaEdit+ and the other is to use code generators to define live

check generator that shows the errors and warnings in real time when modeling.

After all the elements of the SOA prototype were defined and created, the

concrete modeling could be started. All the abstraction layers were modeled using

the created DSML. After all the graphs were modeled, a report and code generators

were defined to denote the functionality of the models. Using code generators, the

difference between models and drawings can be validated. The code generators were

defined using MERL. MERL is an own object-oriented based scripting language of

MetaEdit+. Each of the graph type had their own generated reports. The output of the

generated reports showed, for example, the used objects and their main properties as

well as the relationships between different objects.

Based on the requirements of the SOA and the review comments of the SW

specialists, the service-based modeling approach was evaluated. The evaluation was

based on the levels of fulfilment that are: fulfilled, partly fulfilled and poorly

fulfilled. Four of the seven given requirements were fulfilled while three of the seven

requirements were partly fulfilled. Based on the requirements and the review

comments, the hypothesis could be validated as true. However, some questions

raised up based on the validation of the hypothesis. The hypothesis states that the SW

components are becoming too extensive to be efficient by means of modeling,

because the construct of the components are becoming illogical. Thus, the main key

performance indicators for both service-based and component-based approaches are

the size of the scope per service and the possibility to create functional entities

simultaneously in a faster and efficient way. But what is the right size? Thus, the

question is, can the SW be decomposed into a set of services which have the “right”

size? The future work should take the proposed service-based model into broader

use.

Based on the reviews and user experience of the SW specialists, the created

DSML was evaluated. The same grade of fulfilment was used to evaluate the created

DSML. The language REQ3 was the only language requirement that was not

fulfilled. However, the language REQ3 was stated as partly fulfilled. As a result of

the evaluation, the proposed DSML was created successfully. However, because of

the scope of this thesis, the focus was more in the service-based modeling than in the

DSML creation. Thus, only the needed characteristics of the DSML were defined.

75

Finally, a modeling tool MetaEdit+ was valuated. Despite the minor problems that

occurred during the thesis work, MetaEdit+ proved to be a solid tool for creating

service-based models using DSML.

76

7. REFERENCES

[1] Brown A., Johnston S. & Kelly K. (2002) Using Service-Oriented Architecture

and Component-Based Development to Build Web Service Applications.

Rational Software Corporation.

[2] Kern H. (2008) The Interchange of (Meta)Models between MetaEdit+ and

Eclipse EMF Using M3-Level-Based Bridges. In 8
th

 OOPSLA Workshop on

Domain-Specific Modeling at OOPSLA 2008. University of Alabama at

Birmingham, pp. 14-19.

[3] BTS System Reference Document (Read 1.1.2018) v2.0. URL:

http://www.obsai.com/specs/OBSAI_System_Spec_V2.0.pdf

[4] Ruohonen N. (2017) System Modeling to Enable Model-Based Testing in

Large-Scale IT-Business. Master’s Thesis. University of Oulu, Department in

Electrical Engineering, Oulu.

[5] Seth A., Aggarwal H. & Singla A.R. (2011). Evolution of technology through

procedural, object oriented, component based to service oriented. Journal for

Computing Teachers.

[6] Lethbridge T. & Laganiere R. (2001) Object-Oriented Software Engineering:

Practical Software Development Using UML and Java, 2
nd

 ed. McGraw-Hill

education, Berkshire, 533 p.

[7] Lee R. (2013) Software Engineering: A Hands-on Approach. Atlantis Press,

288 p.

[8] Goma H. (2011) Software Modeling and Design. Cambridge University Press,

592 p.

[9] Swain G. (2010) Object-Oriented Analysis and Design Through Unified

Modeling Language. University Science Press. An Imprint of Laxmi

Publications, 236 p.

[10] Zhang Z. (2001) Components Analysis in the Metamodelling Based

Information System Development. University of Jyväskylä, Department of

Computer Science and Information Systems, Jyväskylä.

[11] OASIS (read 10.1.2018). Reference Model for Service Oriented Architecture

1.0. URL: http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=soa-rm

[12] Bean J. (2010) SOA and Web services interface design - principles, techniques,

and standards. Morgan Kaufmann/Elsevier, 384 p.

[13] Sterff A. (2006) Analysis of Service-Oriented Architectures from a business

and an IT perspective. Master’s Thesis. Technical University of Munich,

Department of Informatics, Munich.

77

[14] Beizer B. (1995) Black-Box Testing: Techniques for Functional Testing of

Software and Systems. John Wiley & Sons, 294 p.

[15] Jacob P.M. & Prasanna M. A (2016) Comparative analysis on Black box

testing strategies. International Conference on Information Science (ICIS),

Kochi, pp. 1-6.

[16] Utting M. & Legeard B. (2006) Practical Model Based Testing: A Tools

Approach, Morgan Kaumann 1
st
 ed., 456p.

[17] Schultze C., Lindvall M., Bjorgvinsson S. & Wiegand R. (2015) Model

generation to support model-based testing applied on the NASA DAT Web-

application – An experience report. In: IEEE 26
th

 International Symposium on

Software Reliability Engineering (ISSRE), Gaithersbury, Maryland, pp. 77-87.

[18] Merilinna J., Puolitaival O-P. & Pärssinen J. (2008) Towards Model-Based

Testing of Domain-Specific Modelling Languages. 8
th

 OOPSLA Workshop on

Domain-Specific Modeling Languages, Nashville, Tennesee.

[19] Merilinna J. & Puolitaival O-P (2009). Using Model-based Testing for Testing

Application Models in the Context of Domain-Specific Modelling. 9
th

OOPSLA Workshop on Domain-Specific Modeling, Orlando, Florida.

[20] Puolitaival O-P. & Kanstrén T. (2010) Towards Flexible and Efficient Model-

Based Testing, Utilizing Domain-Specific Modelling. In proceedings of the

10
th

 Workshop on Domain-Specific Modeling, Reno, Nevada.

[21] IRMA (2014). Software Design and Development: Concepts, Methodologies,

Tolls, and Applications, Volume 1. IGI Global.

[22] Stober T. & Hansmann U. (2010) Agile Software Development: Best Practices

for Large Software Development Projects. Springer, 179 p.

[23] Cho H. (2013) Domain-Specific Modeling Language Creation. A Dissertation.

The University of Alabama, the Department of Computer Science, Alabama.

[24] Larman G. & Brasili V. (2003) Iterative and Incremental Development: A

Brief History. IEEE Computer, vol. 36, no. 6, pp. 47-56.

[25] Boehm B. (1988) A Spiral Model of Software Development and Enhancement.

IEEE Computer, IEEE, pp. 61-72.

[26] Lichter H., Schneider-Hufschmidt M. & Zullighoven H. (1993) Prototyping in

industrial software projects-bridging the gap between theory and practise. In

proceedings of the 15
th

 International Conference in Software Engineering.

IEEE, Baltimore, MD.

[27] Stahl T. & Völter M. (2006) Model-Driven Software Development. John Wiley

& Sons, Ltd, Chichester.

78

[28] Chowdhury A. & Huda M. (2011). Comparison between Adaptive Software

Development and Feature Driven Development. Proceedings of 2011

International Conference on Computer Science and Network Technology,

Harbin, pp. 363-367.

[29] López-Martínez J., Juárez-Ramírez R., Huertas C., Jiménez S. & Guerra-

García C. (2016) Problems in the Adoption of Agile-Scrum Methodologies: A

Systematic Literature Review. 2016 4th International Conference in Software

Engineering Research and Innovation (CONISOFT), Puebla, pp. 141-148.

[30] Sivonen S. (2008) Domain-specific modelling language and code generator for

developing repository-based Eclipse plug-ins. VTT Publications, Espoo.

[31] Brown A. (2004) An introduction to Model Driven Architecture Part 1: MDA

and today’s systems. IBM, 15p.

[32] Kühne T. (2006). Matters of (meta-) modeling. Software & Systems Modeling.

Springer-Verlag, Volume 5, Issue 4, pp. 369-385.

[33] Da Silva A. (2015) Model-driven engineering: A survey supported by the

unified conceptual model. In Computer Languages, Systems & Structures,

Volume 43, pp. 139-155.

[34] Nordstrom G., Sztipanovits J., Karsai G. & Ledeczi A. (1999) Metamodeling-

rapid design and evolution of domain-specific modeling

environments. Engineering of Computer-Based Systems. Proceedings. ECBS

'99. IEEE Conference and Workshop on, Nashville, TN, pp. 68-74.

[35] Allilaire F., Bzivin J., Brunelire H. & Jouault F. (2006) Global Model

Management in Eclipse GMT/AM3. Eclipse Technology eXchange Workshop

(eTX) – a ECOOP 2006 Satellite Event, Nantes.

[36] Gjataj R. (2007) Metamodel-based Editor for Service Oriented Architecture

(MED4SOA). Master thesis. University of Oslo, Department of Informatics,

Oslo.

[37] Rech J. & Bunse C. (2009) Model-Driven Software Development: Integrating

Quality Assurance. IGI Global, 526 p.

[38] Braga M. (read 27.12.2017). A diagram is not a model: The huge difference

between them. IBM blog. URL:

http://www.ibm.com/developerworks/community/blogs/invisiblethread/entry/a

_diagram_is_not_a_model_the_huge_difference_between_them?=en

[39] Lundkvist T. (2011) Applications of Graph Transformation in Tools for

Domain-Specific Modeling Languages. Master’s Thesis. Åbo Akademi

University, Department of Information technologies, Turku.

[40] Edwards G., Brun Y. & Medvidovic N. Automated Analysis and code

generation for Domain-Specific Models. 2012 Joint Working IEEE/IFIP

79

Conference on Software Architecture and European Conference on Software

Architecture, Helsinki, pp. 161-170.

[41] Pohjonen R. & Tolvanen J-P. Product Derivation through Domain-Specific

Modeling: Collected Experiences. MetaCase, Jyväskylä.

[42] Kelly S. & Tolvanen J-P. (2008) Domain-Specific Modeling: Enabling Full

Code Generation. John Wiley & Sons, Hoboken, N.J, p. 444.

[43] Prasanna A. (2012) A Domain Specific Modeling Language for Specifying

Educational Games. Master’s Thesis. Vrije Universiteit Brussel, Department of

Computer Science, Brussel.

[44] Pohjonen R. & Kelly S. (2002) Domain-Specific Modeling. Dr. Dobb’s

Journal.

[45] MetaCase (read 24.1.2018). Benefits of MetaCASE: Nokia Mobile Phones

Case Study. URL: http://www.metacase.com/papers/MetaEdit_in_Nokia.pdf

[46] Hulshout A. & Tolvanen J-P. (2007) Modeling for Full Code Generation.

Embedded Computing Design. OpenSystems Publishing.

[47] Cho H. (2013) A Demonstration-Based Approach for Domain-Specific

Modeling Language Creation. Doctoral Dissertation. University of Alabama,

Department of Computer Science, Tuscaloosa, Alabama.

[48] Cho H., Gray J. & Syriani E. (2012) Creating Visual Domain-Specific

Modeling Languages from End-User Demonstration. In proceedings of the 4
th

International Workshop on Modeling in Software Engineering (MISE). IEEE.

Piscataway, NJ, pp. 22-28.

[49] Vatjus-Anttila J., Kreku J. & Tiensyrjä K. (2012) Domain-specific front-end

for virtual system modeling. EIAC-RTESMA’12 / workshop on Graphical

Modeling Language Development, Copenhagen.

[50] Tolvanen J.-P. (read 10.11.2017) Domain-Specific Modeling: How to Start

Defining Your Own Language. URL:

http://www.devx.com/enterprise/Article/30550

[51] van Deursen A., Klint P. & Visser J. (2000) Domain-Specific Languages: An

Annotated Bibliography. ACM SIGPLAN Not., 35(6):26-36.

[52] Fowler M. (2010) Domain-Specific Languages. Addison-Weseley, 640 p.

[53] Selic B. (2007) A Systematic Approach to Domain-Specific Language Design

using UML. 10
th

 IEEE International Symposium on Object and Component-

Oriented Real-Time Distributed Computing (ISORC’07). Santorini Island, pp.

2-9.

[54] Karsai G., Krahn H., Pinkernell C., Rumpe B., Schindler M. & Völkel S.

(2009) Design Guidelines for Domain Specific Languages. Proceedings of the

80

9
th

 OOPSLA Workshop on Domain-Specific Modeling (DSM’09) Helsinki

School of Economics. TR no B-108. Orlando, Florida.

[55] Voelter M. (2013) DSL Engineering: Designing, Implementing and Using

Domain-Specific Languages. Dslbook.org, 560p.

[56] Kelly S., Lyytinen K. & Rossi M. (1996) A Fully Configurable Multi-User and

Multi-Tool CASE and CAME Environment. Proceedings of CAiSE’96, 8th

International Conference on Advances Information System Engineering,

Springer-Verlag London, UK, pp. 1-21.

[57] Pohjonen R. & Kelly S. (2007) Interactive Television Applications using

MetaEdit+. Model-Driven Development Tool Implementers Forum (MDD-

TIF07), TOOLS, Zurich.

[58] Brinkkemper S., Lyytinen K. & Welke R.J. (1996) Method Engineering:

Principles of method construction and tool support. Springer, 324 p.

[59] MetaEdit+ (read 24.7.2017) The graphical metamodeling example. URL:

www.metacase.com/support/45/manuals/graphical%20metamodeling.pdf

[60] MetaEdit+ Workbench User’s Guide Version 4.5 (read 17.11.2017) URL:

https://www.metacase.com/support/45/manuals/mwb/Mw.html

[61] Constatopoulos P., Mylopoulos P. & Vassiliou Y. (1996) Advanced

Information Systems Engineering. 8
th

 International Conference CAiSE’96,

Herakleion, Crete. Springer-Verlag Berlin Heidelberg, 588 p.

[62] Farooji F. (2014) Evaluation of Code Generation Tools. Degree Project in

Software Engineering of Distributed Systems. Department of Information and

Communication Systems, Stockholm.

[63] Sandhu K.K. (1992) Specification and description language (SDL). IEE

Tutorial Colloquium on Formal Methods and Notations Applicable to

Telecommunications, London, pp. 3/1-3/4.

[64] Bueno D., Conger C., George A., Troxel I. & Leko A. (2007) RapidIO for

Radar Processing in Advanced Space Systems. ACM Trans. Embed. Comput.

Syst. 7, 1, Article 1, 38 p.

[65] RapidIO.org (read 5.1.2018). RapidIO™ Interconnect Specification part1:

Input/Output Logical Specification. URL:

http://www.rapidio.org/files/IO_logical.pdf

[66] RapidIO.org (read 5.1.2018). RapidIO™ Interconnect Specification part 11:

Multicast Extensions Specifications. URL:

http://www.rapidio.org/files/mcspec.pdf

	Abstract
	Tiivistelmä
	Table of contents
	Foreword
	List of Abbreviations and symbols
	1. Introduction
	2. Software System Development and Testing
	2.1. Basic Information of the BTS System Platform SW
	2.2. Software Technology Evolution
	2.2.1. Object-Oriented Software
	2.2.2. Component-Based Software
	2.2.3. Service-Oriented Software

	2.3. Software Testing Strategies
	2.4. Model-Based Testing
	2.5. Software Development Methods
	2.5.1. Waterfall Model
	2.5.2. Iterative and Incremental Development
	2.5.3. Spiral Model
	2.5.4. Prototyping
	2.5.5. Agile

	3. Model-Driven Software Development
	3.1. MDSD with MDA
	3.1.1. Metalevels
	3.1.2. Levels of Abstraction
	3.1.3. Diagrams vs. Models

	3.2. MDSD with DSM (Language)
	3.2.1. DSML Development Process
	3.2.2. DSML Designing Guidelines
	3.2.3. DSM Tool: MetaEdit+

	4. Service-Based Modeling and DSML
	4.1. Introduction to Example Feature
	4.2. Current Component-Based Structure
	4.3. Proposed SOA
	4.3.1. Service Group Graph
	4.3.2. External Micro-Service Graph and Micro-Service Graph
	4.3.3. Interface Description Graph
	4.3.4. Micro-Service Description Graph

	4.4. Structure of the created DSML
	4.4.1. Objects and Relationships of the Service Domain: Black Box
	4.4.2. Objects and Relationships of the Service Domain: White Box
	4.4.3. Rules and Restrictions

	4.5. Service-Based Modeling with the Created DSML
	4.5.1. Service Group Graph (1st layer)
	4.5.2. Micro-Service and External Micro-Service Graphs (2nd layer)
	Adding Endpoint to sRIO Multicast Group
	Rules and Restrictions of the Graph

	4.5.3. Interface Description Graph (3rd layer)
	Adding Endpoint to sRIO Multicast Group - Interface_Description
	Adding Endpoint ID to sRIO Multicast Group – Interface_Description
	Rules and Restrictions of the Graph

	4.5.4. Micro-Service Description Graph (3rd layer)
	Adding Endpoint sRIO Multicast Group – Micro-service_Description
	Adding Endpoint to ID to sRIO Multicast Group – Micro-service_Description
	Rules and Restrictions of the Graph

	4.5.5. Report and Code Generation

	5. Discussion
	5.1. Discussion of SOA
	5.1.1. Requirements
	5.1.2. Hypothesis

	5.2. Discussion of DSML
	5.3. Tool Evaluation

	6. Summary
	7. References

