
An Experimental Evaluation of Java Design-by-
Contract Extensions

University of Oulu

Faculty of Information Technology and

Electrical Engineering

Degree Programme in Information

Processing Science

Master’s Thesis

Majid Aghaei

28.11.2018

2

Abstract

Design by Contract (DbC), also referred as Programming by Contract is a programming

paradigm for software verification proposed by Bertrand Meyer. The idea is to put

obligations for code elements such as methods, interfaces and classes to satisfy the

specification of the source code. Indeed, DbC enforces a piece of code to satisfy some

conditions before execution (Precondition), and to ensure some conditions after execution

(Postcondition) with holding some conditions unchanged (Invariant). This settlement is

called Contract which must be valid for that piece of code. According to Meyer's

paradigm, a program can work correctly if it fulfills DbC principles for each method. To

empower programmers with DbC, various libraries are made to make DbC possible in

coding phase each of which is applicable in a specific programming language and has

some features and functionalities. However, choosing the most suitable tool for coding

upon a particular purpose is considerably important for development teams with software

validation deployment. This thesis aimed to experimentally evaluate and compare DbC

instrumentors specially for Java and figure out that which tool had better performance. In

order to accomplish such a task, a simple model system had to be designed and

implemented with regard to using constraining principles of mentioned tools. The

scrutiny of the extensions revealed that Open JML as a powerful framework has generated

better results rather than other tools. However, the results of this research is viable for

small projects deploying constraining tools.

Keywords
Design by Contract, Formal Software Verification, Java pre-processors

Supervisor
University Lecturer, Antti Siirtola

3

Abbreviations

DbC – Design by Contract

C4J – Contracts for Java

Cofoja – Contracts for Java

JML – Java Modelling Language

4

Contents

Abstract ... 2

Abbreviation .. 3

Contents .. 4

1. Introduction ... 5

 1.1 Goal of Study ... 7

 1.2 Research Question .. 7

 1.3 Research Methodology .. 8

 1.4 Research Contribution ... 8

2. Prior Research and Related Work .. 9

3. Contract Programming ... 12

 3.1 What Is a Contract? ... 12

 3.2 Design by Contract VS Defensive Programming.. 13

 3.3 Design by Contract VS Static Code Analysis ... 13

 3.4 Design by Contract for Java ... 14

 3.4.1 Why Java? ... 14

 3.4.2 Java Built-in Assertion Support .. 15

 3.5 Java Implementations and Specification Languages ... 15

 3.5.1 Bean Validation API ... 16

 3.5.2 Contracts for Java (C4J) .. 17

 3.5.3 Contracts for Java (Cofoja) ... 18

 3.5.4 ezContract .. 19

 3.5.5 iContract .. 20

 3.5.6 jContractor ... 20

 3.5.7 Modern Jass ... 21

 3.5.8 OpenJML ... 21

 3.5.9 OVal with AspectJ ... 22

4. Study Design .. 24

 4.1 Model System .. 24

 4.2 Implementation .. 26

 4.2.1 Bean Validation .. 29

 4.2.2 C4J ... 35

 4.2.3 Cofoja ... 40

 4.2.4 ezContract .. 42

 4.2.5 iContract .. 45

 4.2.6 jContractor ... 47

 4.2.7 Modern Jass .. 49

 4.2.8 Open JML .. 50

 4.2.9 OVal with AspectJ ... 53

5. Findings and Analysis .. 57

 5.1 Test Station Specification .. 57

 5.2 Evaluation Criteria .. 57

 5.3 Functionality Assessment .. 58

 5.4 Performance Analysis .. 60

 5.5 Answering Research Questions ... 61

6. Discussion and Conclusion .. 63

 6.1 Discussion ... 63

 6.2 Limitations ... 64

 6.3 Conclusion ... 64

References ... 65

5

1. Introduction

Software correctness is the minimum requirement of any software (Ehmer Khan, 2010).

It means that without correctness, software might not be viable under any circumstances

and it is fundamentally essential from the perspective of both software producers and end

users at the same time. In addition, correctness criticality gets higher degrees in safety-

critical software in which a trivial error can have serious effects and puts human lives in

danger such as failure in fight systems or avionics (German, 2003). In this case, one could

think that it is better to test every possible permutation of code and create as many test

cases as possible, which is not an easy process at all (Myers, 2004). Furthermore, software

testing is useful to find the defects but it does not guarantee that a piece of code will not

generate any error for all possible inputs.

Based on theories in computer science, correctness is the compliance of code with its

specification (Manna & Pnueli, 1974). In other words, the prime property of a program is

whether the user’s intention is fulfilled or not (Hoare, 1969); hence, code is correct if it

conforms thoroughly to its presumed specification. This ideal is not only a gratifyingly

academic theory, e.g. an erroneous piece of code in a software module caused the failure

and crash of the European Ariane 5 launcher (Jézéquel & Meyer, 1997). It is mentioned

that the reason for such an expensive disaster arose from the lack of accurate specification

of a reusable module making an unprecedented error in converting a 64-bit floating-point

number to a 16-bit signed integer which is a technical flaw. Although mission document

stated that the value should be fit in a 16-bit integer, this requirement had not been

specified in the code. Jézéquel & Meyer (1997) highlighted that to have effective

reusability, it is critical to demand precise specification in the reusable code.

To distinguish the extent of conformance, formal verification is able to prove or reject the

correctness of a program through considering formal specifications and deploying

mathematical methods. Some of formal methods tap into pre- and postconditions for each

code fragment. Preconditions promise to be true before the code execution and

postconditions guarantee to be valid after execution. Hoare (1969) described that user

intentions can be shown through some assertions before and after execution of code to

ensure its validity in accordance to what it is expected to do. Design by Contract (DbC)

paradigm originated from Hoare’s logic (Crocker, 2004) and addresses the aim of

reaching a correct software with respect to certain specifications expressed by mentioned

assertions (Arnout & Simon, 2001). In essence, this discipline defines meticulous

checkable specifications for elements of a programming language, e.g. types, methods,

and objects to ensure that the real execution does not violate its properties (Plessel, 1998).

A contract is briefly an agreement between two parties in which both parties demand

benefits from the contract and both are obliged to fulfil some conditions (Meyer, 1992).

For instance, the client provides some data (client’s obligation) to gain a value

(profitability aspect of contract for client) and the contractor is responsible for processing

the given data and satisfy the customer’s need (contractor’s obligation), thus, he is paid

for his service (profitability aspect of contract for supplier). In software development, a

contract is an arrangement between a method and its caller in a sense that if it is invoked

on state S1 with the satisfaction of its precondition P, it will return in state S2 satisfying

its postcondition R (Crocker, 2004). For instance, consider the following Java class:

6

public class MyClass {

 ...

 public int[] sort(int[] array)

 {

 int n = array.length;

 for (int i = 0; i < n; i++)

 for (int j = 1; j < (n-i) ; j++)

 {

 int temp = 0;

 if(array[j-1] > array[j])

 {

 temp = array[j-1];

 array[j-1] = array[j];

 array[j] = temp;

 }

 }

 return array;

 }

 ...

}

Before the execution of sort the input array is unsorted (state S1: having the unprocessed

array) but after sort invocation it is expected that the returned array is sorted (state S2:

having the sorted array). Therefore, the precondition (P) is that the array should be a non-

null array and the postcondition (R) is that the returned array should be non-null and

sorted ascendingly. Despite holding the validity of conditions before and after the

running, there are some permanently unchangeable conditions throughout the method

called invariants (consistency constraints). For instance, in the above code i is always a

positive integer. To characterise a contract, it is important to add the pre- and

postconditions as part of the code (Meyer, 1992) which, as a result, modifies our example

to be like:

public class MyClass {

 ...

 //requires array should not be null

 //ensures array will not be null and will be sorted ascendingly

 public int[] sort(int[] array)

 {

 int n = array.length;

 for (int i = 0; i < n; i++)

 for (int j = 1; j < (n-i) ; j++)

 {

 int temp = 0;

 if(array[j-1] > array[j])

 {

 temp = array[j-1];

 array[j-1] = array[j];

 array[j] = temp;

 }

 }

 return array;

 }

 ...

}

Of course, in this example the contract is reflected in comment format, and it does not

affect the compiling process and it is only for clarification. As a matter of fact,

specifications are being written by using annotations (mostly in form of @requires or

@ensures) influencing the compilation of a program and add some runtime assertions to

7

check the validity of execution. Nowadays, a variety of DbC implementations have been

emerged in different languages like Smalltalk, Ada, C and C++, C#, Java, Perl, Python,

so forth each of which providing pre- and postconditions, and invariants in distinctive

annotation principles for developers to describe their software specification. For Java,

there have been created various extensions with varied purposes and functionalities and

the aim of this thesis is to evaluate the quality of existing DbC pre-compilers, particularly

made for Java, to find the state of the art innovations.

1.1 Goal of Study

The key objective of this study is to find the best DbC extensions tailored to Java

programming language to entice those developers who are willing to use internal

assertions such as DbC annotations in their design to reduce software flaws as much as

possible by selecting the most appropriate and beneficial tool. In order to choose a set of

existing tools, some criteria have primarily been taken into account, e.g. live and active

tools, updated continuously yet recently, extensions with provided documentation and

user guidance, and those tools for whom the highest number of posts and comments are

created in famous development forums like StackOverflow.

By listing the promising artefacts, then it is possible to accomplish the defined purpose

by comparing current libraries, pre-compilers, and pre-processors through analysing their

structure and performance. The analysis is exerted in two distinguishable parts; first part

is responsible for finding all Java DbC instantiations provided so far for deployment and

subsequently prioritising them according to the adopted criteria to nominate the most

befitting instances for further research and examination. The second part is focusing on

tools’ qualifications and performance particularly when user intermixes specifications

with code and deploys the tool by simulating a real execution of a simple program during

writing the code, writing the specification, compilation, and runtime assessment. Finally,

the results will be discussed and the extent of reliability and usability of tools will be

determined.

1.2 Research Question

The main research question of this attempt is: What is the state of the art in Java contract

programming? In other words, what is the best implementation of DbC for Java? To

answer this question, it is necessary to consider different viewpoints for each extension

to be better/best. Thus, the research question would be shrunk to the following

subquestions:

1. Which tools can create better results from the viewpoint of functionality?

2. Which tools are better from the viewpoint of performance?

To ease the research process, first it is important to identify DbC and illustrate how it is

possible to create contracts for classes, and add specifications in the code. Then it would

be nice to find the existing tools, no matter commercial or free of use, that support DbC

and then select the most mature instances, and finally evaluate them to catch out the best

extension. The evaluation effort definitely needs defining a measurement approach and

quality metrics, criteria for assessment, writing a simple program, and test the

performance of tools.

8

1.3 Research Methodology

There are two famous and scientific research approaches: qualitative and quantitative

research. Muijs (2004) argued that qualitative research is a rather subjective

methodology, being rather means it is not an absolute fact, and it does not go for numerical

data analysis while quantitative paradigm concentrates on using statistics and

mathematical models to tackle a problem in a rather objective approach. In fact, it

explains a phenomenon by using numerical data gathered from examining variables and

analysing them by employing mathematical methods (Yilmaz, 2013). The primary

intention of quantitative research is theory or phenomenon explanation in a mathematical

context, though a quantitative research can be experimental. According to Muijs (2004)

an experimental quantitative research (known as scientific method) is a type of study

based on testing a phenomenon on a set of controlled conditions to prove a truth or

examine the validity of a claim. Considering such theory, this research aims to evaluate

some artefacts under controlled conditions and according to experimental measurements

and then compares the collected data to find the most promising solution in a group of

applications. The measurement consists of some items that should be scored at the

examination of tools and also after the experience the researcher gains at working with

the tools. The experience of the author can be digitised by letting him/her to score an

aspect in a range of points, e.g. from 1 to 5 for each item. For systematic qualities, the

environment of testing can generate data automatically. This kind of research cannot be

considered as design science research, although coding is required. The main reason is

that the coding will not make a new artefact that resolves an existing problem because the

coding phase alleviates the comparing of tools by making the comparison a structured

and similar to all extensions.

1.4 Research Contribution

Although there is versatile research done with regard to DbC and most of them tried to

either introduce new frameworks or propose analysis on existing instantiations of

constraint-based programming approach, there is a scarcity of research on technology

evaluation in this area. In essence, none of studies has done a systematic assessment on

the prolonged tools mentioned earlier. This study not only describes all relevant concepts

of DbC, which is certainly informative for developers to employ DbC in their design, but

it also focuses on an experimental evaluation of provided instrumentations to avail Java

developers to have a clear understanding of current technologies embedded in DbC

extensions. As a result, they will be able to figure out that which tool can bring them

better productivity.

9

2. Prior Research and Related Work

In this chapter prior research and related work done since the emergence of DbC will be

articulated and it is simultaneously tried to have a chronological perspective towards the

research advancement in this field. In addition, the main concern is to give a clear

understanding of efforts throve to reach a new tool or evaluate the impact of DbC in real

life situations and connected outcomes.

DbC originated from the work of Bertrand Meyer, the president of Interactive Software

Engineering Inc., which subsequently combined in Eiffel language. Eiffel was the

progenitor of such implementations, in which using contracts was supposed to be fruitful

for early design phases of software development (Meyer, 1988). Indeed, these phases

concentrate on object-oriented programming and considerations of reliability, reusability,

extendibility, and modularity. Meyer (1992) focused on reliability and robustness of

object-oriented technology in terms of methodological principles and systematic

approach. In fact, reliability is implementable through considering software elements

where they are precisely meant and actualised in order to satisfy well-perceived

specifications when the theory of contract programming becomes necessary.

To follow up contract theory, many research studies and scholars significantly attempted

to integrate specification provisions in their work and innovate new extensions with

higher acceptance and capabilities for different programming languages. Carrillo-

Castellon, Garcia-Molina, Pimentel, & Repiso (1996) stated a crucial drawback of

Smalltalk in its core where the object-oriented paradigm was not seen as a basis, then

proposed an extension of DbC for Smalltalk to increase the reliability of software, in

particular, empowering Smalltalk to cover correctness and robustness. In essence, not

only was the capability of specifying assertions embedded, and the behaviour of the code

was identified in case of any assertion violation, but also maintaining execution control

after the violation was provided. Likewise, Plösch (1997) integrated DbC into Python,

which similar to Smalltalk is a dynamically typed programming language, and argued

that the main purpose of adding DbC was due to the need of supporting assertions in

analysis and design phases of development. Moreover, this implementation would help

to perform object-oriented domain knowledge modeling, domain model semantic

specification through formal methods, and prototyping the domain model with software

architecture.

For other languages like C++ and C#, DbC was implemented as well. Guerreiro (2001)

introduced a light assertion mechanism for C++ with a simple on and off toggle for

enabling and disabling DbC even in the middle of execution. It is frankly mentioned that

although the proposed tool is not fully functional, having minor issues with inheritance

and recursion, it is quite applicable to insert DbC principles into C++ codes. In addition,

Arnout & Simon (2001) explained that ISE Contract Wizard enables .NET assemblies to

be contracted by using Eiffel as an intermediate language. Indeed, the Eiffel compiler is

used to get the associated information from metadata and once the contracts are added to

the code, Eiffel compiler subsequently generates a proxy to the original assembly with a

similar interface but contracted as a result.

For Java a wide variety of tools have been made and released even more than other

languages. According to Kramer (1998), iContract was the first Java attempt designed to

pre-process Java source code and preserve readability of instrumented code. Moreover, it

has performance configurability to avoid unacceptable overhead. Leavens, Baker, &

Ruby (1998) focused on JML and its ultimate goal and contended that JML is able to

10

support quantified assertions (pose a constraint on group of elements), reuse contracts,

provide checkable redundancy and a useful set of pure types (e.g. JMLInteger,

JMLObjectMap, etc.). In another effort, Karaorman, Hölzle, & Bruno (1999) introduced a

library-based extension called jContractor designated to support DbC and enable the

developer to incorporate contracts either directly in Java classes or separately in

associated contract classes. Moreover, it accommodates the coder with practice of

conventions without any specific requirement or demand of other systems. By using

jContractor programmer can express pre-, post- conditions, and class invariants, check

the results of methods at runtime, and access the old values of attributes and variables in

order to handle the possible exceptions through defined contracts. Additionally, the

composition of classes including contract patterns would be achievable during the class

loading or object instantiation and the runtime contract enforcement is possible as well.

The continuation of tool instrumentation for Java can be seen in the work of Leavens,

Baker, & Ruby (2003); Leavens & Cheon (2006) presented Java Modelling Language

(JML) as a behavioural interface specification language, which supports DbC and extends

Java expressions, and described its architecture, concepts, technical requirements, usage

and tool support in detail. According to their research, the aim of JML was to record

software behaviour then provide understandable notations and rigorous formal semantics

to capacitate static analysis and testing. Furthermore, it was important to actualise a

specification compiler to create prototypes from specification systematically. Besides, the

main approach of JML was to provide specification-only usage of model variables

expressing the abstract behaviour and value of attributes and conceal the mathematical

notation behind a class by using pure methods without any side-effects.

In another study, Wampler (2006) pinpointed Contract4J as an open source DbC

extension defining a design pattern to attach contracts to classes with two different syntax

forms and concurrently concerning less coupling between aspects and components.

Arnout & Simon (2001) in addition to outlining some tools with support of contracts for

programmers in languages other than Eiffel mentioned HandShake which enabled the

programmer to add contracts to the class definition without accessing to it directly. Chen,

Cheng, & Hsieh (2008) classified the Java tools according to a specification-based

scheme with affirming the lack of defined quality attributes in those attempts.

Furthermore, a survey of tools was presented in their study categorised in five groups and

compared with the specified criteria. Their main contribution was the innovation of a new

tool called ezContract averring to cover all quality measures and be fully functional. The

advantage of ezContract over other tools has been stated as using markers, which are

dummy methods and attributes implementing keywords such as require, ensure, etc. in a

contract structure, and ezContract utilises them to delineate the contracts.

Minh Lê (2011) described contract programming and its applicability, and claimed that

since Java originally supports only simple assertions, many alternatives had been

introduced yet a very robust aspect-oriented framework with outstanding features was

required. Therefore, Cofoja was introduced to provide concise contract specification with

the least dependencies. In the meantime, it provides type checking and compile-time

syntax, compilation and integration of contracts without replacing Java compiler, and

adding contracts by modifying bytecode online or offline. In addition, some other efforts

such as C4J, JASS, and Modern Jass done by different research teams were cited.

Despite the creation and introduction of new tools, some researchers concentrated on

studying the impact of DbC in other areas. For example, Feldman (2003) showed that

DbC has a prestigious effect on quality of code, as Bolstad (2004) also highlighted, and

embodies synergy with agile methodologies, e.g. XP. Besides, it facilitates vivid design,

11

detects common bugs as early as possible, and makes the simplification of test case

generation attainable. Hakonen, Hyrynsalmi, & Järvi (2011) advocated the ease of unit

testing by reducing the number of test cases when the contracting approach comes in.

Some research scholars investigated the impact of harnessing DbC in software robustness.

Crooker (2004) focused on issues of safety-critical software sectors and their reluctance

toward entering the object-oriented utilisers’ community. The research proposed a

framework made of a design technique empowered by formal verification to increase the

robustness of safety-critical software. The framework employed modern automated

reasoning methods to provide a more cost-efficient platform for developers and used

formal specification to reduce code flaws and make the auto code generation possible for

higher productivity purposes. The essence of DbC was to tame polymorphism with

dynamic binding in object-oriented technology that had been causing uncertainties for

safety-critical community.

In a same fashion, contract-based design can be fruitful in reducing bugs in car industry

related software, which to some extent can be taken into account as another safety-critical

field. Zhou, Pelliccione, Haraldsson, & Islam (2017) studied the effect of contract-based

programming in robustness of AUTOSAR (Automotive Open System Architecture)

software components. The aim of AUTOSAR is to get a universal standard for automotive

electrical/electronic (E/E) architecture to reach a good level of modularity, scalability,

and reusability for its associated vehicle industry embedded software systems. The results

of their scrutiny unveiled that DbC is arguably able to escalate the robustness of the

software, enhance code readability and understandability, alleviate the refactoring phase

of manually coded modules, and reduce redundancy remarkably.

Not only is DbC important from the perspective of technicality, but it also can be

considered from the view of evaluation. Programming by contract can be assessed

through non-functional aspects of programming and software development particularly

on developers’ skills. For instance, Chen, Cheng, & Hsieh (2008) claimed that the extent

to which a developer’s programming activities gets affected by the engagement of

contracts in their work stays at the highest level of importance for evaluating the pertinent

DbC extensions.

In addition to mentioned research attempts, there are several works and studies

considering different aspects of DbC and its influence in various fields of software

validation and verification, however, they are out of the scope of this study.

12

3. Contract Programming

In this chapter programming by contract and all related concepts will be explained and

exemplified as simple as possible. Subsequently, the essence of using contracts in

programming will be justified theoretically. Moreover, the DbC for Java will be expressed

and the most popular DbC extensions will be introduced.

3.1 What is a contract?

In Wikipedia (https://en.wikipedia.org/wiki/Contract, 2018 October) contract is defined

as:

“A contract is a promise or set of promises that are legally enforceable and, if

violated, allow the injured party access to legal remedies. Contract law

recognises and governs the rights and duties arising from agreements.”

Intuitively, the definition illustrates the nature of contract as an agreement, either

voluntary or forceful, and pinpoints a very important concept explicitly, i.e. both parties

have rights and duties during the agreement. In real life, contract is an agreement which

forces the parties to undertake some obligations in return of some benefits. As a quite

familiar example to the academic environment, the admission and right of study at a

university is an agreement between university as a legal person and a student as a natural

person in which the university pledges to teach and give the student savvy and the student

promises to attend the lectures and study hard to path the exams. It can be intuitively

inferred that one party’s obligation is the other one’s benefit (Meyer, 1992). For example,

Table 1 shows the obligations and benefits for university and student.

Table 1. An Example of a Simple Contract between University and Student

 Obligation Benefit

University Teach and develop student’s

knowledge and skills

No need to give certificate

to students who fail the

assessments

Student Attend lectures, study and

pass the exams

Gain knowledge and

expertise

It might be questionable at first glance that the benefit for the university doesn’t make

sense! But it does not because the university is an institution aiming to develop people’s

capabilities and is obliged to give proper candidates associated certificates of

achievement. In fact, it is reasonably beneficial for a university to not issue a diploma for

an unqualified student.

When it comes to programming, the metaphor of contracting has an identical meaning to

the definition above. In fact, a contract can be viewed as an interaction between two

operations; sender operation that sends a message as a client or customer and the receiver

operation as a supplier that implements the message delineated in terms of assertions

(Firesmith, 1999). It should be noted that an assertion is a boolean-valued expression

https://en.wikipedia.org/wiki/Contract

13

representing a condition and is able to result in true or false situation (Plessel, 1998). Any

violation of the defined assertion is considered as a defect. The reason for such a tight

obligation is to provide correctness and robustness of software that are two components

of software quality. According to Plessel (1998), correctness is

“The ability of software to perform their exact tasks as defined by their

specification.”

And robustness is

“The ability of software systems to react appropriately to abnormal conditions.”

To ensure the correctness and robustness of software, Hoare (1969) stated that the values

sent to the receiver operation (called method) definitely affects the results of the program

before it is initiated. In other words, there is a dependency between the result and the

inputs. The validity of initialisations, that should be true before entering the call, is

defined as precondition, and the guarantee to result from the correct inputs after the

execution is defined as postcondition (Firesmith, 1999). The depiction of the dependency

of inputs and outputs and their connection to program can be showed in a triple format of

P {Q} R

In which P is precondition, Q is the executing program, and R is the postcondition and

describes the relation as “if the assertion P is true before initiation of a program Q, then

the assertion R will be true on its completion.” (Hoare, 1969). In essence, Hoare triple

conveys the definition of contract implicitly but theoretically and mathematically proven

using axioms and rules which help to place a reliability on outputs.

3.2 Design by Contract Vs Defensive Programming

Defensive programming is a design and implementation methodology at the class-

specification level destined to reduce the bugs or misuse of an abstraction (Firesmith,

1999). Defensive development focuses on correctness and robustness of software as DbC

does with some distinctions. In consequence, defending approach aims to shield every

module by putting as many checks as possible (Le Traon, Baudry, & Jézéquel, 2006).

Although defensive development is noticeably fruitful because it prevents even trivial

errors might cause bigger faults during the production phase, it incurs extra overhead both

at runtime and for the coder at programming (Liskov & Guttag, 1986). However, DbC

and Defensive programming are not the same approaches, even if they have many

similarities. Firesmith (1999) mentioned that both methods use assertions and amazingly

the same assertions, in both approaches the receiver has to take care of postconditions and

invariants, and both has to provide alternative execution upon rising exceptions.

However, Defensive programming poses redundant checking as there is a lack of

systematic framework for addressing reliability issues, hence, there would be an imposed

performance penalty (Meyer, 1997).

3.3 Design by Contract Vs Static Code Analysis

Delev & Gjorgjevikj (2017) described static analysis as the process of evaluation of

source code without real execution of it, which can find severe errors before they happen

and is useful to heighten the quality of code, code security, and its robustness. This early

detection of serious errors can diminish product development cost, save a huge amount

of time for development teams, and increase the overall quality (Novikov, Ivutin,

14

Troshina, & Vasiliev, 2017). In fact, static analysis concerns the correctness of a software

module before its real implementation, an implementation leading to execution, and it

focuses on finding and eliminating possible errors at early stages of the coding when the

cost of correction is trivial. Contract programming is influential at the implementation

and execution time at which each element is checked to satisfy the declared contract. For

static analysis, specialized tools have been created to analyse a piece of code statically

and make a thorough and consistent report of code assessment (Delev & Gjorgjevikj,

2017). German (2003) outlined some of the techniques proposed under the term of static

analysis such as control flow analysis, data flow analysis, information flow analysis,

semantic analysis, formal verification and so forth. However, although design by contract

can be categorised in formal techniques the existence of defects is examined at runtime

rather than at compiling or instrumenting bytecodes.

3.4 Design by Contract for Java

Before going any further, it is indispensable to specify frequently-used terms in DbC, i.e.

precondition, postcondition, invariant, and inheritance, which will be recruited regularly

in the following sections.

Precondition: is an assumption that should be true before the execution of a method and

it is exactly what the caller of the method has to ensure (Thüm, Schaefer, Kuhlemann,

Apel, & Saake, 2012). For example, an array argument entering a method should not be

null because a null array is completely useless at any circumstances. As another example

yet more semantic, let’s suppose that a loop count, say n, is going to be passed to a

method. In this case, n should not be a negative integer and only a positive value is

meaningful.

Postcondition: is an assertion that should guarantee to be true after the method’s

termination (Leavens & Cheon, 2006). As an example let’s assume we are writing a

method responsible for making a withdrawal from a bank account. Once the transaction

is made and the method is terminated successfully, the balance should be reduced; its

amount has to be less than the former balance before the withdrawal. It ensures that some

amount of money has been taken out.

Invariant: an invariant is valid before, during, and after the termination of the execution

or throughout the class. From the perspective of object-oriented programming, it

evaluates the conditions that must be true whenever the state of an object is stable and

observable (Oliveira e Silva & Francisco, 2014); (Meyer, 1992). For instance in the

previous example, the balance should always hold a non-negative value (balance >= 0)

even before or after the transaction.

Inheritance: as conceived in object-oriented approach, new classes can be defined by

combining previously defined classes (including all their features) and besides, they can

have their own features (Meyer, 1992). The same concept, also called subcontracting, can

be applied to contracts in programming by contract as well with a pivotal rule; According

to Plösch (1997), subcontracting requires keeping or weakening preconditions and

keeping or strengthening the postconditions of the inherited method.

3.4.1 Why Java?

There are overwhelmingly various number of programming languages worldwide making

software engineers boggle at choosing an appropriate language for long term deployment.

Kumar & Dahiya (2017) has done a survey on existing programming languages’

15

popularity and employed different international indices to advocate their findings; their

study shows that although Java and C had about 6 percent of downward compared to other

languages since 2016, they are still on top of the list for experts, of course Java is the first

choice, and this has been unexceptionally true for over 15 years. Even from the

perspective of teaching and learning programming languages, Java has been the mostly

used language for introductory courses with regard to pedagogical benefits and industrial

relevance in UK and Australia (Simon, Mason, Crick, Davenport, & Murphy, 2018).

Apart from the thesis writer’s own preference, which is absolutely Java, research studies

are supporting the idea that Java is the most popular language. Thus, the impact of

engaging DbC in coding with Java may profit developers more.

3.4.2 Java Built-in Assertion Support

If the contracting is possible to be placed directly by a programming language, using

assertions can be considered as a built-in support, which is checked by compiler and can

be enabled or disabled (Plösch, 2002). According to Sharan (2017), Java provides

assertion by assert statement in two ways:

1. assert booleanAssertionExpression;

2. assert booleanAssertionExpression : errorMessageExpression;

booleanAssertionExpression is the condition to be evaluated and the

errorMessageExpression is the custom error message shown in case of any occurrence

of error. For example, in the following snippet of code:

int i = 2;

int j = 5;

int z = i * j;

assert z == 10; //asserts if z is equal to 10 using the first style

assert z == 10 : “z is ” + z; //in case of an error shows a message

Since deploying assertions at runtime will dictate performance penalty, assert statement

is disabled by default in Java but using –enableassertions and –

enablesystemassertions, it is easy to enable them. In a same fashion, disabling is

manually possible using the equivalent commands only by replacing “enable” to

“disable” in each one. It should be noted that assertion is quite different from exception,

i.e. assertions are used to find the developer’s programming flaws, it is highly critical to

find and resolve the bug, while exception handling is useful to give an alternative

execution path in case of end user’s errors, and the recovery is optional (Sharan, 2017).

3.5 Java Implementations and Specification Languages

In this section the most popular DbC extensions for Java are introduced in an alphabetical

order along with a brief explanation of their structures, usage, and principles. Since for

evaluation of existing tools it is important to write a model program practically with its

associated contracts, using annotation principles of each tool separately is inevitable,

hence, it is worth to be familiar with syntactical rules and actualise them by easy to

16

understand examples. Indeed, the intention of this section is merely to let the reader

envisage that how it is possible to write a code under each implementation and deploy the

tool at runtime.

3.5.1 Bean Validation API

According to Morling (2017), JavaBean Validation is a Java API for Java EE 6 and later

and Java SE done as part of JSR 380, JSR 349, and JSR 303 under the Java Community

Process Program that provides a validation platform for Java. Defining constraints on

objects, validation of parameters and return values, and reporting the possible violations

can be done through Bean Validation. In fact, the validation mechanism placed in the

domain model prevents redundant checking on different layers of software, from

presentation to persistence, and creates metadata model declaratively simplifying the

coding and its maintenance. Since the release of version 1.1 it supports DbC but not

merely bundled to it meaning that it is generally designed for constraining the code

elements.

Bean Validation specification provides a framework to define and declare constraints on

fields, properties, container elements, and classes (Ferentschik, Morling, & Smet, 2018).

Class constraints can be inherited in such a way that when a class extends another class

or implements an interface, all the constraints defined for super-type will be valid for the

new type. According to Morling (2017), constraints can be generic or cross-parameter;

generic constraint targets:

1. Field (an attribute)

2. Method (getters and returned values)

3. Constructor (constructor return values)

4. Parameter

5. Type

6. ANNOTATION_TYPE (creating constraints on other constraints)

7. TYPE_USE (confining container elements)

While cross-parameter constraint targets:

1. Method

2. Constructor

3. ANNOTATION_TYPE

In both cases there should be a constraint validator for the annotation. Hence, the validator

is responsible to validate the declared constraint on the given type. For clarity concerns,

Table 2 presents each type of constraint by a simple example.

17

Table 2. Four Types of Contracts in Bean Validation Specification (According to Morling, 2017)

Type Example

Field @NotNull

private String name;

Property @NotNull

public String getName() {

return name;

}

Container Element private Set<@ValidCourse String> Courses =

new HashSet<>();

or

private List<@ValidCourse String> Courses =

new ArrayList<>();

Class @ValidPrerequisiteCourse

public class Student {

 private String name;

 private String StudentNo;

 Private List completedCourses;

 //...

}

To make everything easier for developers, some commonly used built-in constraints have

been defined in Javax.validation.constraints package. It should be noted that all of

these annotations are only applicable on field or property level and there is no class-level

predefined constraints. The most popular built-in annotations in Bean Validation are:

 @Null: To ensure that the element is null

 @NotNull: To ensure that the element is not null

 @Min: To ensure that the element is higher than or equal to a minimum amount

 @Max: To ensure that the element is less than or equal to a maximum amount

 @Positive: To ensure that the element is positive and not zero

 @Negative: To ensure that the element is negative and not zero

 @AssertFalse: To ensure that the element is false

 @AssertTrue: To ensure that the element is true

 @Email: To ensure that the element is a valid email address

3.5.2 Contracts for Java (C4J)

According to Bergström (n.d.), C4J is another framework which enables the coder to

deploy easy to use but powerful features to implement DbC in the code. The minimum

Java required for using C4J is Java 1.6. In C4J, full contract inheritance is supported and

writing contracts in separate files as external contracts can leverage the refactoring

process of legacy code. In essence, annotating programing elements makes it possible to

assess the behaviour of the program in real situation not only for a limited number of test

cases, which some of them might never be asserted at all!

18

There are two forms of contracting in C4J: internal and external that have some

differences in definition and implementation. But the general format of contracting is

straightforward; preconditions, postconditions, and class invariants are defined like this:

 Precondition:
if (preCondition()) {

 assert statement1;

 assert statement2;

 ...

 assert statement;

}

 Postcondition:
if (postCondition()) {

 assert statement1;

 assert statement2;

 ...

 assert statementn;

}

 Class Invariant:

@ClassInvariant

public void invariant() {

assert statement1;

assert statement2;

...

assert statementn;

}

Each contract class can extend the contracted class (a class to which the contract may

apply) and put precondition and postcondition on its methods and declare an invariant

method by using @ClassInvariant. The whole concepts are viable for interfaces by the

same mechanism.

3.5.3 Contracts for Java (Cofoja)

Cofoja introduced by Minh Lê (2011) is another third-party alternative framework for

contract programming paradigm with a set of aspects and features. The tool is not a static

analysis tool but it enables runtime checking through bytecode instrumentation and

annotation assessment. Cofoja has a similar approach in processing annotations, utilising

compile tools and instrumentation standard with a purpose of improvement in core

techniques and emphasis on usability through supporting a comprehensive language

(Minh Lê, 2011).

In a same manner to other extensions, Cofoja uses annotations to create contracts and

bind them to code elements; types and methods. In essence, these annotations can be

applied to classes and interfaces. Three main annotations defined by Cofoja are concise

and self-describing:

 Precondition:
@Requires(“an expression”)

 Postcondition:

19

@Ensures(“an expression”)

 Invariant:

 @Invariant(“an expression”)

For example, @Requires(“i > 0”) states that i should be a positive number. Or

@Ensures(“y > 100”) guarantees that y will be greater than 100. In fact, pre and

postconditions will be assessed in the context of the methods for which those pre and

postconditions are defined. For postconditions, the annotation can have access to the

result of the target method by keyword result, e.g. @Ensures(“result > 0”), and can

use the old value of a parameter by keyword old, e.g. old(x) considers the value of x on

entry of the method call. Furthermore, Cofoja supports exception handling in case of

incidents happened within contracted methods. In this case @ThrowEnsures is provided

to catch the exception and prevent changing the state of an object for an exceptional

execution of a method.

3.5.4 ezContract

ezContract as an open-source extension came to fill the gap of previous works by

considering their drawbacks and deficiencies. Cheng, Chen, & Hsieh (2007) highlighted

two main issues of other tools with regard to DbC programming and integration; the first

issue is breaking source compatibility which occurs when new keywords are introduced

but the manipulation of the code with proprietary compilers is not welcomed in most of

the software companies. The second problem is related to the solutions suggested to

resolve the first issue when naming conventions, adding meta-data to annotations or

separating the contract files from source code files are proposed. In this case, any change

of source code will not propagate to the contracts. Apart from the novel approach

ezContract proposes, preconditions, postconditions, and invariants have a specific format:

 Precondition: each precondition starts with Require.begin() and ends with

Require.end(). Within these lines any assertion can be added. For example, the

following code shows how a precondition works:

Require.begin();

 assert i != 0: “the loop counter cannot be zero!”;
Require.end();

 Postcondition: In a same manner, each postcondition starts with Ensure.begin()

and ends with Ensure.end(). The following code snippet exemplifies defining

and using postconditions:

Ensure.begin();

 assert result >= 0: “Square of an integer is a positive number!”;
Ensure.end();

 Invariant: defining a class invariant requires a class to implement ezcontract

interface which imposes the implementation of classInvariant method. For

instance a class invariant method might look like this:

pulic class Test implements ezcontract{

 public void classInvariant{

 assert k != null: “size of array should not be null!”

}

}

20

3.5.5 iContract

iContract developed by Reto Kramer is a Java preprocessor that lets the coder to specify

custom assertions to instrument classes. According to Kramer (1998), after annotating the

source code a repository of contract associated with classes, methods, and interfaces is

created to support contract inheritance. The new files will be compiled to enforce

precondition, postcondition, and invariant checks automatically. This process promises

to keep the compliance of source files with Java standards at any point. However, to

produce these checks, iContract has a specific pattern:

 Precondition: @pre works well to specify a precondition in code. For example to

check that a guy’s weight is a valid input the code can be like:

/**

 * @pre weight > 0

 * @pre weight < 200

 */
void setWeight(int weight);

 Postcondition: @post instruments postcondition on a class method. For instance,

to get somebody’s weight from a method, returned value should always be greater

than zero:

/**

 * @post return > 0

 */

int getWeight();

 Invariant: @invariant defines a class or interface invariant to which all instances

of a class should conform. For example, for a registered student the current

semester is active and he has to have at least one course in his course list:

/**

 * @invariant isRegistered != false

 * implies

 * courses.size() >= 1

 */

public class Student{

 String name;

 String[] courses;

 Boolean isRegistered;

}

3.5.6 jContractor

jContractor is a Java library that eases the practice of DbC without reliance on any

compiler, preprocessor, runtime system, or virtual machine. According to Karaorman,

Hölzle, & Bruno(1999), jContractor analyses meta-level information of Java files to

discover the encoded contracts. In particular, all the principles of DbC are provided in

jContractor and one can create contracts either in the source classes or as separate contract

classes. Contracting pattern in this tool is described in next few lines:

 Precondition: for each class method it is possible to simply write a precondition

method by adding _PreCondition to the target method name with identical

arguments but the return value of the constraint method should always be a

protected boolean, that is normally the result of the required assertion:

21

object method1(<arglist>){

…

}

protected boolean method1_PreCondition(<arglist>){

 return (a boolean expression);

}

 Postcondition: with a similar scenario to precondition, a postcondition constraint

of a method can be defined by adding _PostCondition to the target method name

with boolean type of return value:

object method2(<arglist>){

…

}

protected boolean method2_PostCondition(<arglist>){

 return (a boolean expression);

}

 Invariant: to specify an invariant for a class, it is essential to add

_ClassInvariant to the class name and write a new method that does not accept

any arguments and returns a boolean:

class MyClass{

…

}

protected boolean MyClass_ClassInvariant(){

 return (a boolean expression);

}

3.5.7 ModernJASS

Rieken (2007) introduced ModernJASS as a DbC tool with a rich set of features that can

be integrated with most of IDEs in a seamless build process. It employs Java 5 annotation

to define a program’s behaviour in terms of contracts. Specifying contract principles are

quite easy and straightforward:

 Precondition: @pre expresses a precondition for a method. For example, @pre(“x

% 2 = = 0”) enforces that x should be an even number.

 Postcondition: @post expresses a postcondition for a method. For instance,

@post(“@Result != null”) enforces a non-null return value of the target

method.

 Invariant: to express an invariant, @Invariant is used to put an obligation on a

class. For example:

@Invariant(“@ForAll(String s: courses; !s.equals(“”)”)
public class student{

 …

 String[] courses;

…

}

3.5.8 OpenJML

OpenJML is a verification tool that checks the specification of a Java program in which

contracts are annotated by JML statements. Both static checking and runtime checking is

22

supported by OpenJML and parsing, type-checking and even editing is available as well.

In addition, OpenJML is capable of generating test cases and documentation with JML

information (“Introduction to OpenJML”, 2018). To use OpenJML, it is critical to know

the basic principles of JML annotation style. According to Leavens & Cheon (2006),

writing JML consistent annotations to specify pre-, postcondition, and invariant enforces

the programmer to put statements in /*@...@*/ or start with //@:

 Precondition: requires clause defines precondition obligations to a method. For

example //@ requires x != 0;

 Postcondition: ensures clause specifies the state of postcondition to the target

method. For example:

/*@

 @ ensures \result == x * y;

 @*/

public int multiply(int x, int y){

 return x*y;

}

 Invariant: to specify an invariant for a class, using invariant clause will be

necessary. For instance for the following class student’s ID is always non-empty

string which is defined as an invariant:

public class Student{

 String studentID;

 //@ invariant !studentID.equals(“”);

}

3.5.9 OVal with AspectJ

OVal is a Java validation framework that allows developers to specify and configure

constraints on any kind of Java objects using annotations. Although OVal is not fully

fledged DbC implementation, when it is combined with AspectJ, which is a seamless

aspect-oriented Java extension, DbC features are available (OVal - the object…, n.d.).

apart from all the build-in assertions that OVal provides for programmers, its constraining

format is similar to other tools:

 Precondition: @Pre expresses a conditional constraints on method parameters

using scripting language. A sample precondition is like the following code

fragment:

public class bankAccount{

 private BigDecimal balance;

@Pre(expr = "_this.balance >= withdrawAmount", lang = "groovy")

 public void withdraw(BigDecimal withdrawAmount)

 {

 balance = balance - withdrawAmount;

 }

…

}

23

 Postcondition: in a similar way, @Post defines a postcondition. For example:

public class bankAccount{

 private BigDecimal balance;

@Post(expr = "_this.balance < _old", lang = "groovy")

 public void withdraw(BigDecimal withdrawAmount)

 {

 balance = balance - withdrawAmount;

 }

…

}

 Invariant: by default if @Guarded is set on a class, all class invariants are checked

before and after any non-private method. In case of annotating an invariant for a

specific method, @PreValidateThis and @PostValidateThis will enforce

object validation before or after method call respectively:

@Guarded

public class bankAccount{

 private BigDecimal balance;

 @PreValidateThis

 @PostValidateThis

public void method1(BigDecimal withdrawAmount)

 {

 //do something here

 }

…

}

24

4. Study Design

In this chapter a simple Java program will be contracted and for each extension introduced
in 3.3.3, it will be annotated according to their principles. The aim of scripting is to
implement pre- and postcondition, invariant and inheritance in order to examine each tool
on ease of introduction, ease of use, dependencies and external tools, compilation time,
memory consumption, execution overhead, support of inheritance, and so forth. The
candidate Integration Development Environment for testing the extensions is Eclipse Java
EE in which all the tools will be deployed.

4.1 Model System

The model system chosen to deploy DbC is a simple car rental system with which a client
can rent some cars and pay associated fee for a certain time of rent. Although this system
can be amazingly broad, for sake of research concerns it should be considered as a
subsystem with fewer components and classes. Figure 1 shows the main classes with their
fields.

Figure 1. Car Rental System Classes

The model introduces three main classes:

 Client: a real/unreal customer who is registered and has been given a client ID.
The client is allowed to rent one car at a time and he/she has to pay the fee to
reserve an available car for a certain time. The client's id, name, phone number,
and address are the most important fields.

 Car: a vehicle which is registered in the list of cars and can be rented periodically.
A car can be rented by only one customer at a time. The class pertaining to car
entity should hold plate number, it's model and manufacturer, rent fee, and its
availability.

 Deal: a deal is a signed agreement that holds the information of the contract
between the customer and the agency. Additionally, a deal keeps the information
of chosen car, and the start/end time of the rental. A deal is reachable using its ID
for further processes. The defined class has to keep the information of both car

C
li
e
n
t •ID

•name

•phone

•address

C
a
r •plateNumber

•model

•manufacturer

•fee

•availability

D
e
a
l •ID

•rentedCar

•client

•rentDays

•totalFee

•startDate

•endDate

•status

25

and client, rent days, total rent fee (which is simply fee multiplied by rent days),

start and end date of contract, and the contract status, which can be open or closed.

To be able to rent a car, a handler class is needed to act as a car agency. CarRental class

is responsible to keep a list of clients, a list of cars, and a list of deals and has to administer

searching an available car by searchAvailableCar method, leasing a car by rentCar

method, and terminating the deals when the car is returned by terminateDeal method.

This class makes it possible for the client to sign a deal with which the reserved car can

be delivered to the client for a determined time. The customer can decide on the start and

end date/time. For simplicity and in order to clarify the DbC design in this model, the

main field constraints are shown in Table 3 and a precondition, a postcondition, an

invariant, and an inherited constraint are defined in Table 4 that should be implemented.

Table 3. Constraints on fields or properties of client, car, and deal

Client ID should not be an empty string or null

 name should not be an empty string or null

 phone should always be a valid phone number

 address should not be an empty string or null

Car plateNumber should not be an empty string or null

 model should not be an empty string or null

 manufacturer should not be an empty string or null

 fee should always be a positive integer

 availability should always be true or false

Deal ID should not be an empty string or null

 rentedCar should not be null

 client should not be null

 rentDays should always be a positive integer

 totalFee should always be a valid number

 startDate should always be a valid date and time

 endDate should always be a valid date and time

 status should always be either Open or Closed

26

Table 4. Precondition, Postcondition, Invariant, and Inherited constraint

Precondition

for rentCar

Before renting a car, its availability should be true and the car must not

be in another lease. An available car can be searched and seen by

clients. Therefore, as a precondition to rentCar method, a car object’s

availability should be true when it is passed as a parameter.

Postcondition

for rentCar

After renting a car, its availability should be set to false in order to

prevent CarRentalSystem to offer it to other clients. rentCar method

returns a deal and the deal keeps the rented car as a field. The method

should guarantee that the rented car is not available as long as the deal

is open.

Invariant in

Deal class

When a deal is created the end date should always be later than start

date and this is true for all deals on all instances of Deal objects or its

extensions.

Constraint

inheritance

A new class called InsuredDeal extends Deal and has an extra field

called maximumInsuranceCover to keep the amount of insurance

coverage. Since the new class keeps start date and end date for a deal,

the same invariant for InsuredDeal should be inherited from Deal class.

Pre and post conditioning can be done by constraining rentCar method and the class

invariant is applicable on Deal in which a proper period of contract has to be guaranteed.

For contract inheritance, another class is required to realise the inheritance and check the

contracting on sub class. For this reason, InsuredDeal class will be defined that represents

a deal that supports insurance on its contract. This class extends Deal and has one extra

field for storing maximum insurance coverage. Thus, by having some invalid inputs of

super class the impact of validation on sub class can be evaluated.

The examination of each tool requires implementation of one field constraint from Table

3 and all constraints of Table 4. In this case, setting the plate number of a car as a null

input value is designated to represent field constraint. Although coding can be done

separately without using any particular tool, an IDE can make everything so smooth and

integrate all required components more efficiently. In this case, Eclipse Neon 4.6.3 in

combination with Maven will be used to program the mentioned system. The reason that

why Maven is used is that Maven alleviates the automation of build and manages the

dependencies in a more structured way.

4.2 Implementation

The implementation of tools in Eclipse requires the Maven plugin because the default

project should be a Maven project with org.apache.maven.archetypes:maven-archetype-

quickstart. The new created project looks like Figure 2.

27

Figure 2. Default Maven Project for CarRentalSystem

The project includes src/main/Java for user defined classes and src/test/Java for defining

user test classes. Each Maven project has a pom.xml file that holds the information of

dependencies and build configuration. In order to ease the process of writing test classes,

Maven adds jUnit dependency to the pom.xml automatically. However, to add the jUnit

dependency manually the following dependency should be added:

<dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.12</version>

 <scope>test</scope>

</dependency>

Furthermore, maven compiler plugin should be added to the project by inserting some

extra lines to pom.xml which is shown in Figure 3.

Figure 3. Maven compiler plugin requirements

28

Now for each entity introduced in 4.1 a Java class should be defined. Each class has its

own fields, one constructor, getters and setters, and other methods when needed. To

follow object-oriented programming concepts all fields are defined as private and other

objects can have access to other objects' fields only by calling getters and setters. The

appendix A shows all the classes.

On a platform such as Eclipse, testing the classes and DbC performance needs some unit

test cases upon which fallibility of constraints can be scrutinised. Thus, CarRentalTest

class implements eleven methods for testing different principles:

1. plateNumberIsNotNull: tries to instantiate a car with valid parameters as a

positive test case.

2. plateNumberIsNull: tries to instantiate a car with a null plate number that

violates field constraint

3. carIsAvailable: Trying to rent a car while it is available as a positive test case

4. carIsNotAvailable: Trying to rent a car while it is not available violates rentCar

precondition

5. rentedCarIsNotAvailable: On quitting rentCar, the availability of a rented car

is false and tested as a positive test case.

6. rentedCarIsAvailable: On quitting rentCar, the availability of a rented car

registered for a specific deal should be false

7. dealIsValid: Tries to create a deal in which end date is after start date (normal

period of time) as a positive test case.

8. dealIsNotValid: Tries to create a deal in which start date is after end date

(abnormal period of time)

9. insuredDealHasValidFields: InsuredDeal extends Deal and thus has to call

super with corresponding parameters. With having all parameters valid an

insuredDeal is tested as a positive test case for inheritance.

10. insuredDealHasInvalidFields: InsuredDeal extends Deal and thus has to call

super with corresponding parameters. Without constraining InsuredDeal's fields,

this method attempts to pass an invalid parameter to sub class to test the

inheritability of guards.

11. aLongTestIncludingAllOtherCases: to mimic the behaviour of a big code, a

loop repeating for 10,000 times in which all positive test cases are tested. The

reason for iterating the loop for 10,000 times is that having an unusual iteration

like 12,365 is a burdensome to memorise rather than 10,000. Besides, more

iterations, e.g. 100,000 or 1,000,000, seem to be infeasible for testing purposes.

Since the constraining of classes under each DbC extension is done according to the target

tool's principles the implementation of DbC for each tool will be explained briefly.

29

4.2.1 Bean Validation

Bean Validation supports Eclipse and it is straightforward to set it up for development

purposes. Although at first glance Bean Validation seems to be strenuous to be harnessed,

getting accustomed with it is really simple. It is very powerful with plenty of features and

full documentation support. The good point about this framework is that it provides a step

by step user guide in a well-documented format, which helps to give a broad

understanding about the API's principles.

Moreover, it lets to create custom constraints which is dramatically critical to developers

who are willing to use it in real projects and need a variety of constraints. This flexibility

makes Bean Validation a practically beneficial framework for software validation.

Besides, modification of previously scripted constraints is quite simple without any

interruption or interference to other coding elements. Changing annotation will affect

quickly. Bean Validation provides an excellent documentation for user guidance purposes

and API introduction which is a great aspect.

Initialisation

Using Bean Validation in a Maven project needs three dependencies:

1. Hibernate validator core, which transitively pulls the Bean Validation API into

project.

2. Unified Expression Language (Unified EL), which evaluates the dynamic

expressions when a constraint violation happens and its messages are created.

3. Contexts and Dependency Injection for Java (CDI), which adds integration points

of Bean Validation with CDI, JSR 346.

Applying Constraints

Field constraining: constraining the fields was quite simple using Bean Validation

because it provides a variety of built-in constraints. @NotNull can guard a string from

being null conveniently. @Positive can guard an integer to be always a positive number.

Therefore, by only adding the annotation to parameters of Car constructor, the

constraining is done:

public Car(@NotNull String plateNo, @NotNull String model, @NotNull

String manufacturer, @Positive int fee) {

...

}

The same approach can be taken for setters as well:

public void setPlateNumber(@NotNull String plateNumber) {

 this.plateNumber = plateNumber;

}

Client, Deal, InsuredDeal, and CarRental have the same field constraining using this tool.

Preconditioning: Bean Validation lets the coder to define custom annotations and define

a validator for the new annotation. To check that if a car is available before renting it,

@Available is defined. In fact, any annotation consists of two parts; annotation code and

30

validation code, in this case, for @Available the associated code is shown in Figure 4

and Figure 5.

Figure 4. Annotation code for @Available

Figure 5. Validation code for @Available

This constraint is used in rentCar method as an independent custom constraint:

public Deal rentCar(@NotNull Client client, @NotNull @Available Car

car, @Positive @Max(10) int rentDays, Date start, Date end) {

...

}

If the parameter car is not available at calling rentCar, a constraint violation will be

thrown.

Postconditioning: To check if the rented car is available when rentCar method is

terminated, a new constraint called @RentedCarNotAvailable is defined and used:

31

@RentedCarNotAvailable

public Deal rentCar(@NotNull Client client, @NotNull @Available Car car,

@Positive int rentDays, Date start, Date end) {

...

}

In fact, this annotation checks if Deal.getRentedCar().isAvailable() is false or true and

respectively acts normal or throws and error.

Setting Invariant: to define the invariant in Table 4 another annotation called

@ProperDate is defined, which checks if end date is after start date always. The same as

@Available, two separated parts defining constraint annotation and constraint validation

has to be declared. The relevant code for @ProperDate is show in Figure 6 and Figure 7.

Figure 6. Annotation code for @ProperDate

Figure 7. Validation code for @ProperDate

Since this constraint is a class level invariant it should be before Deal class definition:

32

@ProperDate

public class Deal {

...

}

Constraint Inheritance: since InsuredDeal extends Deal it has to call super([params]) in

its constructor and any constraint defined for Deal should work on InsuredDeal as well:

public InsuredDeal(String id, int days, int totalFee, Car rentedCar,

Client client, Date start, Date end, @Positive int maxInsCover) {

super(id, days, totalFee, rentedCar, client, start, end);

this.maximumInsuranceCover = maxInsCover;

}

Except maxInsCover that should be annotated manually, other fields don't have to be

constrained due to contract inheritance. However, validating the inheritance is done at

runtime and if any parameters are not valid an appropriate violation will be created.

Test Cases: According to the testing scenario described earlier, eleven test methods have

to be implemented and validated. The cause in the negative test case making the code

improper, is set as the correct code in positive test cases which works without errors. Bean

Validation provides two types of validators; for non-executables validator and for

executables validator. The former is suitable when the validation is performed on an

object and the latter is useful when a method is going to be validated. The following code

illustrates how to set up both validators in CarRentalTest class:

private static ExecutableValidator forExecutablesValidator;

private static Validator forNonExecutablesValidator;

@BeforeClass

public static void setUpValidator() {

ValidatorFactory factory = Validation.buildDefaultValidatorFactory();

forExecutablesValidator = factory.getValidator().forExecutables();

forNonExecutablesValidator = factory.getValidator();

}

When a validator validates an element, it returns a set of possible constraint violations.

Therefore, by asserting the size of the set, it is easy to monitor the validation and generate

appropriate error messages. Thus, the first method that checks field constraining looks

like:

@Test

public void plateNumberIsNull() {

 Car car = new Car(null, "508", "Peugeot", 60);

Set<ConstraintViolation<Car>> violations =

forNonExecutablesValidator.validate(car);

 assertEquals(1, violations.size());

}

33

Since the first parameter is null (implies that plate number is improper), the size of

violations would be one after the validation of car. In the corresponding positive case with

almost the same code only the plate number is not null so everything works correctly with

no fault.

For testing the precondition the test case should be:

@Test

public void carIsNotAvailable() throws NoSuchMethodException {

 Car car = new Car("DD-CE-456", "X6", "BMW", 120);

 car.setAvailability(false);

 Client client = new Client("cl-2018-1003", "James", "1438-

Vertongen st.", "46324835");

 CarRental rental = new CarRental();

 Method method = CarRental.class.getMethod("rentCar",

Client.class, Car.class, int.class, Date.class, Date.class);

 Object[] params = {client, car, 5, new Date(), new Date()};

 Set<ConstraintViolation<CarRental>> violations =

forExecutablesValidator.validateParameters(rental, method, params);

 assertEquals(1, violations.size());

}

In this case, a method should be validated, therefore, a method with test parameters should

be delivered to the validator. However, setting the car's availability to false before

validating the rentCar causes one violation. The positive test case with same code does

not violate the precondition so it works without any error. For testing postcondition of

this method, a similar validator works well notifying that this time after creating a deal,

the rented car's availability is set to true which causes a violation:

@Test

public void rentedCarIsAvailable() throws NoSuchMethodException {

 Date start = new Date();

 Calendar calendar = Calendar.getInstance();

 calendar.setTime(start);

 calendar.roll(Calendar.DAY_OF_YEAR, 3);

 Date end = calendar.getTime();

 Client client = new Client("CL-2018-1001", "George", "1851-

Willington st.", "46322311");

 Car car = new Car("DD-CE-123", "XC60", "Volvo", 50);

 Method method = CarRental.class.getMethod("rentCar",

Client.class, Car.class, int.class, Date.class, Date.class);

 Deal returnedDeal = new Deal("DL-"+ client.getID() + "-" +

car.getPlateNumber(), 3, 65, car, client, end, start);

 returnedDeal.getRentedCar().setAvailability(true);

 Set<ConstraintViolation<CarRental>> violations =

 forExecutablesValidator.validateReturnValue(new

CarRental(), method, returnedDeal);

 assertEquals(1, violations.size());

}

Invariant validation requires to make an incorrect date sequence in a deal to disrupt the

defined invariant. This can be done by swapping end date and start date, as a result, the

validator detects the problem and makes a violation:

34

@Test

public void dealIsNotValid(){

 Date start = new Date();

 Calendar calendar = Calendar.getInstance();

 calendar.setTime(start);

 calendar.roll(Calendar.DAY_OF_YEAR, 15);

 Date end = calendar.getTime();

 Client client = new Client("CL-2018-1001", "George", "1851-

Willington st.", "46322311");

 Car car = new Car("DD-CE-123", "XC60", "Volvo", 50);

 Deal deal = new Deal("DL-"+ client.getID() + "-" +

car.getPlateNumber(), 5, 100, car, client, end, start);

 Set<ConstraintViolation<Deal>> violations =

forNonExecutablesValidator.validate(deal);

 assertEquals(1, violations.size());

}

The positive test case for testing invariant does not swap the dates, thus the code is not

generating any violations. Constraint inheritance can be tested by using an invalid input

to test if propagated guards work consistently or not. In this case, delivering a negate

integer for rent days to InsuredDeal is imaginable that forces the validator to result in a

violation:

@Test

public void insuredDealHasInvalidFields(){

 Date start = new Date();

 Calendar calendar = Calendar.getInstance();

 calendar.setTime(start);

 calendar.roll(Calendar.DAY_OF_YEAR, 5);

 Date end = calendar.getTime();

 Client client = new Client("CL-2018-1001", null, "1851-

Willington st.", "46322311");

 Car car = new Car("DD-CE-123", "XC60", "Volvo", 85);

 InsuredDeal deal = new InsuredDeal("DL-"+ client.getID() + "-"

+ car.getPlateNumber(), -5, 650, car, client, start, end, 30000);

 Set<ConstraintViolation<InsuredDeal>> violations =

forNonExecutablesValidator.validate(deal);

 assertEquals(1, violations.size());

}

The positive test case for inheritance has the code but with valid inputs, so the code is

working with no errors. All other tools' test cases have the logic with a slightly different

implementation. Therefore, there is no need to describe test cases each time for each

framework and having the result of build and execution suffices.

Build and Execution

Compiling the project requires to right click on project and go to Run As then click on

Maven Clean, which is ready by default. The result of building the project with Maven

clean is shown in Figure 8.

35

Figure 8. Building the project using Bean Validation and Maven clean goal

As it is presented by Eclipse compiler the total time is 0.470 s and memory consumption

is 8 MB. Moreover, testing the project means that all test cases of CarRentalTest are

executed using Maven test goal. The result is shown in Figure 9.

Figure 9. Testing the project using Bean Validation and Maven clean test goals

This time the execution time is 2.790 s and memory consumption is 11 MB.

4.2.2 C4J

With an easy to use approach C4J has fewer rules and complexity that facilitates the

constraining dramatically. On one hand, adding constraints to a class definition is

supported by default meaning the code looks concise and guards are reachable at the point

where the logic is bound. On the other hand, being able to separate classes from contracts

brings a higher modular programming in which one knows to find contract body and focus

on its logic in an organised way without bearing the source code full of annotations. In

36

addition, modifying a contract does not disrupt the source code script. Moreover, C4J lets

to specialise each assertion with a custom message without need of extra validation or

violation handling at runtime; it just creates the contracts and generates error messages

and it is done without concerning further violation management. However, adding more

sophisticated constraints as custom annotations is not supported in C4J.

Initialisation

C4J can be used from the command line and also in Eclipse. To use it from command line

the following line works well:

 Java -ea -Javaagent:${c4j_loc}\c4j-6.0.0.jar [ClassName].Java

in which ${c4j_loc} is the absolute file system path of C4J library, [ClassName] is the

name of any defined class with having in mind that all the required libraries should be

included in classpath. Moreover, it provides a plugin for Eclipse to ease the development

process. However, running C4J under Eclipse needs to modify default VM arguments by

deploying –Javaagent switch.

Additionally, using C4J in a Maven project needs three libraries:

1. c4j-6.0.0.jar, which is the core library for contracting in C4J

2. Javaassit-3.16.1.jar, which simplifies the manipulation of Java bytecode

3. log4j-1.2.16.jar, which is an Apache logging library for Java making it possible

to login at runtime without modifying the application binary and with less

performance penalty

Enabling a project to run C4J needs to add –ea –Javaagent:${c4j_loc}\c4j-6.0.0.jar to the

VM arguments of the installed JRE in which ${c4j_loc} is the absolute file system path

of the core library.

Applying Constraints

For each class a contract class is defined to realise the contracting in practice. Each

contract includes pre and postcondition and class invariant designated for the respective

method. For example, for Car class a contract class called CarContract is defined and it

overrides all methods of Car. In a same fashion, CarContract's constructor acts as the

overridden constructor of Car. CarContract class with its constraints is shown in Figure

10.

37

Figure 10. A contract class defined and bound to Car class

Field constraining: C4J only supports defining contracts including pre and

postconditions and class invariants. Therefore, it doesn't offer distinctive field constraints.

Instead, it supports defining separated contract files for each Java class. But in

CarRentalSystem constraining a field of a class has the same way of preconditioning.

Indeed, the precondition of CarContract's constructor checks if a field is valid or not.

Preconditioning: Since CarRental class owns method rentCar, the associated contract

class overrides it setting the relevant precondition for Car's availability. Related code

looks like the following lines:

@Override

public Deal rentCar(Client client, Car car, int rentDays, Date start,

Date end) {

if (preCondition()) {

 ...

 assert car.isAvailable(): "Car must be available to be

rented.";

 ...

 }

 ...

}

Postconditioning: To specify the postcondition for rentCar method, the overridden

rentCar method in CarRentalContract should define the proper postcondition:

38

@Override

public Deal rentCar(Client client, Car car, int rentDays, Date start,

Date end) {

 ...

 if (postCondition()) {

 Deal result = result();

 assert !result.getRentedCar().isAvailable(): "Rented

car must not be available as long as it is rented by another client.";

 }

 ...

}

Setting Invariant: specifying Invariant follows the same rule as pre and post condition

described above. In this case, for DealContract a method defining the invariant is

declared. It should be noted that C4J detects the invariant by @ClassInvariant

annotation used before the method:

@Contract

public class DealContract extends Deal{

@Target

private Deal target;

...

@ClassInvariant

public void invariant() {

 assert target.getEndDate().after(target.getStartDate()): "End

date must be after start date.";

}

...

}

the target variable stands for a reference to the guarded object.

Constraint Inheritance: Presumably any constraint defined on Deal should be

propagated to InsuredDeal that is testable at runtime. Since InsuredDeal has one field that

should always be a positive integer, InsuredDealContract is defined to guard

maximumInsuranceCover field. However, calling the super([params]) in the constructor

causes the inheritance propagation and if any parameters are not valid at runtime an

appropriate violation will be created.

Test Cases: C4J alleviates the validation of constraints meaning that by defining a

contract there is no need to add extra validators in test methods. The reason is using assert

command in defining a contract throws an exception if any constraint is violated. For

example, the following code throws an exception because one parameter is against the

precondition:

@Test

public void plateNumberIsNull() {

 Car car = new Car(null, "508", "Peugeot", 60);

}

Other test methods follow the same rule.

39

Build and Execution

As described in 4.3.1.3 compiling and running a project is quite similar to what has been

done using Bean Validation. The result of building the project with Maven annotated by

C4J is shown in Figure 11.

Figure 11. Building the project using C4J and Maven clean goal

The total build time is 0.344 s with using 8 MB of memory. The results of testing the

application using Maven test goal is shown in Figure 12.

Figure 12. Testing the project using C4J and Maven clean test goals

As it is exhibited, the total testing time is 2.677 s and it claimed 11 MB of memory.

40

4.2.3 Cofoja

Using Cofoja simplifies contracting as well. It concentrates on contracting with fewer

lines of code and less complexity. It is possible to mix several expressions in one line and

set it as a precondition but it forsakes customisability. Since preconditions are made of

string expressions, a tiny mistake in typing an expression may generate ambiguous

situation and complicated diagnostic with a long time error recovery. Furthermore,

initialisation of Cofoja is a little bit confusing and needs higher understanding of Eclipse.

Indeed, it does not configure its own prerequisites automatically and puts the duty to the

coder! Any mistake in initialisation will lead to plenty of compile or runtime errors.

Initialisation

Deploying Cofoja requires two libraries:

1. cofoja-1.3-20160207.jar, which is the core library for Cofoja

2. ASM 5.x or higher for bytecode instrumentation

Empowering a Java project to be able to utilise Cofoja needs to do some configurations.

By enabling project specific setting in Java compiler->annotation processing, one should

add three processor options:

1. Key= com.google.Java.contract.classoutput, value= %PROJECT.DIR%/bin

2. Key= com.google.Java.contract.classpath , value =

%PROJECT.DIR%/lib/cofoja.asm1.320160207.jar

3. Key= com.google.Java.contract.sourcepath, value= %PROJECT.DIR%/src

Furthermore, in Java compiler->annotation processing->factory path, cofoja library

should be added to the plugins, and the –ea –Javaagent:${cofoja_loc}/cofoja-1.3-

20160207.jar, in which ${cofoja_loc} is the absolute file system path of the core library,

has to be included in VM arguments when the project is going to be compiled or tested.

Applying Constraints

Field constraining: Cofoja the same as C4J, doesn't support field annotating separately

but it is possible to constrain fields through preconditions of constructors or getters and

setters. For example, constraining the plateNumber field of Car is possible through

defining precondition for the constructor and the associated setter of plateNumber:

@Requires({"plateNo != null", "model != null", "manufacturer != null",

"fee > 0"})

public Car(String plateNo, String model, String manufacturer, int fee)

{

 this.plateNumber = plateNo;

 this.model = model;

 this.manufacturer = manufacturer;

 this.fee = fee;

 this.availability = true;

}

It prevents the entered string from being null when an object is instantiated. And for the

setter:

41

@Requires("plateNumber != null")

public void setPlateNumber(String plateNumber) {

 this.plateNumber = plateNumber;

}

So far, the field constraining is done indirectly.

Preconditioning:

Using @Requires it is possible to add a precondition prior to a method. In our scenario,

a car should be available before calling the rentCar method. Therefore, the related code

should be according to Cofoja style:

@Requires("car.isAvailable()")

...

public Deal rentCar(Client client, Car car, int rentDays, Date start,

Date end) {

...

}

However, if Cofoja detects that the availability of parameter car is false, an error will be

thrown at runtime. For other methods scripting a precondition and its validation follows

the same rule.

Postconditioning: When method rentCar is executed successfully, the created deal's

rented car must not be available anymore:

@Ensures("!result.getRentedCar().isAvailable()")

public Deal rentCar(Client client, Car car, int rentDays, Date start,

Date end) {

...

}

Setting Invariant: specifying an invariant is quite easy in Cofoja. For our scenario, to

say Cofoja that end date must be after start date of a deal, an invariant should be defined

before class definition of Deal:

@Invariant("endDate.after(startDate)")

public class Deal {

...

 private Date startDate;

 private Date endDate;

 ...

...

}

Constraint Inheritance: Like C4J, in Cofoja all the constraints are inherited when a class

extends another class. Therefore, apart from InsuredDeal's own fields' constraints no

special guard needs to be added.

42

Build and Execution

The result of building the project with Maven annotated by Cofoja is shown in Figure 13.

 Figure 13. Building the project using Cofoja and Maven clean goal

Total compilation time is 0.337 s and the total memory consumption is 8 MB. Running

the application under test cases generated another result, which is shown in Figure 14.

Figure 14. Testing the project using Cofoja and Maven clean test goals

As it is generated by Eclipse, the test time is 2.589 s and the project consumed 12 MB of

memory.

4.2.4 ezContract

ezContract can be considered as an easy to use tool. It proposes a smooth way of

contracting by making a constraint packed in a {begin, end} clause. Like C4J, it is not

43

difficult to define and specify violation reporting messages in ezContract due to directly

use of assertions in a clause. Thus, testing the code and annotations do not require any

further validation or monitor at runtime. One of this framework's pros is that a constraint'

logic can be distinguished from other elements quickly without so much effort and

modifying it is straightforward as well without unsettling the source code.

Initialisation

Utilising ezContract needs to add some external libraries to project:

1. ezContract-0.01a.jar, which is the core library for ezContract

2. Javassist-ctchen.jar, which is an old version of Javaassist for bytecode

manipulation

3. commons-0.01a.jar, which is an assisting library for processing strings and

working with files

a noticeable drawback of ezContract is that it does not support Eclipse by default and all

operations should be done through command line, which makes the development obscure.

But with spending some time it is possible to code in Eclipse environment and at least

compile a project deploying ezContract.

Applying Constraints

Field constraining: field constraining is not directly plausible in ezContract but it can be

done using preconditions and constraining getters and setters the same as describe for

Cofoja. For example, since the fields of Car are not directly accessible by other objects,

constraining the fields can be done using preconditioning of Car's constructor:

public Car(String plateNo, String model, String manufacturer, int fee)

{

Require.begin();

 assert plateNo != null: "Plate number must not be null.";

 assert model != null: "Model must not be null.";

 assert manufacturer != null: "Manufacturer must not be null.";

 assert fee > 0: "Fee must be greater than 0.";

Require.end();

 this.plateNumber = plateNo;

 this.model = model;

 this.manufacturer = manufacturer;

 this.fee = fee;

 this.availability = true;

}

Preconditioning:

In ezContract checking the status of Car's availability before renting it is done using the

following code snippet:

44

public Deal rentCar(Client client, Car car, int rentDays, Date start,

Date end) {

Require.begin();

 assert car.isAvailable(): "Car must be available to be

rented.";

Require.end();

...

}

Postconditioning: to guarantee that the return of rentCar method ensures that the rented

car is not accessible by other clients while it is in another deal, an ensure marker clause

should be added:

public Deal rentCar(Client client, Car car, int rentDays, Date start,

Date end) {

Ensure.begin();

 Deal target = (Deal) Result.value;

 assert !target.getRentedCar().isAvailable(): "A rented car

must not be available.";

Ensure.end();

...

}

target is a keyword known to ezContract as a reference to the object that should be

guarded by the written assertion.

Setting Invariant: if the coder needs to declare an invariant for a class, ezContract

proposes a different method to other tools. The target class should implement IContract

interface, which forces the coder to implement classInvariant method in class body. In

our scenario, the agreed invariant for Deal is scripted as:

public class Deal implements IContract{

...

public void classInvariant() {

 assert endDate.after(startDate): "End date must be after start

date.";

}

...

}

Constraint Inheritance: Like other tools, it is assumed that transferring a constraint to a

sub class influenced that manner of that class at runtime. Therefore, except new fields

defined in sub class that need new constraints fields from the super class are guarded in

advance. However, the code does not differ from other tools.

Test Cases: test cases for ezContract are the same as previous extensions that do not need

to validate a method or object separately, e.g. C4J. it should be noted that in test classes

there is no need to add extra assertions in test methods' body since ezContract uses assert

command in declaring contract elements.

45

Build and Execution

Compiling and running ezContract needs the following steps:

1. Compiling the source files as:
Java –cp %CLASSPATH%; ezContract-0.01a.jar; -sourcepath

MyClass.Java

2. Instrumenting the class file generated from the previous step as:
Java –cp %CLASSPATH%;ezContract-0.01a.jar;Javassist-

ctchen.jar;commons-0.01a.jar;

ezcontract.core.instrument.Instrumentor MyClass

3. Running contracted files as:
Java –ea –cp %CLASSPATH%;ezContract-0.01a.jar;Javassist-

ctchen.jar;commons-0.01a.jar;

ezcontract.core.instrument.Instrumentor MyTestClass

4.2.5 iContract

iContract simplifies the contracting very much and the annotations are short and concise.

It uses the commenting format for adding constraints to a project which is both acceptable

and risky. Its advantage is that it is easy to find in the code due to being a comment and

it is easy to understand but its weakness is if the programmer writes a parameter or a

field's name with some typos, it might be very tedious to catch syntax errors because Java

compiler ignores them and all the lines and comments should be checked character by

character and manually. Furthermore, it does not support Eclipse making the usage of the

framework difficult because all the steps have to be done by command line.

Initialisation

Initialising a project with iContract in Eclipse is not automated by the framework inventor

but it is possible to add its core library and code in an IDE such as Eclipse. However, a

project using iContract requires to have icontract2.jar as a referenced library and add it to

the class path when it is time to compile the project. In fact, although using iContract's

constraining approach is easy to catch and straightforward, working with iContract does

not seem to be simple and easy to go!

Applying Constraints

Field constraining: in iContract, there is no annotation mark because it only deals with

comments like constraints. Therefore, to restrict a field using encapsulations rules and

preconditioning a class constructor seem to be effective. For instance, limitation of Car

fields is done using the following code:

/*

 * @pre plateNo != null

 * @pre model != null

 * @pre manufacture != null

 * @pre fee > 0

 */

public Car(String plateNo, String model, String manufacturer, int fee)

{

 ...

}

46

Preconditioning: to make the agreed precondition for rentCar, adding a few lines suffices

to monitor a car's availability before renting it:

/*

 * @pre car.isAvailable() == true

 */

public Deal rentCar(Client client, Car car, int rentDays, Date start,

Date end) {

...

}

Postconditioning: on a same method taken to impose the precondition, the described

postcondition can be set as:

/*

 * @post @return.getRentedCar().isAvailable == false

 */

public Deal rentCar(Client client, Car car, int rentDays, Date start,

Date end) {

...

}

@return refers to the return value of the target method, which here is the deal created

by rentCar.

Setting Invariant: implementing the invariant for Deal is before the class declaration:

/*

 * @inv endDate.after(startDate)

 */

public class Deal {

...

}

Constraint Inheritance: In iContract all constraints of a father class will be applied to

children. Thus the InsuredDeal class must satisfy the constraints of Deal.

Test Cases: test classes for iContract do not need particular validation means, therefore

test methods used for last tools works well for iContract as well.

Build and Execution

Compiling and building a project in iContract needs some steps which is not viable in

Eclipse. However, the steps are:

1. Compiling classes without contracts: it needs the source classes and other

dependencies to be added to class path.

2. Generating configuration files, instrumented and repository sources: it needs

iContract2.jar, log4j.jar, other regular dependencies, config classes and repository

classes of contract-enabled dependencies to be added to class path.

3. Compiling instrumented files to contracted classes: it needs config classes of

contract-enables dependencies and other regular dependencies to be added to the

class path

47

4. Compiling repository resources to classes: it needs repository classes of contract-

enabled dependencies along with other regular dependencies to be added to the

class path.

Since the mentioned steps should be done manually, building and testing the project using

iContract in Eclipse has not been performed.

4.2.6 jContractor

Using jContractor is simple without complexity and it provides a separation of contracts

and source code, which is a way to make the code more understandable. Indeed, for each

class there would be a contract class that extends the source class. This tool does not

support annotating style and only focuses on contracting through using methods for each

element of DbC, e.g. defining a method for precondition of a source method in the source

class and define the expressions that should be guarded. This style of constraining is not

so clear because one has to find the correspondent contract method for the original source

method and catch the logic of the constraint by comparing both methods, which is a time

consuming process. Since there is no annotation in jContractor, constraints are not

reusable.

Although jContractor is straightforward with less complexity of deploying in code, it does

not support Eclipse and the compiling and instrumenting should be done step by step and

manually.

Initialisation

Utilising jContractor requires only its own core library that should be added as a regular

dependency to class path for contract-enabled classes.

Applying Constraints

Field constraining: as illustrated above, no field constraining is adopted by jContractor

and guarding a field in only applicable by constraining constructors, getters and setters.

For example, restriction of plateNumber in Car is implemented using the following lines:

public class Car_CONTRACT extends Car {

public Car_CONTRACT(String plateNo, String model, String manufacturer,

int fee) throws Exception{

 super(plateNo, model, manufacturer, fee);

}

protected boolean Car_CONTRACT_Precondition(String plateNo, String

model, String manufacturer, int fee){

 return (plateNo != null) && (model != null) && (manufacturer

!= null) && (fee > 0);

}

protected boolean setPlateNumber_Precondition(String plateNumber) {

 return plateNumber != null;

}

...

}

48

Guarding plateNumber to be a valid string has been checked in

Car_CONTRACT_Precondition method which controls the act of the constructor. In

addition, the constraint method of the plateNumber's setter is guarded in a same manner

as well.

Preconditioning: Setting the designed precondition needs to add the contract method in

CarRental_CONTRACT class:

public class CarRental_CONTRACT extends CarRental{

protected boolean rentCar_Precondition(Client client, Car car, int

rentDays, Date start, Date end) {

 return car.isAvailable();

}

...

}

Postconditioning: to check that if the new deal has a car with false availability the

constraint looks like:

public class CarRental_CONTRACT extends CarRental{

...

protected boolean rentCar_Postcondition(Client client, Car car, int

rentDays, Date start, Date end, Deal RESULT){

 return !RESULT.getRentedCar().isAvailable();

}

...

}

RESULT refers to the returned deal of rentCar method.

Setting Invariant: defining the invariant for Deal requires to declare a method with name

"_Invariant", which does not accept any arguments, in a correspondent contract class as:

protected boolean _Invariant(){

 return getEndDate().after(getStartDate());

}

Constraint Inheritance: Inheritance of contracts does not need any extra effort because

all the contracts are inherited automatically.

Test Cases: test cases for jContractor are the same as previous extensions that do not

need to validate a method or object separately, e.g. C4J. it should be noted that in test

classes there is no need to add extra assertions in test methods' body since jContractor

throws an error for each violation and reports an informative message.

Build and Execution

jContractor's build and execution differs from other tools because it needs to run

jContractor passing the target class to it, for example:

Java jContractor [options] Car.class

49

In addition, adding the contract code to the class files is possible using jInstrument

program as:

Java jInstrument Car.class

since jContractor is not working in Eclipse, there is no build and test experience to be

exhibited.

4.2.7 Modern Jass

Modern Jass provides a set of predefined constraints as annotations and this makes

everything better and quicker due to less coding and manually constraining. Using

Modern Jass is simple with no complexity. Adding the library to the project and using it

will help to guard methods and fields and implement DbC wherever is required. The

framework lets to define custom error messages where the constraints is going to be

declared that leads to more flexible and user friendly validation tool. Unfortunately, it

only supports Eclipse in Mac OS and its official website has not yet provided any plug in

for windows. Therefore, compiling and running a program is merely possible for Mac

users. A noticeable drawback of this tool, alike Cofoja, is using string expressions in

constraints. In this case, any user flaw in scripting the expression may impede the coding

and compiling with ambiguous errors. Additionally, the inventors have not articulated all

the required information needed for the user to work with the framework. In fact, the

documentation is not well-formed and there is no details for a programmer to deeply

understand the principles.

Initialisation

Coding can be started with no particular initialisation and adding the core library as a

dependency in class path suffices to start a project deployed by Modern Jass. However,

using it needs to work with command line and repeat a task many times for building and

running a project.

Applying Constraints

Field constraining: Thanks to providing some built-in constraints it is possible to

constrain a field using an annotation. Car's plateNumber can be restricted using @NonNull

in the class definition:

private @NonNull String plateNumber;

Other fields for which there is no proper built-in constraint restricting constructor's

parameters and getters and setters will work correctly, as described for previous tools.

Preconditioning: Enforcing that a car must be available is done as the following code

states:

@Pre("car.isAvailable()")

public Deal rentCar(Client client, Car car, int rentDays, Date start,

Date end) {

...

}

50

Postconditioning: right after defining the precondition in rentCar the postcondition

comes to specify the unavailability of a rented car:

@Post("!@Result.getRentedCar().isAvailable()")

public Deal rentCar(Client client, Car car, int rentDays, Date start,

Date end) {

...

}

@Result refers to the new deal instantiated by the method and returned for further

processes.

Setting Invariant: the invariant has to be defined before class definition:

@Invariant(value = "getEndDate().after(getStartDate())", msg = "End

date must be after start date.")

public class Deal {

...

}

The expression is assigned to value field and the custom error message is assigned to msg

field of the annotation.

Constraint Inheritance: as explained for previous frameworks, all the constraints are

inherited automatically and the tool is responsible to check the inherited constraints at

runtime.

Test Cases: test cases for Modern Jass are the same as for previous tools with having in

mind that there is no need to do extra validation at the execution time.

Build and Execution

Compiling a Java class is done using the Javac and Modern Jass core library in class path:

Javac –cp ModernJass.jar CarRenta.Java

Modern Jass will create CarRental.class contracted, which can be run by Java and using

Modern Jass as the Javaagent:

Java –Javaagent:lib/ModernJass.jar CarRental.class

4.2.8 Open JML

Open JML can be considered as a sophisticated and powerful extension including a

variety of features each of which is very important for validation process. This tool

provides static checking, runtime assertion checking, test generators, etc. and supports

Eclipse particularly in Mac OS. Open JML has established a graphical plugin for Eclipse

that shows warnings and errors of constraining the source code automatically when user

saves Java files or presses Ctrl+S. Utilising Open JML is easy specially when integrated

with Eclipse. Moreover, this tool provides a user guide, of course it is not complete and

most of the parts are missing, that explains main concepts and related principles of Open

JML. Like some other tools, Open JML uses commented constraints in its own way,

51

which can be problematic if user makes a trivial mistake. But using the GUI version all

errors are alerted in red colour and the warnings are notified perfectly.

Initialisation

For enforcing the constraints in command line only imposes having Java 8 and being

careful about setting the class path correctly and doing the compiling flawlessly.

Furthermore, Eclipse plugin can be installed using update site link

(http://jmlspecs.sourceforge.net/openjml-updatesite) according to plugin installation

rules in Eclipse. After adding the plugin, a menu item (JML) and a toolbar item (ESC for

static checking and RAC for runtime assertion checking) will be added to the

development environment. This will result in having the red and yellow markers at coding

time for alerting errors or warnings. However Open JML is dependent on three external

libraries:

1. Openjml.jar, which is the core library

2. jmlspecs.jar, which helps to add JML specifications in a Java class

3. jmlruntime.jar, which will make the runtime assertion checking possible

in addition, for developers who need static checking capability, a SMT solver should be

added to ESC part of the Open JML. A solver performs the proofing obligations of the

specifications and behaviour of the scripted program. However, using the static checking

is out of the scope of this research.

Applying Constraints

Field constraining: field constraining is applicable through using parameter and getter

and setter constraining in JML style. To constrain Car's plateNumber, the following code

snippet will work fine:

/*@

 @ requires plateNo != null;

 @ requires model != null;

 @ requires manufacturer != null;

 @ requires fee > 0;

@*/

public Car(String plateNo, String model, String manufacturer, int fee)

{

...

}

//@ requires plateNumber != null;

public void setPlateNumber(String plateNumber) {

 this.plateNumber = plateNumber;

}

Preconditioning: to specify the precondition according to Open JML format:

/*@

 @ requires car.isAvailable();

@*/

public Deal rentCar(Client client, Car car, int rentDays, Date start,

Date end) {

...

}

Postconditioning: to specify the postcondition according to Open JML format:

52

/*@

 @ ensures !\result.getRentedCar().isAvailable();

 @*/

public Deal rentCar(Client client, Car car, int rentDays, Date start,

Date end) {

...

}

Setting Invariant: adding the invariant into Deal class is done inside the definition of the

class:

public class Deal {

//@ public invariant getEndDate().after(getStartDate());

...

}

Constraint Inheritance: the same as explained for other tools, all the constraints are

inherited automatically and the tool will check them at runtime.

Test Cases: test cases for Open JML are the same as for previous tools with having in

mind that there is no need to do extra validation at the execution time.

Build and Execution

Compiling and running a program written under Open JML constraints can be performed

either in command line or in Eclipse. Compiling in command line requires to add

openjml.jar as the core library to build the contracted class files and running the code

requires to put jmlruntime.jar into class path and check the results. Building a Maven

project deploying this tool needs to add all the dependencies in class path or add the plugin

as mentioned earlier. Compiling the project claims the similar steps to other tools using a

clean goal which is shown in Figure 17.

Figure 16. Building the project using Open JML and Maven clean goal

53

As Eclipse console reports the compilation time is 0.598 s and the project used 7 MB of

memory. The execution of the project to run test methods created different result which

is shown in Figure 17.

Figure 17. Testing the project using Open JML and Maven clean test goals

Running the test cases took 2.736 s and it consumed 9 MB of memory.

4.2.9 OVal with AspectJ

The final tool is a powerful extension and is somewhat similar to Bean Validation but

also with remarkable differences. When OVal is used along with AspectJ it realises the

DbC. AspectJ utilises the aspect-oriented programming paradigm in which defining an

aspect one could modularise the concerns about a program at certain points and write

some code snippets to be executed when those points are reached. However, OVal lets to

define custom constraints the same as described for Bean Validation. Wherever a

constraint is used in source code, a pointcut should be defined in the corresponding aspect.

In this way, when OVal reaches to that pointcuts checks the validation of the field or

parameter. The AspectJ plugin can be installed in Eclipse and easily taken to be paralleled

with OVal. Thus, using OVal is straightforward with smooth coding and validation.

However, declaring aspects is complicated and needs more dominance on Aspect-

oriented programming.

Initialisation

Setting up a project in Eclipse and converting it to an AspectJ project is the easiest way

to start using OVal. In addition, oval-1.87.jar is critical as a referenced library that has to

be in class path. Finishing these steps one can code and add OVal constraints to the

classes.

Applying Constraints

To guard a class and enable runtime checking with AspectJ, before any class declaration

@guarded is required. Furthermore, for each constraint, a pointcut should be set in a

related aspect.

54

Field constraining: OVal is able to add and check annotated constraints to fields quite

the same as Bean Validation. Therefore, exact annotations defined in Bean Validation

Project can be imported and utilised in this framework with trivial changes. For guarding

Car's plateNumber @Notnull matches thoroughly:

private @NotNull String plateNumber;

to enable the constraint CarAspect should be:

public aspect CarAspect extends GuardAspect{

pointcut callConstructor(String plateNo, String model, String

manufacturer, int fee):

call(void Car.Car()) && args (plateNo, model, manufacturer,

fee);

pointcut callSetPlateNumber(String plateNo):

 call(void Car.setPlateNumber()) && args(plateNo);

...

}

Other fields have the same situation and the implementation does not differ from

plateNumber.

Preconditioning: in a similar implementation described for Bean Validation,

precondition designated for rentCar can be realised by adding @Available:

public Deal rentCar(Client client, @Available Car car ,int rentDays,

Date start, Date end) {

...

}

Definition and validation of @Available has been demonstrated in Figure 4 and Figure

5.

However, the associated aspect is like:

public aspect CarRentalAspect extends GuardAspect{

pointcut callRentCar(Client client, Car car ,int rentDays, Date start,

Date end):

call(Deal CarRental.rentCar()) && args(client, car, rentDays,

start, end);

}

Postconditioning: @RentedCarNotAvailable enforces rentCar to be ensured of the

status of the rentedCar to be false:

@RentedCarNotAvailable

public Deal rentCar(Client client, @Available Car car ,int rentDays,

Date start, Date end) {

...

}

55

The pointcut defined for precondition will work for the postcondition as well.

Setting Invariant: the invariant can be checked by adding @ProperDate before class

definition:

@Guarded

@ProperDate

public class Deal {

...

}

Definition and validation of @ProperDate has been demonstrated in Figure 6 and Figure

7.

Constraint Inheritance: as explained for previous frameworks, all the constraints are

inherited automatically and the tool is responsible to check the inherited constraints at

runtime.

Test Cases: test cases for OVal are the same as for previous tools with having in mind

that there is no need to do extra validation at the execution time.

Build and Execution

Compiling OVal with Maven only needs to run the project under Maven clean goal which

is shown in Figure 18.

Figure 18. Building the project using OVal and Maven clean goal

Building elapsed for 0.362 s and the environment claimed 9 MB of memory in this phase.

The results of testing the project under unit testing with Maven clean test goals is

displayed in Figure 19.

56

Figure 19. Testing the project using OVal and Maven clean test goals

Execution time of test methods lasted for 3.859 s and the project consumed 15 MB of

memory at runtime.

57

5. Findings and Analysis

In this chapter gained experience of working with different frameworks and the numerical

results from building and compiling the implemented projects will be analysed to find the

most promising extension. To perform this analysis, the criteria explained in 5.2 is

deployed. The items mentioned in Table 4 is measured for each tool and according to its

situation, functional aspects are analysed. Additionally, the compilation and execution

time and memory consumption of all tools are listed in a table to give a better

understanding of tools' performance.

5.1 Test Station Specifications

This study is conducted on a typical system with the minimum requirements for coding,

compiling, and running a program on Windows 8.1. However, a more detailed

specification of the hardware is:

 Processor: Intel Core i7-4700 MQ 2.4 GHz

 Installed Memory: 16 GB

 Graphics: GeForce NVIDIA 4 GB

 System Type: 64-bit Windows 8.1 Operating System

5.2 Evaluation Criteria

To have a realistic yet a simple evaluation of tools, this research concentrates on

functional and executional aspects of the extensions in a stable environment and under

the same conditions. Some of the most critical aspects are initialization, the number of

dependencies, compilation/build time, execution time, test time, memory consumption,

etc. Eclipse as a very common and powerful development tool provides some of the

numerical data required for this purpose and for other parts it is necessary to have a non-

numerical analysis. To have practical and more reasonable criteria, a scoring approach is

taken to score each tool according to its capabilities upon each factor with accounting a

simple scenario shown in Table 4.

Table 4. Framework Scoring Template

Feature Yes No

Tool supports Eclipse +5 0

Tool provides a plugin +5 0

Tool supports custom constraining +5 0

Tool depends on an external library(for each

dependency)

-1 0

Tool supports full documentation and user

guide

+1~+5 0

Ease of use +1~+5 0

58

The reason for including the first row in Table 4 is that one of the most popular IDEs for

Java, not being unreasonable if say the most popular one, is Eclipse, although there are a

variety of IDEs such as IntelliJ IDE, NetBeans, JDeveloper, BlueJ, etc. Therefore, due to

gaining this popularity and since Eclipse is non-proprietary development tool, this study

perceives supporting it as a critical aspect for a DbC instrumentor. Besides, focusing on

one IDE makes the research more focused since most of the tools are not so mature to

support a plethora of different IDEs.

Documentation support focuses on a detailed documentation and user guidance with

providing code examples wherever is necessary with a good style of writing and

formatting the manual neatly. Moreover, ease of use concentrates on how ease the tool is

accessible in coding with regard to constraining and how the tool can simply create and

constraint with less complexity for the developer.

In addition to mentioned features and their points, coding and executional aspects can be

compared accordingly:

 Less compilation/build time can show better performance

 Less memory consumption can show better performance

The final score can claim which tool is better to be deployed.

5.3 Functionality Assessment

In this section, for tools introduced in this research the scoring scenario is applied and the

final scores will be compared. The comparison is partially deterministic because both

qualitative and quantitative aspects of a software in an experimental analysis have been

taken into account. However, the performance results will help to have a meticulous

outlook of the frameworks. The results of functionality assessment are shown in Table 5.

The assessment is based on tools' official documentation and the author's experience.

Some items can be seen as yes or no features and for each feature there is 5 points. It

should be noted that external dependencies are considered as negative aspects and for

each dependency a -1 point is measured for the corresponding tool. For example, if a tool

depends on three external libraries -3 points are set for this item. Additionally, since

documentation support and ease of use are qualitative aspects, the pointing should be

taken from a range of points, which is 1 to 5 in this criterion.

59

T
a
b

le
 5

.
J
a
v
a
 D

b
C

 T
o
o
ls

 F
u
n
c
ti
o

n
a

lit
y
 A

s
s
e
s
s
m

e
n
t
S

c
o
re

s

T
o
o
ls

F
ea

tu
re

T
o
ta

l
S

co
re

E

cl
ip

se

S
u
p
p
o
rt

P

lu
g
in

S

u
p
p
o
rt

C

u
st

o
m

C

o
n
st

ra
in

in
g

E

x
te

rn
al

D

ep
en

d
en

ci
es

D
o
cu

m
en

ta
ti

o
n

an
d
 U

se
r

G
u
id

e

E
as

e
o
f

U
se

B
ea

n

V
al

id
at

io
n

5

0

5

-3

5

3

1
5

C
4
J

5

0

0

-3

3

4

9

C
o
fo

ja

5

0

0

-2

3

2

8

ez
C

o
n
tr

ac
t

0

0

0

-3

3

4

4

iC
o
n
tr

ac
t

0

0

0

-1

2

4

5

JC
o
n
tr

ac
to

r
0

0

0

-1

3

4

6

M
o
d
er

n
 J

as
s

0

0

0

-1

3

4

6

O
p
en

 J
M

L

5

5

0

-3

4

3

1
4

O
V

al

5

0

5

-2

3

2

1
3

F
o
r

ea
ch

 i
te

m
 a

 t
o
o
l

g
et

s
5
 p

o
in

ts
 i

f:

It

 s
u
p
p

o
rt

s
an

 I
D

E

It

 p
ro

v
id

es
 a

 p
lu

g
in

It

 s
u
p
p

o
rt

s
cu

st
o
m

 c
o
n
st

ra
in

in
g

F
o
r

ea
ch

 e
x

te
rn

al
 d

ep
en

d
en

cy
 a

 t
o
o
l

g
et

s
-1

F
o
r

d
o
cu

m
en

ta
ti

o
n
 a

n
d
 u

se
r

g
u
id

e
a

to
o
l

ca
n
 g

et
 a

 s
co

re
 f

ro
m

 1
 t

o
 5

-t
h
e

h
ig

h
er

 t
h
e

b
et

te
r

F

o
r

ea
se

 o
f

u
se

 a
 t

o
o
l

ca
n

 g
et

 a
 s

co
re

 f
ro

m
 1

 t
o
 5

-t
h
e

h
ig

h
er

 t
h
e

b
et

te
r

60

As Table 5 reveals, Bean Validation with 15 points is the most promising tool in IDE

support, customisability, documentation and user guidance, ease of use and other

functional aspects. At next level, Open JML and OVal with 14 and 13 points respectively

have got the second and third place in the scoring table. Although they might have huge

differences, one can see them in almost a same level for development and validation. C4J

and Cofoja with 9 and 8 point respectively are at next levels. C4J has supressed Cofoja

in the ranking due to its more simplicity of usage. jContractor and Modern Jass with 6

points showed less benefitability from the viewpoint of tool's capabilities. iContract with

5 and ezContract with 4 points got the lowest points in the ranking.

5.4 Performance Analysis

From the perspective of building and execution the tools have generated different

outcomes. The data captured from deploying those frameworks that supported Eclipse

environment at compile and runtime is shown in Table 6. Results are separated as two

categories one for build phase and one for test phase.

Table 6. Java DbC Extensions Compile and Execution Results

Tool Name Build Test

Compile

Time(s)

Memory

Consumption

(MB)

Compile

Time(s)

Memory

Consumption

(MB)

Bean Validation 0.470 8 2.790 11

C4J 0.344 8 2.677 11

Cofoja 0.337 8 2.589 12

ezContract - - - -

iContract - - - -

jContractor - - - -

Modern Jass - - - -

Open JML 0.598 7 2.736 9

OVal with

AspectJ

0.362 9 3.859 15

The best compiling time is for Cofoja with 0.337 s and the worst is for Open JML with

0.598 s. After Cofoja, C4J and OVal with 0.344 s and 0.362 respectively showed better

compiling rather than other tools. Bean Validation with 0.470 s has the second worst

compile performance among all extensions. In fact, although Bean Validation has proven

the best tool from the viewpoint of functionality and features, this tool does not show a

good result of compiling. Indeed, Bean Validation may claim long ages for compiling a

project particularly if the project is a big with thousands of lines of code. In a similar

compile time, simpler tools compiled the projects quicker than other tools. This means

61

that simpler tools with less functionality might be quicker in build and compile time.

Unfortunately, ezContract, iContract, jContractor and Modern Jass do not support

Eclipse, thus, the building and execution time are missing for them. Even measuring the

associated times in command line for them will disrupt the equality of development

conditions because it definitely will affect build and test time when the environment

changes.

From the perspective of test time, Cofoja with 2.589 s owns the fastest running and OVal

with 3.859 s has the worst. C4J, Open JML, and Bean Validation with 2.677 s, 2.736 s,

and 2.790 s respectively, generated test time at a lower level. Moreover, it should be noted

that OVal may take a long time for testing a big project with a plethora of lines of code.

As mentioned above, ezContract, iContract, jContractor and Modern Jass have not been

comparable to other tools due to lack of Eclipse support. Not only the build and test time

can be critical for the frameworks, memory consumption is also important for an

evaluation. Thanks to Eclipse that provides memory usage as a supplementary

information in its console, memory usage of the extensions, which is listed in Table 6.

For build phase, Open JML allocated the least amount of memory with 7 MB, which is a

very good result. Bean Validation, C4J, and Cofoja with 8 MB have equally used memory

less efficiently. However, the worst tool in memory usage was OVal 9 MB which is a bit

more in comparison to other tools. It could be inferred that OVal may involve a lot of

memory during the compile of a real big project. In test phase, Open JML proved to be

the best framework with 9 MB. The second best tools are Bean Validation and C4J with

equally 11 MB. Cofoja with 12 MB, quite close to Bean Validation and C4J, showed a

bit lower performance. However, OVal with 15 MB of memory consumption had the

worst memory allocation. It means that using OVal in big projects may be drastically

terrible due to high memory consumption both at build and run.

5.5 Answering Research Questions

The main research question of this study was:

RQ: What is the state of the art in Java contract programming?

To get rid of generality included in the question it was necessary to divide it to two minor

questions focusing on two different areas. In order to address the new questions an

experimental study has been conducted and corresponding results are collected.

According to the criteria concerning functionality and performance analysis the sub

questions of this investigation are answered.

RQ1: Which tools can create better results from the viewpoint of functionality?

Bean Validation with 15 points, as listed in Table 5, is the most promising framework

from the viewpoint of functionality. Bean Validation supports an IDE, provides

customisability of constraints, and proposes a very well-formed documentation both in

its official website as an html introduction and a PDF version with a detailed information

about the API and the tool's principles. Bean Validation reduces coding with regard to

constraining and is very powerful in validation of executable and non-executable

elements. In Addition, it has updated the API regularly meaning that the inventors are

improving the extension.

RQ2: Which tools are better from the viewpoint of performance?

62

As demonstrated in Table 6, C4J has the best compile and test time with medium memory

allocation. On the other hand, Open JML has the best memory management with low time

management. Considering both functionality and performance concurrently, Open JML

with 14 points, showing moderate results in build and test time and being very efficient

in assigning memory can be considered as the most promising tool for validation with

integration in Eclipse. Although Bean Validation has got the highest point in the ranking,

it did not show good results in build and test time and memory management. In fact, Bean

Validation stayed at the middle of the ranking from the perspective of performance. In

other words, if the coder is not concerned about hardware resources, means that they have

got powerful computers, Bean Validation can work superbly. But since the resources are

inevitably critical in programming and it is generally admitted that reserving fewer

resources can show better performance, therefore, Open JML is reliable both in having

great features and performing well in real situations. However, Open JML and Bean

Validation can be chosen interchangeably according to a project's configuration and

resources.

63

6. Discussion and Conclusion

6.1 Discussion

Contract programming as a useful programming technique has proven to be a practical

validation method for most of programming languages. This paradigm helps to reach a

better situation when the coder is concerned about fewer coding flaws and runtime errors.

In fact, DbC detects and reduces unexpected errors by providing a method to check

preconditions, postconditions on which the code specification should be satisfied. DbC

enforces a software to implement some checks on each element to diminish programming

faults and concurrently makes the code more readable. Although DbC involvement in a

project can be time consuming and a lot of efforts and impose more cost to a project team,

it is worth employing its theory because it helps to save time at test and deploy phase

where real users should work with the product and give their feedback with reporting

possible errors. This process, i.e. error detection and continuous resolving, is costly and

very time consuming. Thus, having a powerful DbC tool can be definitely beneficial for

a project. Reasons like these will justify the comparison of previously made tools to

differentiate current endeavours leading to have a list of promising tool with respective

applicability.

Comparing currently available Java extensions for software validation can be seen from

different lenses. First, working with different tools through this study can give a useful

sight to developers who are not familiar with DbC and if they know the theory of DbC,

they might not have heard about these tools and their features and capabilities.

Additionally, a reader can get a concise overview of the tools, their constraining

principles, their practical contracting, and their validation methods. Indeed, a quick

understanding of what each tool can do and how it adds a contract to a class can be

delivered with notifying that it is possible to rapidly get the gist of contract programming

and its basic rules. Next, for a coder with a minimum perception of DbC and knowing

some tools, this research can help to choose better tools for their needs according to their

usefulness and applicability in a certain project frame. A project highly dependent on a

specific IDE, e.g. Eclipse, needs a tool for which there is a support of that IDE using one

specific extension. Even for more detailed requirements, e.g. having a tool with a plug-in

support, a development team can choose a precise tool for a precise purpose rather than

only using a tool randomly. In addition, a tool with a complete documentation and better

user guidance can fulfil a novice developer's needs effectively with fewer self-tutorial

courses. Next, an evaluation of performance, i.e. build/run time and memory allocation,

is sufficiently influential on the decision making of working with a particular framework

according to a project time, project goals, and a product quality and precision. For

instance, a simple project not emphasising on test phase and memory management can

deploy a tool working better only in compilation no matter how much memory it allocates

for its validation process. But for a project with thousands of lines of code, in which build

time and memory allocation is highly influential on the product and its regularly

intangible deliverables, choosing a fast enough tool with a professional memory

management is critical. Besides, although tools are different in features and performance,

this study can claim that each of tools are useful for a specific purpose and all of them

have positive effects on programming with paying attention to software validation.

Considering the evaluation and comparison of tools this study can be extended by adding

more items to the criteria or deploying a more sophisticated comparison method to get

more accurate results. For example, adding other possible items to the criteria and

64

dividing each item to some sub items then giving a score to each of them can generate

more precise points. For instance, one can consider testability as another item in which

legibility, and traceability can be taken as sub items and for each of them a similar or even

different scoring template can elaborate the study and the findings. But these new criteria

may require different test environments and test systems due to having many more

aspects. Even by taking into consideration of software quality aspects and examine each

framework under one aspect, other researchers can evaluate the tools in a different

manner. Although this thesis only concentrated on scrutiny of DbC tools, while future

studies can try to compare DbC tools with tools from other validation and verification

methods to even compare tools from a higher level of evaluation. Moreover, in a more

sophisticated evaluation a study can attempt to examine the extensions by asking a group

of real developers and conducting some interview with the participants as the human

analysers to gather their experiences and at the same time, collecting related data of those

users' interaction with the tools while they are coding based on a defined scenario.

6.2 Limitations

This treatise does not aim to find a silver bullet for specification language support for any

kind of programming language but it seeks to catch out a highly beneficial and proper

extension from a group of solutions merely generated for Java. However, the reason why

Java is selected as the leading language will be discussed later. Another limitation is that

this study chooses candidates only from available tools meaning that there might be

dissimilar Java libraries or tools with special features but once they do not support DbC

or are not alive anymore, they will not be dwelled on as potential candidates. In addition,

since the improvement of current tools is a continuous process and most of them are likely

to improve in near future, the results of this research might be viable and restricted to the

time of examination and it would be reasonable if there might be a great change in the

results after a while.

6.3 Conclusion

This research aimed to find a better solution from a variety of solutions for programming

by contract in Java language by an experimental evaluation of current DbC instrumentors

according to a novel scrutiny and comparison criteria. This examination required to

implement a semi real software system as the model coded system on which the tools

should have been deployed for an analysis. Working with each framework and test it on

Java code indicated that tools showed different results from the viewpoint of features and

performance. Some tools have better or more features, some tools provide better

performance and some tools are in moderate situation. This study shows that a tool with

outstanding features cannot guarantee to have noticeable performance. Bean validation

with the highest functionality score can be considered as a really professional and flexible

tool with excellent features when the resources are not restricting the validation. C4J as a

simple tool is the fastest tool when it comes to build and execution time and Open JML

as more complicated tool, not as complicated as Bean Validation is, with a lot of amazing

features is the best tool when it comes to memory management.

65

References

Arnout, K., & Simon, R. (2001). The .NET Contract Wizard: Adding Design by Contract

to languages other than Eiffel. In 39th International Conference and Exhibition on

Technology of Object-Oriented Languages and Systems (TOOLS39), page 14-23. IEEE

Bergström, J. (2018). C4J Design By Contract for Java. Retrieved July 8, 2018 from

http://c4j.sourceforge.net/

Bolstad, M. (2003). Design by Contract: A Simple Technique for Improving the Quality

of Software. In Proceedings of the 2004 Users Group Conference, pages 319-323. IEEE

Carrillo-Castellon, M., Garcia-Molina, J., Pimentel, E., & Repiso, I. (1996). Design by

Contract in Smalltalk. Journal of Object-Oriented Programming 1996, pages 23–28

Chen, C., Cheng, Y., & Hsieh, C. (2008). Contract specification in Java: Classification,

characterization, and a new marker method. IEICE Transactions on Information and

Systems 2008, VOL.E91-D, Pages 2685-2692

Cheng, Y., Chen, C., & Hsieh, C. (2007). ezContract: Using Marker Library and Bytecode

Instrumentation to Support Design by Contract in Java. In Proceedings of the 14th Asia-

Pacific Software Engineering 2007, pages 502-509. IEEE

Crocker D. (2004) Safe Object-Oriented Software: The Verified Design-By-Contract

Paradigm. Practical elements of safety: in proceedings of the twelfth Safety-Critical

Systems Symposium 2004, pages 19-41. Springer

Delev, T., & Gjorgjevikj, D. (2017). Static analysis of source code written by novice

programmers. In 2017 Global Engineering Education Conference (EDUCON), pages

824-830. IEEE

Ehmer Khan, M. (2010). Different Forms of Software Testing Techniques for Finding

Errors. IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, pages

11-16

Feldman, Y. A. (2003). Extreme Design by Contract. In Extreme Programming and Agile

Processes in Software Engineering (XP 2003) 4th International Conference, pages 261–

270. Springer

Ferentschik, H., Morling, G., & Smet, G. (2018). Hibernate Validator 6.0.10.Final -JSR

380 Reference Implementation: Reference Guide. Retrieved July 5, 2018 from

http://beanvalidation.org/

Firesmith, D. (1999). A Comparison of Defensive Development and Design by Contract.

In 30th International Conference on Technology of Object-Oriented Languages and

Systems, Delivering Quality Software - The Way Ahead (TOOLS 1999), pages 258-267.

IEEE

German, A. (2003). Software Static Code Analysis Lessons Learned. CrossTalk the

journal of defense software engineering 2003, Vol. 16, No.11, pages 13-17

http://c4j.sourceforge.net/
http://beanvalidation.org/

66

Guerreiro, P. (2001). Simple Support for Design by Contract in C++. In 39th

International Conference and Exhibition on Technology of Object-Oriented Languages

and Systems (TOOLS39), pages 24–34. IEEE

Hakonen, H., Hyrynsalmi, S., & Järvi, A. (2011). Reducing the Number of Unit Tests

with Design by Contract. In Proceedings of the 12th International Conference on

Computer Systems and Technologies 2011, pages 161-163. ACM

Hoare, C. (1969). An Axiomatic Basis for Computer Programming. Communications of

the ACM 1969, Volume 12 Issue 10, pages 576-580

Introduction to OpenJML (2018). Retrieved July 9, 2018 from

http://www.openjml.org/documentation/onlinemanual.shtml

Jézéquel, J. M., & Meyer, B. (1997). Design by Contract: The Lessons of Ariane. IEEE

Computer 1997, Vol. 30 Issue 1, pages 129-130

Karaorman, M., Hölzle, U., & Bruno, J. (1999). jContractor: A Reflective Java Library

to Support Design By Contract. In Proceedings of the Second International Conference

on Meta-Level Architectures and Reflection 1999, pages 175-196. Springer

Kramer, R. (1998). iContract - The JavaTM Design by ContractTM Tool. In Proceedings of

the Technology of Object-Oriented Languages and Systems 1998, pages 295-307. IEEE

Kumar, K., & Dahiya, S. (2017). Programming Languages: A Survey. International

Journal on Recent and Innovation Trends in Computing and Communication 2017, Vol.

5 Issue 5, pages 307-313

Leavens, G. T., Baker, A. L., & Ruby, C. (1998). JML: A Java Modeling Language. In

Formal Underpinnings of Java Workshop at OOPSLA'98

Leavens, G. T., Baker, A. L., & Ruby, C. (2003). Preliminary Design of JML: A

Behavioral Interface Specification Language for Java. ACM SIGSOFT Software

Engineering Notes 2006, Vol. 31 Issue 3. ACM

Leavens, G. T., & Cheon, Y. (2006). Design by Contract with JML. Retrieved April 13,

2018 from www.jmlspecs.org

Le Traon, Y., Baudry, B., & Jézéquel, J. M. (2006). Design by Contract to improve

Software Vigilance. IEEE Transactions on Software Engineering 2006, Vol. 32 Issue 8,

pages 571–586

Liskov, B., & Guttag, J. (1986). Abstraction and Specification in Program Development.

MIT Press/Mc Graw Hill

Manna, Z. & Pnueli, A. (1974). Axiomatic Approach to Total Correctness of Programs.

Acta Informatica Vol. 3 Issue 3, pages 243-263. Springer

Meyer, B. (1988). Eiffel: A Language and Environment for Software Engineering. The

Journal of Systems and Software 1988 Vol. 8 Issue 3, pages 199-246

Meyer, B. (1992). Applying “Design by Contract”. IEEE Computer 1992, pages 40-51

Meyer, B. (1997). Object-Oriented Software Construction Second Edition. Prentice Hall

http://www.openjml.org/documentation/onlinemanual.shtml
http://www.jmlspecs.org/

67

Minh Lê, N., (2011). Contracts for Java: A Practical Framework for Contract

Programming. Grenoble INP – Ensimag Technical Report, Google Switzerland GMBH

Morling, G. (2017). Bean Validation specification. Java Community Process Program.

Retrieved July 5, 2018 from http://beanvalidation.org/

Muijs, D. (2004). Doing Quantitative Research in Education with SPSS. SAGE

Publications Ltd

Myers, G. J. (2004). The Art of Software Testing, Second Edition. John Wiley & Sons,

Inc.

Novikov, A. S., Ivutin, A. N., Troshina, A. G., & Vasiliev, S. N. (2017). The Approach

to Finding Errors in Program Code Based on Static Analysis Methodology. In 6th

Mediterranean Conference on Embedded Computing (MECO) 2017, pages 437-440.

IEEE

Oliveira e Silva, M., & Francisco, P. G. (2014). Contract-Java: Design by Contract in

Java with Safe Error Handling. In 3rd Symposium on Languages, Applications and

Technologies 2014, pages 111-126. SLATE

OVal - the object validation framework for Java™ 5 or later (2018). Retrieved July 10,

2018 from http://oval.sourceforge.net/userguide.html

Plessel, T. (1998). Design By Contract: A Missing Link In The Quest For Quality

Software. Retrieved April 8, 2018 from https://www.eiffel.org/documentation

Plösch, R. (1997). Design by Contract for Python. In Proceedings of the Joint Asia Pacific

Software Engineering Conference 1997, pages 213–219. IEEE

Plösch, R. (2002). Evaluation of Assertion Support for the Java Programming Language.

Journal of Object Technology 2002 Vol. 1 No. 3, pages 5-17

Rieken, Y. (2007). Design by Contract for Java-Revised. Master thesis, Universität

Oldenburg

Sharan, K. (2017). Beginning Java 9 fundamentals: Arrays, objects, modules, JShell, and

regular expressions. Apress

Simon, Mason, R., Crick, T., Davenport, J. H., & Murphy, E. (2018). Language Choice

in Introductory Programming Courses at Australasian and UK Universities. In

Proceedings of the 49th ACM Technical Symposium on Computer Science Education,

Pages 852-857. ACM

Thüm, T., Schaefer, I., Kuhlemann, M., Apel, S., & Saake, G. (2012). Applying Design

by Contract to Feature-Oriented Programming. In Fundamental Approaches to Software

Engineering 2012, Lecture Notes in Computer Science, Vol 7212, pages 255-269.

Springer

Wampler, D. (2006). Contract4J for Design by Contract in Java: Design Pattern-Like

Protocols and Aspect Interfaces. In Proceedings of the Fifth AOSD Workshop on Aspects,

Components, and Patterns for Infrastructure Software 2006, pages 27–30. Bonn

University

http://beanvalidation.org/
http://oval.sourceforge.net/userguide.html
https://www.eiffel.org/documentation

68

Yilmaz, K. (2013). Comparison o-f Quantitative and Qualitative Research Traditions:

epistemological, theoretical, and methodological differences. European Journal of

Education 2013, Vol. 48 No. 2, pages 311-325

Zhou, Y., Pelliccione, P., Haraldsson, J., & Islam, M. (2017). Improving Robustness of

AUTOSAR Software Components with Design by Contract: A Study Within Volvo AB.

Software Engineering for Resilient Systems. SERENE 2017. Lecture Notes in Computer

Science, Vol 10479, pages 151-168. Springer

69

Appendix A. Classes Before Deploying Constraints

public class Car {

 private String plateNumber;

 private String model;

 private String manufacturer;

 private int fee;

 private boolean availability;

 public Car(String plateNo, String model, String manufacturer,

int fee) {

 this.plateNumber = plateNo;

 this.model = model;

 this.manufacturer = manufacturer;

 this.fee = fee;

 this.availability = true;

 }

 public String getPlateNumber() {

 return plateNumber;

 }

 public void setPlateNumber(String plateNumber) {

 this.plateNumber = plateNumber;

 }

 public String getModel() {

 return model;

 }

 public void setModel(String model) {

 this.model = model;

 }

 public String getManufacturer() {

 return manufacturer;

 }

 public void setManufacturer(String manufacturer) {

 this.manufacturer = manufacturer;

 }

 public int getFee() {

 return fee;

 }

 public void setFee(int fee) {

 this.fee = fee;

 }

 public boolean isAvailable() {

 return availability;

 }

 public void setAvailability(boolean availability) {

 this.availability = availability;

 }

}

70

public class Client {

 private String ID;

 private String name;

 private String address;

 private String phone;

 public Client(String id, String name, String address, String

phone)

 {

 this.ID = id;

 this.name = name;

 this.address = address;

 this.phone = phone;

 }

 public String getID() {

 return ID;

 }

 public void setID(String id) {

 this.ID = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getAddress() {

 return address;

 }

 public void setAddress(String address) {

 this.address = address;

 }

 public String getPhone() {

 return phone;

 }

 public void setPhone(String phone) {

 this.phone = phone;

 }

}

public class Deal {

 private String ID;

 private Car rentedCar;

 private Client client;

 private int rentDays;

 private int totalFee;

 private Date startDate;

 private Date endDate;

 private DealStatus status;

 public Deal(String id, int days, int totalFee, Car rentedCar,

Client client, Date start, Date end) {

 this.ID = id;

71

 this.rentDays = days;

 this.rentedCar = rentedCar;

 this.client = client;

 this.totalFee = totalFee;

 this.startDate = start;

 this.endDate = end;

 this.status = DealStatus.Open;

 }

 public String getID() {

 return ID;

 }

 public void setID(String id) {

 this.ID = id;

 }

 public Car getRentedCar() {

 return rentedCar;

 }

 public void setRentedCar(Car rentedCar) {

 this.rentedCar = rentedCar;

 }

 public Client getClient() {

 return client;

 }

 public void setClient(Client client) {

 this.client = client;

 }

 public int getRentDays() {

 return rentDays;

 }

 public void setRentDays(int rentDays) {

 this.rentDays = rentDays;

 }

 public int getTotalFee() {

 return totalFee;

 }

 public void setTotalFee(int totalFee) {

 this.totalFee = totalFee;

 }

 public Date getStartDate() {

 return startDate;

 }

 public void setStartDate(Date startDate) {

 this.startDate = startDate;

 }

 public Date getEndDate() {

 return endDate;

 }

 public void setEndDate(Date endDate) {

 this.endDate = endDate;

 }

72

 public DealStatus getStatus() {

 return status;

 }

 public void setStatus(DealStatus status) {

 this.status = status;

 }

 public enum DealStatus{Open, Closed}

}

public class InsuredDeal extends Deal{

 private int maximumInsuranceCover;

 public InsuredDeal(String id, int days, int totalFee, Car

rentedCar, Client client, Date start, Date end, int maxInsCover) {

 super(id, days, totalFee, rentedCar, client, start,

end);

 this.maximumInsuranceCover = maxInsCover;

 }

 public int getMaximumInsuranceCover() {

 return maximumInsuranceCover;

 }

 public void setMaximumInsuranceCover(int

maximumInsuranceCover) {

 this.maximumInsuranceCover = maximumInsuranceCover;

 }

}

public class CarRental {

 public static ArrayList<Client> clients = new

ArrayList<Client>();

 public static ArrayList<Car> cars = new ArrayList<Car>();

 public static ArrayList<Deal> deals = new ArrayList<Deal>();

 public CarRental() {

 }

 public static void main(String[] args) throws

NoSuchMethodException {

 Client customer1 = new Client("CL-2018-1001",

"George", "1851-Willington st.", "46322311");

 Client customer2 = new Client("CL-2018-1002",

"Michael", "2310-Hamilton st.", "46322412");

 Client customer3 = new Client("CL-2018-1003", "James",

"1438-Vertongen st.", "46324835");

 clients.add(customer1);

 clients.add(customer2);

 clients.add(customer3);

 Car car1 = new Car("DD-CE-123", "XC60", "Volvo", 50);

 Car car2 = new Car("DD-BC-456", "RAV4", "Toyota", 65);

 Car car3 = new Car("DD-BC-456", "508", "Peugeot", 40);

 Car car4 = new Car("DD-AC-234", "S8", "Audi", 60);

 Car car5 = new Car("DD-EF-567", "Omega", "Opel", 45);

73

 cars.add(car1);

 cars.add(car2);

 cars.add(car3);

 cars.add(car4);

 cars.add(car5);

 }

 public void addNewClient(String id, String name, String

address, String phone) {

 Client client = new Client(id, name, address, phone);

 clients.add(client);

 }

 public void addNewCar(String plateNo, String model, String

manufacturer, int fee) {

 Car car = new Car(plateNo, model, manufacturer, fee);

 cars.add(car);

 }

 public Car searchAvailableCar(int fee) {

 Car car = null;

 for(Car c: cars) {

 if (c.getFee() == fee && c.isAvailable()) {

 car = c;

 break;

 }

 }

 return car;

 }

 public Deal rentCar(Client client, Car car, int rentDays, Date

start, Date end) {

 Deal deal = new Deal("DL-"+ client.getID() + "-" +

car.getPlateNumber(), rentDays, car.getFee() * rentDays, car, client,

start, end);

 deal.getRentedCar().setAvailability(false);

 deals.add(deal);

 return deal;

 }

 public void terminateDeal(Deal deal) {

 deal.setStatus(Deal.DealStatus.Closed);

 deal.getRentedCar().setAvailability(true);

 }

}

