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Abstract

This thesis presents new user association (UA) schemes that take cell interference into account for
a multi-cell network aided with multiple reconfigurable intelligent surfaces (RISs). We formulate
a network spectral efficiency maximization problem by jointly optimizing active beamforming at
the base stations (BSs), passive beamforming at the RISs, and user-BS association with
consideration to the impact of RISs. We then propose a computationally efficient iterative
algorithm based on alternating optimization to resolve this intractable mixed-integer non-convex
problem. A fractional programming technique is used to optimize active beamforming at the BSs
and passive beamforming at the RISs, and a penalization method combined with successive
convex programming is applied for UA optimization, which is shown to achieve an optimal
solution. Additionally, we balance BS loads and maximize the network utility by optimizing the
user association with a matching game in another scheme.

Finally, a crucial aspect of 6G is that localization and sensing will not be a by-product of
communications development but will instead be integrated into the system from the start, and
thus is a main design target of 6G. Toward this, a vision for how location and sensing information
can be used to support, enable, and enrich novel applications will be sketched. In addition, the
potential benefits of location and sensing information for improving communications are
investigated as use cases. Therefore, taking advantage of sensing with radio waves and
localization, we propose a novel environment-aware joint active/passive beamforming approach
for RIS-aided wireless communication based on the new concept of channel knowledge map
(CKM). In the proposed scheme, the user equipment location information is combined with the
radio environment information provided by CKM to achieve efficient beamforming without real-
time training. Simulation results show the proposed scheme’s superior performance over training-
based beamforming, which is also quite robust to errors related to the UE’s location in practice.

Keywords: active-passive beamforming, beyond 5G (B5G), channel knowledge map,
energy efficiency, fractional programming, millimeter wave, multi-cell multi-user
network, optimization, reconfigurable intelligent surface, spectral efficiency, successive
convex programming, user association
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Tiivistelmä

Tässä väitöskirjassa esitellään uusia käyttäjäyhteys (user association, UA)- järjestelmiä, joissa
otetaan huomioon solujen häiriöt monisoluverkossa, jossa on useita uudelleenkonfiguroitavia
älykkäitä pintoja (reconfigurable intelligent surfaces, RIS). Muotoilemme verkon spektritehok-
kuuden maksimoinnin ongelman optimoimalla yhdessä aktiivisen keilanmuodostuksen tukiase-
milla, passiivisen keilanmuodostuksen RIS-pinnoilla ja käyttäjän tukiasemayhteyden ottaen huo-
mioon RIS-pintojen vaikutuksen. Tämän jälkeen ehdotamme laskennallisesti tehokasta iteratii-
vista algoritmia, joka perustuu vuorottelevaan optimointiin, jotta tämä hankala ei-konveksi seka-
kokonaislukuongelma saadaan ratkaistua. Tukiasemien aktiivisen keilanmuodostuksen ja RIS-
pintojen passiivisen keilanmuodostuksen optimointiin käytetään fraktionaalista ohjelmointitek-
niikkaa, ja peräkkäiseen konveksiin ohjelmointiin yhdistettyä rangaistusmenetelmää sovelletaan
käyttäjäyhteyden optimointiin. Sen avulla osoitetaan päästävän optimaaliseen ratkaisuun. Lisäk-
si tasapainotamme tukiasemien kuormia ja maksimoimme verkon käytön optimoimalla käyttä-
jäyhteyden vastaavalla pelillä toisessa järjestelmässä.

6G:n keskeinen näkökohta on, että paikantaminen ja tunnistaminen eivät ole viestinnän kehi-
tyksen sivutuotteita, vaan ne integroidaan järjestelmään alusta alkaen, ja ne ovat siten 6G:n
suunnittelun päätavoitteita. Tätä varten hahmotellaan visio siitä, miten sijainti- ja tunnistamistie-
toja voidaan käyttää uusien sovellusten tukemiseen, mahdollistamiseen ja rikastamiseen. Lisäk-
si käyttötapauksina tutkitaan paikannus- ja tunnistamistietojen mahdollisia hyötyjä viestinnän
parantamisessa. Tämän vuoksi ja radioaaltojen avulla tapahtuvaa tunnistamista ja paikannusta
hyödyntämällä ehdotamme uutta ympäristötietoista yhdistettyä aktiivista/passiivista keilanmuo-
dostusta RIS-avusteiseen langattomaan viestintään uuden kanavatietokartan konseptin perusteel-
la. Ehdotetussa järjestelmässä käyttäjien laitteiden sijaintitiedot yhdistetään kanavatietokartan
radioympäristötietoihin, jotta keilanmuodostus olisi tehokasta ilman reaaliaikaista koulutusta.
Simulaatiotulokset osoittavat ehdotetun järjestelmän ylivertaisen suorituskyvyn verrattuna kou-
lutukseen perustuvaan keilanmuodostukseen, ja se kestää myös erittäin hyvin käyttäjälaitteiden
sijaintiin liittyviä virheitä käytännössä.

Asiasanat: aktiivinen/passiivinen keilanmuodostus, kanavatietokartta, käyttäjäyhteys,
optimointi, uudelleenkonfiguroitava älykäs pinta
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1 Introduction

1.1 Scope and objectives of the thesis

With the rapid growth of mobile traffic, the need for wider bandwidths to deliver higher
data rates and overcome spectrum shortages at the low-frequency bands becomes more
acute. In part due to the ability of millimeter waves (mmWave) to provide gigabit
data rates and a vast number of bandwidths available at 30 to 300 GHz, mmWave
communications are proposed as part of the next-generation cellular networks (5G
and beyond) to overcome the current spectrum shortage, and ever-increasing capacity
demand [1], where it is feasible for both backhaul and mobile access [2–4]. Both
sub-6 GHz and mmWave frequencies will be utilized by heterogeneous networks in
5G and beyond. In these networks, there will be many different base stations (BSs),
each with a different size, transmit power, and capability. This dense network poses
the challenge of determining the most optimal possible connections between BSs
and user equipment (UEs) so as to provide optimal performance while satisfying the
load constraints of the BSs. There is a fundamental difference between mmWave and
microwave communications where most current communications systems operate. The
path loss attenuation, lack of line of sight (LoS), and sensitivity to blockage all intensify
and require careful consideration in mmWave communications.

User association (UA) has a significant influence on the performance of the network
and interference mitigation. Traditionally, a UE is assigned a BS, which provides the
maximum signal-to-interference-plus-noise ratio (SINR). As a result, a BS might serve
several UEs and suffer overloading, while the other BSs might serve a few UEs and
might be under-loaded. Although UA has been studied in different scenarios, such as
massive multiple-input multiple-output (MIMO) systems [5], heterogeneous networks
(HetNets) [6], and mmWave Wi-Fi networks [7], the problem of UA and load balancing
in mmWave cellular networks are significantly different. Since mmWave signals are
vulnerable to path loss and blockage, they propagate over shorter distances than the
current radio frequency (RF) signals. Hence, mmWave cellular networks should be
employed densely so that several BSs surround each UE, and due to the nature of
mmWave channels, the channel between the UE and each of these BSs varies much
faster. Therefore, UA in mmWave cellular networks is different, and a new approach
should be considered. A unique user association, in which each UE can be associated
with only one BS at a time is considered in this thesis. As a result of a unique user
association problem, an integer variable with a value of one or zero is typically used to
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indicate whether a UE is connected to a BS, making it an NP-hard integer optimization.
When a HetNet is composed of different BSs with different transmit powers and under
highly directional and variable mmWave channel conditions, the traditional method of
connecting to the BS with the highest SINR may overload certain BSs and become
unworkable. It is also critical that the user association process is fast and efficient to
meet the low-latency requirements of beyond 5G networks (B5G). It should be noted
that in 5G and beyond networks, UEs will be able to operate in dual connectivity mode
as they are equipped with a multi-mode modem capable of supporting both sub-6 GHz
and millimeter wave bands, allowing them to be associated with either a macro BS
(MBS) or a small BS (SBS). Hence, a new approach is required to formulate a user
association problem for mmWave in comparison to other systems.

During the past few decades, the spectrum efficiency of wireless networks has
improved with the rapid growth of advanced technologies such as ultra-dense networks,
massive MIMO, and mmWave communications. However, implementation is still
challenging due to hardware costs and network energy consumption. In contrast, massive
MIMO arrays are challenging to build at mmWave and beyond frequencies with sparse
channels. For green 5G and beyond wireless networks, it is essential to conduct research
aimed at implementing cost-effective hardware spectral and energy-efficient technologies
[8]. By reconfiguring the propagation environment of wireless communication, the
use of reconfigurable intelligent surfaces (RIS) in wireless communications represents
a revolutionary approach to achieving better spectrum and energy efficiency [9, 10].
RISs are composed of many low-cost passive arrays that adjust the phase shifters
independently to reflect the incident signal. As a result of this collaboration between
reflected signals, the desired wireless transmission can be achieved. With proper phase
shift adjustments (to achieve passive beamforming), both the reflected and desired
signals can be added constructively and coherently at the receiver, resulting in an
improvement in SINR. By taking advantage of the RIS’ superior ability to shape wireless
propagation environments, wireless networks can be designed with new degrees of
freedom (DoFs), resulting in significant performance improvements. As a passive array,
RIS operation differs significantly from that of other active arrays, such as relays. With
no additional power, RIS uses a passive array to reflect ambient signals.

Furthermore, the information transmitted by the direct path as well as by the reflected
path is the same such that they can be coherently added together [11, 12]. Active
amplify and forward (AF) relays are usually operated in the half-duplex mode, which
is not spectrally efficient, while RIS is generally operated in the full-duplex mode.
Meanwhile, RIS has some advantages, such as its ability to be easily mounted on a wall
and ceilings. Consequently, an RIS located in the LoS with a BS (which is usually the
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case) improves the signal strength in its vicinity and extends the coverage range. In
dense environments such as airports, stadiums, and malls, the advantages of RIS make it
an enabling technology for wireless cellular networks [13]. Research efforts have been
devoted to designing RIS-assisted wireless communication systems based on these
appealing advantages, utilizing a variety of metrics, including maximizing the energy
efficiency [11, 14], spectral efficiency [15], and the network sum rate [16–18]. RIS can
also be applied in combination with other emerging technologies, such as integrated
sensing and communications (ISAC) [19].

In this thesis, we focus on RIS-assisted cellular networks in mmWave-enabled 5G
and beyond wireless networks and try to optimize the network parameters to achieve the
best performance. By harnessing active/passive beamforming in the cellular networks,
we aim to improve system performance and provide a thorough and detailed analysis
of the RIS’s effectiveness in extending the coverage area. This analysis involves the
implementation of joint beamforming and user association within the network.

1.2 Outline of the thesis

The thesis is written as a monograph, but all the contributions in Chapters 3, 4 are based
on journal and conference publications that have been published. In the following, we
present the outline of the thesis and briefly review the considered problems and main
contributions of this thesis.

Chapter 1, Introduction, introduces the thesis by presenting the motivations and
objectives behind this study, followed by the studied research questions of this thesis.
Then, the thesis scope and contributions are highlighted.

Chapter 2, Literature review, provides a comprehensive review of related works
that are relevant to the contributions of this thesis. The chapter starts with a survey on
user association in cellular networks and then proceeds to discuss the relevant problems
within the context of reconfigurable intelligent surfaces (RIS) and active and passive
beamforming.

Chapter 3, User association in RIS-assisted cellular networks, investigates user
association in an RIS-assisted mmWave cellular network considering the impact of
RIS on spectral efficiency improvements. By optimizing the user association using
a matching game, we balanced the BS loads and maximized the network spectral
efficiency. Furthermore, we propose an interference-aware user association scheme for
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mmWave multiple-input single-output (MISO) cellular networks, in which RISs are used
for coverage enhancement, particularly at the cell edge, and to reduce the vulnerability
of mmWave to N-LoS paths. We study the joint design of passive beamforming at the
RISs, active beamforming at the BSs, and the user association optimization problem in
RIS-assisted mmWave MISO cellular networks. This thesis takes into account both
active and passive beamforming in mmWave cellular networks as a means of improving
system performance and provides a thorough and detailed analysis of the effectiveness
of RIS in improving the system’s spectral efficiency and cell edge coverage. This chapter
makes the following main contributions:

• Our study presents an RIS-assisted multi-cell mmWave cellular network, in which an
RIS is assigned to each BS in order to facilitate downlink MISO transmissions. With
respect to the proposed system, we jointly consider active and passive beamforming
and UA in order to formulate the problem of sum rate maximization.

• Due to the nonconvexity and complexity of the problem, we present an iterative
algorithm for UA, active beamforming, and passive beamforming (IUA/PB) based
on alternating optimization (AO) techniques. The original problem is decomposed
into three non-convex subproblems, including UA optimization, active beamforming
optimization at the BSs, and reflection phase optimization (passive beamforming) at
the RISs. Each individual non-convex subproblem, is challenging, and we propose
two effective approaches to solve them.

• The UA optimization problem is a mixed integer nonlinear programming (MINLP)
problem, and due to its non-convexity structure with the presence of the integer
variables, it is known to be NP-hard. First, the binary UA variables are relaxed using
a penalty-based method, and the objective function is approximated by leveraging a
first-order lower bound. Next, we design an iterative algorithm based on successive
convex programming, which converges quickly to the optimal point due to its low
complexity.

• To optimize active and passive beamforming, we first deduce the objective function
based on the Lagrangian dual transform (LDT). Then by applying a fractional pro-
gramming method and reformulating the problem as a quadratically constrained
quadratic program (QCQP), we design an algorithm to solve the problems effectively.

• Finally, the performance of the proposed joint algorithm is analyzed and compared to
different benchmark algorithms. We show through simulations that the proposed
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algorithm provides significant improvements in terms of the spectral efficiency (SE).
The proposed algorithm, compared to benchmarks and a system without RIS, provides
a higher level of coverage and lower probability of outages, especially for the cell
edge users.

Chapter 4, Environment-aware communications leveraging channel knowledge
map, taking advantage of sensing with radio waves and localization, we propose a
novel environment-aware joint active/passive beamforming for RIS-aided wireless
communication based on the new concept of channel knowledge map (CKM). The
interplay between communication and sensing with radio waves has the potential to
enable novel use case families and provide side information to improve communication
performance. Furthermore, local networks enabling proximity-based interactions
between cooperative devices can take advantage of location information to establish
radio links and share radio resources. In this chapter, the potential of sensing with radio
waves is discussed regarding localization, mapping, and tracking, aiming to enable new
use cases and applications and to improve communication aspects of 6G systems. In the
proposed scheme, the user equipment (UEs) location information is combined with the
radio environment information provided by CKM to achieve efficient beamforming
without real-time training. Simulation results show the proposed scheme’s superior
performance over training-based beamforming, which is also quite robust to errors
related to UE’s location in practice.

Chapter 5, Conclusions and future works, summarizes the main results of the
thesis and discusses possible directions for further research in this area.

1.3 Author’s contributions to the publications

The thesis is written as a monograph based on two published journal papers [20,21]
and three published conference papers [22–24]. The author of this thesis had the main
responsibility for developing the original ideas together with his advisors, formulating
the mathematical problems, deriving the analytical equations and algorithms, writing the
MATLAB-based simulation codes, generating the numerical results, and writing the
papers. The role of all co-authors was to provide valuable guidance, ideas, comments,
criticisms, and support in developing the ideas/algorithms and writing the papers.

In addition to the above-mentioned papers, the author of this thesis is the main
author and coordinator of Hexa-X project deliverable document D3.2 [25] with the
industrial and other universities partners as a representative of the University of Oulu in
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Hexa-x project, wp3: 6G High-Resolution Localisation and Sensing. The author was
also a co-author and contributed to the article [26].
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2 Literature review

This chapter reviews the existing literature and parallel works related to the scope of the
thesis.

2.1 User association and handover

The focus of this section is on a review of the state-of-the-art works on user association
in cellular networks, as well as an analysis of the literature on this topic.

2.1.1 Approaches to user association and handover

A UE is traditionally associated with a BS using the highest SINR or the greatest
received power [27]. Cellular networks at microwave frequencies have successfully
utilized this technique, where all cells are homogeneous MBSs. As HetNets grow with
smaller, lower power pico, femto, and relay BSs, user association must be rethought in
order to ensure load balancing and prevent the case where users connect to only a MBS
due to its highest SINR and overload it.

By adjusting its transmit power based on its load, each BS in a single-tier network
can change its coverage area in order to balance the load within the network [28, 29].
The transmit power increases (decreases) when the BS is underloaded (overloaded) to
extend (contract) the coverage region. There is also the requirement of balancing the
network load between the different tiers in HetNets. Traditionally, biasing is used to
make a low-power lightly loaded tier appear more attractive than a congested tier by
artificially biasing its transmit power [30]. Despite that biasing can be done across and
within tiers, it is not possible to precisely control the load placed on each BS [31, 32].

Conventional 3GPP handover mechanisms use the Max-SINR strategy, which is
based on the following events:

– Event A1: The serving BS exceeds a threshold;
– Event A2: The serving BS does not exceed a threshold;
– Event A3: The neighboring BS becomes an offset amount better.

Once Event A2 has been triggered, each UE reports measurements. When Event A1 has
been triggered, measurement reporting is terminated by each UE. According to the
3GPP, the conventional handover mechanism is based on Event A3, which occurs after
Event A2 but before Event A1. During the interval time to trigger (TTT), the handover
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cannot be initiated unless the trigger condition is met (i.e. the SINR of the neighboring
BS is better than the SINR of the serving BS). There is an offset, a constant in dB,
representing the threshold for how much difference there should be between the serving
and neighboring BS’s SINRs, and there is TTT, which is the waiting time interval before
the handover can begin. By defining the offset value and TTT, we can successfully avoid
a ping-pong effect and reduce frequent handovers.

2.1.2 Convex optimization for user association

In order to achieve the balance between all BSs across different network tiers, a load
balancing user association scheme is employed in HetNets based on an optimization
theoretic approach [6]. A novel user association technique that constructs association
coefficients based on integer constraints was presented in [6], and it was concluded that
this unique association problem falls into the category of combinatorial programs, which
are NP-hard. A heuristic approach to solving this problem was adopted in which, at first,
the unique association constraints were relaxed to form a convex optimization. Then, the
fractional association problem was solved (allowing a UE to be served by multiple BSs),
and finally, the relaxed solution was rounded. Applying this relaxation reduced the
system complexity, and an upper bound performance for the original unique association
was obtained.

Similarly to [6], [5] addresses the issue of user association in HetNets with massive
MIMO BSs and UEs with single antenna. In massive MIMO, channel hardening
affects the association approach, which is independent of users’ instantaneous rates
or instantaneous channel state information (CSI) but is based only on converging
deterministic rate values, which depend on system parameters and large-scale CSI
measurements. However, despite considering unique associations, the association
coefficients are not necessarily integers but rather represent the fraction of time slots
in which each UE is served by one BS. In order to solve the convex network utility
maximization problem using Lagrangian duality, a fractional user association as a
long-term time average was interpreted. In [33], a heuristic algorithm was proposed to
solve the user association problem and achieve a near-optimal solution. The proposed
algorithm requires centralized implementation with a high computational complexity.
The authors in [34] proposed a distributed multi-game matching algorithm to enhance
the network spectral efficiency by running multiple rounds of a matching game with
lower complexity and fewer overheads.

A 60-GHz mmWave Wi-Fi network has also been studied for optimizing user
association [7]. In [7], an optimization problem is formulated that minimizes the
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maximum per-BS load subject to the demand for user data rates, with a similar approach
to [6], but rather than maximizing network throughput. This high atmospheric absorption
frequency results in users’ instantaneous rates converging to deterministic values. The
interference is expected to be negligible due to directional steerable antenna arrays. A
user association problem can be simplified as a result of this assumption as opposed to
one where interference must be taken into account, such as in dense mmWave cellular
networks operating at the proposed frequencies (28, 38, and 73 GHz) [2, 3, 35].

In addition, some existing studies have also investigated the joint problem of user
association, beamforming design, and power allocation [36, 37]. Research has shown
that this joint problem is NP-hard, and iterative algorithms are usually proposed to
achieve near-optimal results. NP-hard joint optimization problems may require overly
complex algorithms for practical implementation.

In most recent user association studies, the effect of small-scale fading (instantaneous
CSI) on the instantaneous rates of users is ignored. Therefore, the SINR employed
for user association is primarily determined by large-scale parameters (e.g., distance)
and does not depend on small-scale channel variability [38, 39]. This indicates that
the mmWave MIMO small-scale variations are ignored in the capacity formula and
that the system is typically simplified by merely considering directional gains. This
consideration can reduce the analytical complexity. However, it is not appropriate for
mmWave systems where the channel variations can be fast, and the instantaneous CSI
may change rapidly [40]. Based on our simulation results, the average network spectral
efficiency is significantly improved by considering both large-scale and small-scale
CSI. Joint power and sub-channel allocation scheme in a dense femtocell mmWave
network were investigated in [41], and a clustering method was proposed to enhance LoS
connectivity. UE-BS association and resource allocation in a Multi BS 60GHz WLAN
were studied in [42] to optimize the BS association and transmission scheduling through
a branch-and-cut-based solution procedure. Cooperative full-dimension beamforming in
a massive MIMO network was studied in [43] to optimize beamformers and the user
association and to maximize the network capacity. In [44], two association mechanisms,
including a time-based distributed coordination function and time-based beam collision
avoidance schemes, were proposed to reduce collision. New strategies for joint load
balancing and interference management in the downlink of a heterogeneous network,
where small cells are densely deployed within the coverage area of a traditional microcell,
were proposed in [45].

Users are associated with the best available BS that provides the maximum SINR
(Max-SINR) value through the 3GPP user association and handover mechanism. In
spite of this, this approach is not suitable for B5G networks equipped with mmWave
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as it incurs a significant amount of signaling overhead and handovers resulting from
sudden changes in mmWave channel characteristics [46]. Reports have shown that UEs
in mmWave-enabled networks may remain associated with a BS as little as 0.75 seconds
after the association [47].

2.1.3 Matching theory for user association

There is growing interest in matching theory as a low-complexity mathematical frame-
work with applications ranging from the labor market to wireless networks. As an
innovative approach to solving the problem of one-to-one and many-to-one matching,
Gale and Shapley developed the deferred acceptance (DA) game [48]. In wireless
networks, the DA matching game has recently been found to be useful for resource
management. In [49], algorithmic implementations of the DA game were used to manage
resources in wireless networks. Using task offloading to BSs jointly with task transfer to
underloaded BSs, a two-tier matching game is proposed for user association [50]. In
addition to user association in small cell networks downlink [51], matching algorithms
based on the DA game have also been applied to uplink [52].

2.2 Reconfigurable intelligent surfaces

Wireless communications use electromagnetic waves to carry information from the
transmitter to the receiver, interacting with objects and surfaces. Although the superposi-
tion of many propagation paths results in fading phenomena similar to randomness,
every propagation path exhibits a constant behavior. On the other hand, the interaction
between electromagnetic waves and engineered materials is not constant but can be
reconfigured based on specific needs. The propagation environment can be shaped by
using these materials, which are not naturally occurring. Such reconfigurable intelligent
surfaces (RIS) are attracting considerable attention as a potential component beyond
5G network architectures [11, 53]. RIS are also known as an intelligent reflecting
surfaces [54] or software-controlled metasurfaces [55].

An RIS consists of N elements, each of them a reconfigurable scatterer, which
receives and reradiates without amplification, but with a set time delay [56]. A phase
shift occurs when this delay is applied to narrow band signals. A properly adjusted phase
shift will result in N scattered waves adding constructively at the receiver. Essentially,
this principle is similar to traditional beamforming. Each element has a fixed radiation
pattern, but constructive interference is determined by collecting phase shifts between
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the scattered waves. As a result, RIS technology enables transmitter and receiver
propagation environments to be controlled/optimized.

When multiple antennas emit delayed copies of the same signal, beamforming
occurs. A synchronous reception of the copies results in constructive interference, while
asynchronous reception causes destructive interference. The receiver will receive N
times more power if N transmit antennas are tuned for constructive interference. As the
array size increases, the beamformed signal becomes increasingly spatially focused.
An RIS can perform passive beamforming. Like conventional beamforming, the RIS
re-radiates the signal with a time delay selected to form a beam at the receiver. As a
result, an array gain of N is achieved at the receiver. In general, RIS passive reflect
beamforming should be designed jointly with the transmit beamforming of the BS to
maximize the network’s performance. In situations where the direct link between the
BS and the UE is blocked, the beamforming of the BS should be directed toward the
RIS to maximize its signal reflection to serve the UE. On the other hand, the transmit
beamforming of the BS should be properly designed to strike a balance between the
directions of the BS and the RIS when the signal attenuation is comparable between
the BS-UE link and the reflection link. All of the elements of the RIS must be set to
their maximum reflection amplitude in the above cases to obtain the maximum signal
reflection. At the same time, phase shifts should be adjusted according to all channels to
constructively add the signal reflected by the RIS to the signal received directly from the
BS [10].

RIS-assisted multi-user setups generally benefit from both reflection beamforming
for the desired signal and interference suppression via co-channels. By designing the
RIS reflect beamforming such that interference reflected by the RIS adds destructively
to interference directly from the neighboring BS, the user closer to the RIS can tolerate a
greater degree of interference from a neighboring BS, so that the interference at the
user’s receiver is maximally canceled. Consequently, the neighboring BS can design the
transmit beamforming to serve users outside the RIS’s coverage area more flexibly.
However, despite the above benefits, active beamforming (AB) and passive beamforming
(PB) usually are closely coupled, leading to joint complex optimization problems that are
difficult to resolve. As a means of reducing such high complexity, alternate optimization
may be applied in order to reach suboptimal solutions. This is achieved by iteratively
optimizing one of the transmit and reflect beamformers while fixing the other [8].

According to [8] and [57], the transmit power of BSs can be minimized by de-
composing the joint optimization problem into two subproblems. One subproblem is
related to conventional power minimization in MIMO systems, and the other pertains to
optimizing the RIS phase vectors. A semidefinite relaxation (SDR) technique is used to
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Table 1. A summary of representative works on RIS in multi-cell networks.

Reference System setup Design objective Optimization parameters Frequency band
[62] Multi-RIS MISO Sum-rate maximization UA, PB, power allocation mmWave
[63] Single-RIS SISO Sum-rate maximization UA, PB, power allocation microwave
[64] Multi-RIS MISO SINR maximization UA, PB microwave
[65] Single-RIS MISO Sum-rate maximization BS-RIS association, AB, PB microwave

solve the problem of phase optimization. Despite the quite good performance of the
alternating optimization approach, its main limitations are that the algorithm cannot
obtain a stationary solution and the complexity is relatively high, especially for an RIS
with a large size. Zero-forcing (ZF) precoding is used at the AP in [58] to maximize
energy efficiency. By canceling the interuser interference completely with ZF precoding,
power allocation can be decoupled from phase optimization at the RIS well. It should be
noted, however, that the ZF precoding may also intensify the background noise, which
may lead to severe performance degradation when the channel is not well-conditioned.

Based on stochastic geometry, the authors in [59] derive closed-form expressions
for users’ outage probability and ergodic rates in RIS-assisted MIMO systems. As a
result of these designs, the RIS is required to provide global CSI for all users as well as
the BS, thereby causing an excessive overhead in the signal exchange. Additionally,
these studies assume that the RIS-assisted links are subject to independent Rayleigh or
Rician fading. [60] demonstrates a way to characterize the effect of large-scale channel
fading parameters on the performance of the SINR in a single-cell MISO RIS-assisted
downlink system using random matrix theory. An RIS-assisted multiuser system with
correlated Rician channels has been proposed in [61] with two timescales transmission
protocols to maximize the achievable average sum rate. In particular, the passive RIS
phase shifts are optimized based on the statistical change in CSI between all links,
which varies significantly more slowly than the instantaneous change in CSI. With the
optimized RIS phase shifts, the transmit beamforming/precoding vectors at the BS can
be optimized based on the instantaneous CSI of the users’ effective fading channels, thus
reducing the overhead associated with channel training and the complexity of passive
beamforming designs.

2.3 Background and related work

In Table 1, we summarize the representative works on RIS in multi-cell networks
based on their considered system setup, design objective, optimization parameters, and
frequency band. In particular, leveraging RIS in a multi-cell network severely affects
channel reconfiguration, such as the power allocation and UA algorithms. Therefore,
designing an effective active/passive beamforming and UA algorithm to improve the
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performance of the mmWave cellular network is required. As a result of all the mmWave
channel characteristics, optimizing active/passive beamforming and UA becomes more
challenging and complex. In the context of RIS-aided multicellular systems, UA is
still a relatively new topic that has been studied only in a few papers [34,44,62–65].
An analysis of the optimum sum rate maximization under quality-of-service (QoS)
constraints guaranteeing the minimum rate was conducted in [62] using zero-forcing
(ZF) receivers. Since ZF receivers suppress the interference, only the signal-to-noise
ratio is used to obtain the users’ achievable rate, and interference is thus suppressed.
The problem of maximizing the reflective phase shifters at the RIS, the BS’s transmit
power, decoding order, and subchannel assignment in non-orthogonal multiple access
(NOMA) networks was studied in [63]. However, it heavily relies on accurate channel
state information (CSI) in its implementation resulting in high computational complexity.
Additionally, users are associated with BSs using the many-to-one matching method.
The SINR in a multi-RIS and multi-BS network based on the Rayleigh fading model
was derived in [64]. Later, alternating optimization (AO) was applied to optimize the
RIS-user association and BS power allocation jointly.

Generally, the RIS and the serving BS have an LoS channel due to the RIS
deployment location. Therefore, channel distributions may not always follow Rayleigh
fading models. It is also critical to investigate the BS-user association optimization
based on arbitrary channel response models to evaluate the upper-bound performance.
Furthermore, optimization-based methods have not been used to examine the impact
of the RIS on multi-cell networks and UA. However, RISs channel reconfiguration
can affect the UA algorithm in a multi-cell environment. Hence, multi-cell networks
require joint phase optimization and UA to enhance the performance [34, 44, 65]. Signal
attenuation due to the BS-UE distance is one of the most crucial issues in mmWave
communications. Additionally, the LoS path should exist between BS and UE in
mmWave, whereas it might be only non-line of sight (N-LoS) in a cellular network as a
result of the blockage.
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3 User association in RIS-assisted cellular
networks

Reconfigurable intelligent surfaces (RISs) are a promising technology for future-
generation wireless networks by extending the coverage region to blind spots and
increasing propagation paths in non-line of sight environments. User association in dense
millimeter wave networks is vital to characterizing connections between base stations
and user equipment for load balancing, interference management, and maximizing the
network utility. However, it has yet to be examined thoroughly in a multi-RIS-aided
network. This chapter presents new user association schemes that take cell interference
into account for a multi-cell mmWave cellular network aided with multiple RISs.

3.1 User association in millimeter wave cellular networks with
reconfigurable intelligent surfaces

In this section, we introduce a new load balancing user association scheme for mmWave
cellular networks in which reconfigurable intelligent surfaces are applied in the cellular
network to improve the coverage region of each cell and mitigate mmWave vulnerability
to non-line of sight (N-LoS) paths. The user association scheme improves the network
performance significantly by adjusting the interference according to the association. We
study an RIS-assisted mmWave cellular network where one RIS is deployed to assist in
the communication from the base station (BS) to user equipment (UEs) in each cell. We
balance BS loads and maximize network utility by optimizing the user association with
a matching game. The section is organized as follows: Sub-section 3.1.1 introduces the
system model. In Sub-sections 3.1.2, 3.1.3, we present the proposed user association
scenario and its corresponding optimization problem. Simulation results are discussed
in Sub-section 3.1.4. We conclude the section in Sub-section 3.1.5.

3.1.1 Channel and system model

mmWave channel model

There is a considerable difference in mmWave channel characteristics and typical
microwave channels, which is independent and identically distributed (i.i.d) channel
with rich scattering. As is shown in the sub-section, the mmWave channel model is
based on the cluster channel model proposed in [66], which consists of C clusters, where

31



each cluster involves L rays as follows
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system are derived randomly based on distributions and cross-correlations detailed
in [67]. The antenna response vector, a(φ ,ψ), is influenced by the antenna’s geometry,
which can be a uniform linear array (ULA) or a uniform planar array (UPA). To
implement 3D beamforming, the uniform U ×V planar array is adopted. a(φ ,ψ) is
expressed as

a(φ ,ψ) = [1, · · · ,e jkda(usin(φ)sin(ψ)+vcos(ψ)), · · · ,e jkda((U−1)sin(φ)sin(ψ)+(V−1)cos(ψ))]T ,

(2)
with da indicating the distance between the antenna elements and u ∈ {1, · · · ,U} and
v ∈ {1, · · · ,V} representing the indices of the individual antenna elements.

Furthermore, two link states, LoS and N-LoS, are considered with the probability
obtained from the measurements in [68] as
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]2

, (3)

pN−LoS (d) = 1− pLoS (d) , (4)

where d is the transmitter-receiver distance in meters, dBP is the breakpoint distance
which shows that there is no longer a %100 probability of LoS, and η is a decay
parameter. Based on the measurements, dBP = 27m and η = 71m are considered.

Moreover, the path loss model for both LoS and N-LoS links can be expressed as

PL [dB] = 20log10

(
4πd0

λ

)
+10n log10

d
d0

+XσSF , (5)

where d0 is the reference distance, λ is the wavelength, n is the path loss exponent, and
XσSF indicates the shadowing lognormal random variable with standard deviation as σSF .
Based on the LoS or N-LoS path, these parameters vary at 28GHz and can be expressed
as: nLoS = 1.7, nN−LoS = 3, σSF,LoS = 3.6dB, and σSF,N−LoS = 9.7dB.

In 4G cellular networks, pilot signals are utilized to determine the channel state
information (CSI) at the receiver. After the CSI is obtained at the receiver, it can
be communicated to the transmitter through limited feedback or channel reciprocity.
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Fig. 1. RIS-assisted mmWave cellular network (Under CC BY 4.0 license from [20] ©2023,
Authors).

However, these conventional techniques are unsuitable for 5G dense heterogeneous
networks (HetNets) due to network densification and limited pilot resources [69]. To
tackle the difficulties posed by network densification, a new radio access technology
called cloud radio access network (C-RAN) has been proposed [70]. In this radio
network, the CSI can be estimated at both the transmitter and receiver through new
CSI acquisition schemes and shared through C-RAN for centralized signal processing,
coordinated beamforming, and resource allocation in 5G New Radio [71,72]. In this
thesis, we assume that CSI has been estimated for these purposes and can be utilized for
user association. C-RAN is an architecture that facilitates shared CSI and centralized
user association, but it is not the only one. The CSI needed for beamforming in 5G can
be used for user association, regardless of the architecture used. Additionally, distributed
algorithms can also be developed for the same problem without relying on C-RAN, as
they are distributed in nature.

System model

we consider an RIS-assisted mmWave cellular network, as shown in Fig. 1, where
several multi-antenna BSs serve several multi-antenna UEs with the help of several RISs
(e.g., on the wall). Such a cellular network can be employed for indoor applications
with a high density of users, e.g., shopping malls, stadiums, and exhibition centers [13].
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Since in mmWave communications, the path between the BS and the UE is highly
vulnerable to blockages, the cellular network’s coverage area is small. The coverage
region is extended by assigning an RIS for each cellular network without any additional
power consumption. Each user receives the signal from two paths in this scenario: direct
link (BS-UE) and reflected link (RIS-UE). It is shown that by applying an RIS for each
BS, SINR can be significantly improved compared with conventional cellular networks
without RIS [73].

A downlink mmWave MIMO cellular network with J BSs and K UEs is considered,
while M j is the number of antennas at BS j, and Nk is the number of antennas at UE k.
Additionally, each BS is associated with one RIS with L j phase shifters. The sets of
BSs and UEs are denoted by J = {1, · · · ,J} and K = {1, · · · ,K}, respectively. Full
channel state information (CSI) is considered at both transmitters and receivers. Even
though this is an idealistic assumption, it is still meaningful to study the RIS and user
association’s performance gains for the mmWave system. How to obtain CSI at RIS is
out of this thesis’s scope, and some related works can be found in [74,75]). We also
define Q j as the Activation Set, which represents the set of active UEs served by BS j
such that Q j ⊂K and |Q j| ≤ K. Considering each UE only receives one data stream,
the total number of data streams transmitted by BS j is

D j =
∣∣Q j

∣∣ . (6)

Note that the total number of UEs served by each BS should be less than or equal to its
number of antennas, i.e., D j ≤M j. The transmitted signal from BS j is given by

x j = F jd j = ∑
k∈Q j

fk, jsk, (7)

where sk is an independent and identically distributed (i.i.d.) random variable with the
zero mean and unit variance denoted as data for UE k. The column vector d j ∈CD j

is a concatenation of sk,k ∈Q j. It is also notable that E[d jd∗j ] = ID j and fk, j ∈CM j

is a beamformer vector designed for each UE k by BS j and F j ∈CM j×D j is the total
beamformer matrix of BS j, including all k ∈Q j. The power constraint at BS j can be
shown as

E
[
x∗jx j

]
= ∑

k∈Q j

Tr
(
fk, jf∗k, j

)
≤ Pj, (8)

where Pj is the transmit power of BS j.
As shown in Fig. 1, we consider that a multi user mmWave cellular network involves

J BSs such that BS j, j ∈J , is assigned to RIS j with L j reflecting passive elements.
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These RISs are installed to assist the BS/UE communication. Each RIS can adjust the
phase shifts of its reflecting passive elements dynamically. The received signal at UE k
can be expressed as

yk = ∑
j∈J

H∗k, jx j + zk, (9)

where Hk, j ∈ CM j×Nk represents the channel matrix between BS j and UE k and
zk ∈CNk is the white Gaussian noise vector at UE k such that zk ∼CN(0,N0INk). It
is noteworthy that here, Hk, j is a concatenation of three components: BS-RIS link
(G j ∈CM j×L j ), RIS reflecting link with phase shifts (Hrk, j ∈CL j×Nk ), and BS-UE direct

link (Hdk, j ∈ CM j×Nk ). Let θθθ j = [θ1 j ,θ2 j , . . . ,θL j ] and ΘΘΘ j = diag(βe jθ1 j ,βe jθ2 j , . . . ,

βe jθL j ) be the diagonal phase-shift matrix where θl j ∈ [0,2π] and β ∈ [0,1] are phase
shift and amplitude reflection coefficient on the combined incident signal, respectively
(L j = {1,2, . . . ,L j}, j ∈J ). Therefore, Hk, j is as

Hk, j = G jΘΘΘ jHrk, j +Hdk, j , (10)

Finally, after performing beamforming at the receiver, the processed received signal
at UE k is

ỹk = ∑
j∈J

w∗kH∗k, jx j +w∗kzk, (11)

where wk ∈CNk is the linear beamformer vector at UE k. It is also assumed that each BS
knows its channels to its corresponding RIS and all UEs and can share that CSI with all
other BSs for both beamforming design and user association. Similarly, the channel
links between RISs and UEs are also known and can be provided for the BSs through a
controller link between each BS and the RIS assigned to it.

3.1.2 Interference-aware user association and optimization problem

Unique user association model

In most of the previous works, for optimizing the user association of the network, the
effect of the interference on the user association is not considered [5–7]. However,
this consideration is not acceptable, especially in mmWave communications, since
beamforming is used and the neglection of interference might affect lower users’
instantaneous rates. In mmWave communications, the network interference highly
depends on the user association, and for the instantaneous rate computation, the
interference must be considered.
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User association is performed on a time slot basis, and each time slot is comparable
with the channel coherence time, during which instantaneous CSI remains the same.
Additionally, small scale fading characteristics of the channel are assumed to be constant
during each transmission. In this thesis, the instantaneous user association is investigated,
such that each UE can be associated with only one BS at each transmission, and user
association is performed in each transmission. The mmWave channels are also generated
independently for each transmission based on the channel model introduced in 3.1.1.

There are differences between user association and user scheduling. BS-UE
connections between several BSs are determined in a user association. However,
available resources at each BS to its associated UEs are allocated in user scheduling
performed after the user association. In this thesis, it is assumed that the BS loads
are determined based on the available resources. During each transmission, a BS can
transmit to several UEs simultaneously by beamforming. Additionally, if the number
of UEs that a BS serves is greater than the number of the antennas at that BS, user
scheduling must be implemented to allocate resources of each BS among its associated
users [76–78].

The Association Matrix A is defined as follows

A ≜


a1,1 . . . a1,J

...
. . .

...
aK,1 . . . aK,J

 , (12)

where ak, j ∈ {0,1} is the association coefficient which shows the connectivity between
BS j and UE k such that if UE k is associated with BS j, ak, j = 1, and if there is no
association between them ak, j = 0. The indices of the activation matrix should satisfy
the following conditions

C1: ∑
j∈J

ak, j = 1, ∀k ∈K (13)

C2: ∑
k∈K

ak, j ≤M j, ∀ j ∈J (14)

The activation constraint in C1 reflects the idea that each UE must be connected to
one and only one BS in each transmission. Further, the second activation constraint in
C2 shows the resource allocation in the network such that the number of UEs served
by each BS cannot exceed the number of antennas on that BS to avoid queuing and
congestion at the BSs.

36



As mentioned before, for each transmission, each UE is associated only with one BS.
By processing the received signal at each UE, the instantaneous throughput of each
user is evaluated. Next, an optimization problem is formulated, and by solving the
optimization problem, the optimal user association is found.

Network interference and rate utility

The network interference highly depends on the structure of the cellular network and
user association. Therefore, besides considering the channel fluctuations, which are
very fast in a mmWave network [79], interference should be considered in the user
association. Considering (7) and (11), the received signal at UE k can be expressed as

ỹk = ∑
j∈J

w∗kH∗k, jx j +w∗kzk

= w∗kH∗k, jfk, jsk︸ ︷︷ ︸
Desired signal

+w∗kH∗k, j ∑
i∈Q j
i̸=k

fi, jsi

︸ ︷︷ ︸
Intra-cell interference

+ ∑
z∈J
z̸= j

∑
i∈Qz

w∗kH∗k,zfi,zsi

︸ ︷︷ ︸
Inter-cell interference

+w∗kzk︸︷︷︸
Noise

, (15)

where the first term is the desired received signal from BS j, the second term is the
interference due to the transmitted signal from BS j intended for the other UEs served
by BS j, the third term represents the interference sent by the other BSs (z ̸= j) for
serving UEs associated with them, and the last term is the received noise at UE k. As
shown in (15), the activation sets Q j and Qz affect the interference terms. Therefore, the
network interference depends on the network user association. During a transmission,
when UE k is connected to BS j, its instantaneous rate is as follows

Rk, j = ln(1+ζ
−1
k, j w∗kH∗k, jfk, jf∗k, jHk, jwk), (16)

where ζk, j is the interference-plus-noise power given by

ζk, j = w∗kH∗k, j( ∑
i∈Q j
i̸=k

fi, jf∗i, j)Hk, jwk +w∗k( ∑
z∈J
z̸= j

∑
i∈Qz

H∗k,zfi,zf∗i,zHk,z)wk +N0. (17)

As shown in (16), the instantaneous rate depends on the user association and association
matrix A. Thus, the instantaneous rate for UE k can be presented as

rk = ∑
j∈J

ak, jRk, j. (18)
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In mmWave communications, the channel varies very fast such that there might be a
huge difference in the small-scale character of the channel between two consecutive
transmissions [66]. Therefore, a user association must be performed before each
transmission. By defining the network’s instantaneous rate vector as r ≜ [r1,r2, . . . ,rk],
we try to find the optimal association matrix (A), which maximizes an overall utility
function.

In this thesis, the proposed user association scheme by choosing the network utility
function, including the family of utility functions defined in [5], incorporates user
fairness. A well-known and widely used utility function considered as a utility function
is the sum rate utility function defined as

U(r)≜ ∑
k∈K

rk = ∑
k∈K

∑
j∈J

ak, jRk, j. (19)

To achieve the highest network throughput, U(r) must be maximized.

Load-balancing optimization

The optimization problem with binary variables, ak, j, for each transmission is expressed
as

max
A

. U(r)

s.t. C1: ∑
j∈J

ak, j = 1, ∀k ∈K

C2: D j = ∑
k∈K

ak, j ≤M j, ∀ j ∈J

C3: ak, j ∈ {0,1}, k ∈K , j ∈J (20)

where C1 and C2 are defined earlier in (13) and (14), respectively. The first two
constraints guarantee that each BS can serve all its associated UEs simultaneously, and
thus scheduling is not required. At each BS, equal power allocation for its active users is
considered. Hence the power constraint in (8) can be neglected. We also assume that
full CSI at both BSs and UEs is available. With this assumption, after solving (20), an
upper bound of the performance is provided.

It is assumed that in the above optimization problem, the phase shifters at each
RIS are adjusted such that the reflected signals of each RIS are added to the desired
signals of the BS from the direct link coherently and constructively [80]. Furthermore, a
singular value decomposition (SVD) is used to obtain beamformers and combiners at
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the BSs and UEs, respectively. The channel matrix decomposition between UE k and
BS j (Hk, j ∈CM j×Nk ) is as follows

Hk, j = Uk, jΛΛΛk, jV∗k, j, (21)

where Uk, j and Vk, j are a unitary matrix and ΛΛΛk, j is the diagonal matrix of singular
values. The singular value matrix (ΛΛΛk, j) can be decomposed into λ1k, j and ΛΛΛ2k, j , where
λ1k, j is the largest singular value of Hk, j and ΛΛΛ2k, j is the diagonal matrix of the other
singular values of Hk, j. To extract the beamformers at both transmitters and receivers,
partitioning is done as follows

Hk, j = Uk, jΛΛΛk, jV∗k, j = u1k, j λ1k, j v
∗
1k, j

+U2k, j ΛΛΛ2k, j V
∗
2k, j

, (22)

Considering UE k is connected to BS j, the SVD beamformer and combiner are
obtained as

wk = v1k, j , (23)

fk, j = u1k, j , (24)

Considering SVD-precoding, an upper bound of performance is provided. Moreover, the
precoding index (vector) can be sent to UEs by BSs/ C-RAN.

Since the interference structure contains association variables that appeared in
(18) and the integer constraints in (20) are non-convex and nonlinear, the optimization
problem in (20) is a highly non-convex MINLP known to be NP-hard. Due to their
combinatorial structure and the potential presence of multiple local maxima in the
search space, these MINLP problems are typically challenging to be solved.

3.1.3 Matching game solution

Since the utility function in (20) is neither convex nor concave, it is challenging to
solve analytically. Thus we propose a heuristic algorithm based on matching theory
to obtain a solution. In this scenario, the user association problem is formulated as
a distributed matching game between the BSs and the UEs, and deferred acceptance
matching game (DA-MG) is used to associate UEs with BSs [81]. In order to formulate
the user association as a matching game, some definitions are introduced below:

Definition 1. Each UE k and BS j builds a preference relation (≥k and ≥ j) between
each pair of BSs and UEs, respectively, based on the instantaneous user rates.
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Therefore, for any two UEs k, l ∈K ,k ̸= l each BS builds a preference relation ≥ j

such that

k ≥ j l⇔Ψ
BS
k, j ≥Ψ

BS
l, j ⇔ BS j prefers UE k to UE l. (25)

where ΨBS is the objective function of BSs, and ΨBS
k, j is the value of the objective

function when BS j serves UE k. Similarly, for any two BSs i, j ∈J , i ̸= j

j ≥k i⇔Ψ
UE
k, j ≥Ψ

UE
k,i ⇔ UE k prefers BS j to BS i. (26)

where ΨUE is the objective function of the UEs.
Each UE and BS builds its desired preference list in descending order of interest

over the set of BSs and UEs, respectively based on the preference relations. The length
of each UE and BS preference list is J and K, respectively. Considering the preference
list of each UE and each BS, the preference matrix PK of size K× J and the preference
matrix PJ of size J×K are built for the UEs and the BSs respectively.

Definition 2. The tuple (J ,K ,PJ ,PK ,DJ ,BK ) is defined as a user association
matching game (MG ) where DJ = [D1,D2, . . . ,DJ ] is the vector of the BSs’ quotas
and BK = [β1,β2, . . . ,βK ] is the association vector as the outcome of the game, and
βk,k ∈K is the association factor of UE k and represents the index of BS to whom user
k is associated, i.e., βk ∈J with k ∈K .

At the end of this game, matching between the set of BSs and the set of UEs is
provided. In this matching, each UE is associated with only one BS, and each BS is
serving at most its quota (D j) of UEs.

Definition 3. An element from J is mapped into a subset of elements of K by the
matching function µ with the following properties

1. µ( j)⊆K with |µ( j)| ≤ D j for each BS j.
2. µ(k)⊂J with |µ(k)|= 1 for each UE k.
3. µ(k) = j if and only if k ∈ µ( j).

The last property shows that the matching µ is bilateral such that a UE is associated
with one BS if and only if that BS accepts the UE.

In a matching game user association, UEs and BSs are the game players which
can have their own objective functions and build their preference lists individually. In
our proposed matching game, the user instantaneous rate in (16) is considered as the
objective function for both sides of the game (UEs and BSs), i.e., ΨBS

k, j = ΨUE
k, j = Rk, j.

This objective function only depends on the SINR computed at each UE and reported
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Algorithm 1: Deferred Acceptance MG

1 Input:(J ,K ,PJ ,PK ,DJ );
2 Set the preference index mk = 1,k ∈K ,n = 1, and form the rejection vector

R = {1,2, . . . ,K}, initialize a set of unassociated UEs U =∅ and the waiting
list of each BS W 0

j =∅, j ∈J ;
3 repeat
4 Each UE k ∈R applies to its mth

k preferred BS;
5 Each BS j forms its currents waiting list W n

j from its new applicants and its
previous waiting list W n−1

j ;
6 Each BS j keeps the first D j preferred UEs in W n

j , and reject the rest of
them;

7 for k ∈R do
8 mk← mk +1;
9 if mk > J then

10 Remove UE k from R and add it to U ;
11 end
12 end
13 n← n+1;
14 until R =∅ or n > J;
15 Form BK based on the final waiting lists of BSs W j, j ∈J ;
16 Output: The association vector BK .

to the network through the physical uplink shared channel (PUSCH) or physical
uplink control channel (PUCCH). Therefore, the proposed matching game is fast and
suitable for the 5G and beyond networks including URLLC (ultra reliable low latency
communications).

In this scenario, we employ DA-MG to solve the user association problem. The main
inputs of this game are the preference lists of the UEs and BSs, and its output is a load
balanced association vector BK . Initially, we define mk = 1 as the preference index of
each UE k, build an initial rejection set R = {1,2, ...,K} , and initialize U =∅ as the
set of unassociated UEs and W 0

j =∅ as the waiting list of each BS j.
At the beginning of the game, the BSs and UEs build their preference lists based on

the data rates (SINR) measured at the UEs and report back to the BSs. At each iteration,
each UE applies to its mth

k preferred BS according to its preference list. Next, each BS j
ranks all its new applicants and the applicants in its previous waiting list based on its
preference list. The first D j UEs form the new waiting list of the BS, and the rest of
them are rejected (transferred to R). The rejected UEs update their preference index
(mk← mk +1), and apply to their next preferred BS in the next iteration of the game.
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Fig. 2. User association in RIS-assisted mmWave cellular network: the conventional max-SINR
and drop scheme (Reprinted with permission from [22] ©2021, IEEE).

The game iterates until either the rejection set is empty or all rejected users have applied
to all BSs. At this point, each BS performs an association with all users in its waiting
list; any user left in the rejected set is unassociated. A summary of the DA matching
game is described in Algorithm 1.

3.1.4 Simulation results

In this sub-section, the proposed user association scheme’s performance in an RIS-
assisted mmWave cellular network is analyzed. We consider a mmWave network
operating at 28GHz with 5 BSs (J = 5), 5 RISs (each RIS is associated with one BS),
and 25 UEs (K = 25). Each BS can serve 5 UEs simultaneously (D j = 5, j ∈J ).
The mmWave links are generated as described in Sub-sec. 3.1.1 such that each link
involves 5 clusters with 10 rays per cluster. Each BS is equipped with an 8×8 UPA
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Fig. 3. User association in RIS-assisted mmWave cellular network: the proposed DA-MG
schem (Reprinted with permission from [22] ©2021, IEEE).

of antennas. Each RIS is equipped with 5× 5 arrays (it is notable that in order for
the indirect path to be useful, the number of passive elements at RIS should be large
enough), and each UE is equipped with a 4×1 ULA of antennas. The noise power
spectral density is −127dBm/Hz and all BSs transmit with equal power Pj. The BSs are
located at specific locations, while the RISs are located randomly around the BSs, and
the UEs are distributed randomly in a region of 250m×250m. For the RIS to be useful,
an LoS path between each BS and its corresponding RIS is considered.

Figs. 2 & 3 show the user association in an RIS-assisted mmWave cellular network
using the conventional max-SINR and drop user association scheme [33] and the
DA-MG association scheme, respectively. In the first scheme, each UE aims to associate
with the BS providing the highest SINR, and the congested BSs drop the overloading
UEs since each BS j cannot serve more than D j UEs. However, in the second scheme,
the UEs are associated with BSs according to BS load constraints. As shown in Fig. 2,
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some UEs are not associated (UEs #1, #20, and #23), while some BSs are underloaded
(BSs #3, #4, and #5), resulting in poor fairness and quality of service. It can be seen from
Fig. 3 that by applying the proposed association technique, the BS loads are balanced in
such a way that while the maximum sum rate in the cellular network is achieved, all the
UEs are served and no congestion occurs in the BSs by pushing the overloading UEs
from the congested BSs to the lightly-loaded BSs. Moreover, to mitigate the interference
and N-LoS problem, the UEs are assigned to the most appropriate BS in the cellular
network regardless of the UE-BS distance. Therefore, UEs #3, #5, #6, and #15 are
assigned to other BSs compared to Fig. 2.

The performance of the proposed algorithm and the RIS’s impact in the mmWave
cellular network are shown in Fig. 4. The spectral efficiency of the mmWave cellular
network (with and without the RIS assistance) versus the BSs’ transmit power for the
proposed scheme is depicted in Fig. 4. As shown in the figure, the RIS is mostly useful
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at mmWave frequencies where the channels are sparse, and there might be only an
N-LoS link between the BS and UE. Thus, an extra propagation path through the RIS is
essential even if this path is weak due to channel attenuation at this band. As shown in
Fig. 4, the spectral efficiency performance of the proposed user association scheme
outperforms two other user association schemes: (i) a max-SINR user association with
user drop and (ii) random user association. For the second scheme, which is the worst,
UEs are assigned randomly to the BSs according to load balancing constraints.

Fig. 5 depicts the cumulative distribution function (CDF) of the users’ spectral
efficiency for the mmWave cellular network with and without the assistance of the RIS.
It can be observed that the probability of lower spectral efficiency is higher for the
network without the RIS, which shows the advantage of using RISs, especially when
there is no LoS path between the BSs and UEs. By focusing on the figure’s low rate
region, it can be inferred that compared to the max-SINR and drop scheme and the
random association scheme, the DA-MG scheme has a lower probability of users having
an extremely low data rate. For example, the probability of having users with a data rate
smaller than 0.01 bps/Hz in an RIS-assisted network is less than 1% for the DA-MG
scheme, while this probability is 15% for the max-SINR and drop scheme, and 40% for
the random association scheme. Therefore, the DA-MG scheme enhances fairness for
the UEs.

3.1.5 Conclusion

In this section, we considered an RIS-assisted mmWave cellular network and formulated
the problem of optimal user association considering the impact of applying RIS for
spectral efficiency improvement. Using a matching game to assign the UEs to BSs, the
network’s aggregated interference was mitigated, and the network sum rate increased.
At the same time, no congestion occurred in the BSs. Simulation results confirmed the
fact that since the channel gain in mmWave is highly vulnerable to the path loss and the
N-LoS path, by applying an RIS cooperating with the BS in each cell, an extra reflected
propagation path is added coherently to the direct path and hence, the spectral efficiency
of the network is increased significantly.

3.2 Joint user association and phase optimization for RIS-assisted
multi-cell networks

This section studies joint phase optimization at the RIS and the user association
optimization problem in RIS-assisted multi-cell networks. The previous section
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maximized the network spectral efficiency by optimizing the user association with a
matching game in an RIS-assisted millimeter-wave cellular network. Unlike the previous
section, this section considers phase optimization to enhance the system performance
further and provides a more comprehensive analysis of the performance of the RIS.

In this section, a new interference-aware user association scheme for multi-cell
networks is proposed in which RISs are utilized to improve the coverage region, cell
edge problem and mitigate vulnerability to N-LoS paths. Each UE is assigned a BS by
optimizing the user association considering the BS’s load constraints. Simultaneously,
an RIS is utilized at each cell to reflect the transmitted signal from the BS to its
assigned UEs. We aim to maximize the sum rate of the network under the constraints
of phase shifters at RIS and association constraints by joint optimization. Due to the
non-convexity and complexity of the problem, we utilize the alternating optimization
algorithm. Specifically, the phase shifters at the RIS are optimized based on the fractional
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programming method and reformulated as a quadratically constrained quadratic program
(QCQP). Further, the user association problem is solved through successive convex
programming.

The rest of the section is organized as follows: The following sub-section presents
the system model, and the optimization problem is formulated. In Sub-section. 3.2.2, we
present our proposed alternating optimization problem. Simulation results are described
in Sub-section 3.2.3, and the conclusion is drawn in Sub-section 3.2.4.

3.2.1 System model and problem formulation

System Model

We consider an RIS-assisted cellular network, as shown in Fig. 1, where several
multi-antenna BSs serve several single-antenna UEs with the help of several RISs (e.g.,
on the wall). Such a cellular network can be employed for indoor applications with a
high density of users, e.g., shopping malls, stadiums, and exhibition centers [73].

A downlink MISO cellular network with J BSs with M antennas and K UEs is
considered. Additionally, each BS is associated with one RIS with N phase shifters. The
sets of BSs and UEs are denoted by J = {1, ...,J} and K = {1, ...,K}, respectively.
Full channel state information (CSI) is considered at the BSs. We also define Q j as the
Activation Set, which represents the set of active UEs served by BS j. The transmitted
signal from BS j is given by

xxx j = ∑
k∈Q j

fff k, jsk, (27)

where sk is an independent and identically distributed (i.i.d.) random variable with a zero
mean and unit variance denoted as a data stream for UE k and fff k, j ∈CM is a beamformer
vector designed for each UE k by BS j. Maximum ratio transmission (MRT) precoding
for each serving UE k with the power √p j at the jth BS with fff MRT

k, j =
√p j

hhhk, j
||hhhk, j ||

is
considered. As shown in Fig. 1, we consider that a multi user cellular network involves
J BSs such that BS j, j ∈J , is assigned to RIS j with N reflecting passive elements.
These RISs are installed to assist BS/UE communication. Each RIS can adjust the phase
shifts of its reflecting passive elements dynamically. The received signal at UE k can be
expressed as

yk = ∑
j∈J

hhh∗k, jxxx j + zk, (28)
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where hhhk, j ∈ CM represents the channel vector between BS j and UE k and zk is
the white Gaussian noise at UE k such that zk ∼CN(0,N0). The operations [·]T , [·]∗

denote the transpose and conjugate transpose, respectively. It is noteworthy that here,
hhhk, j is a concatenation of three components: the BS-RIS link (GGG j ∈CM×N), the RIS
reflecting link with phase shifts (hhhrk, j ∈CN), and the BS-UE direct link (hhhdk, j ∈CM). Let
θθθ j = [θ j,1,θ j,2, . . . ,θ j,N ]

T and ΘΘΘ j = diag(θ j,1,θ j,2, . . . ,θ j,N) be the diagonal phase-shift
matrix where θ j,n is reflection coefficient on the combined incident signal, respectively
(n = {1,2, . . . ,N}= N , j ∈J ). Therefore, hhhk, j is as

hhhk, j = GGG jΘΘΘ jhhhrk, j +hhhdk, j , (29)

The received signal at UE k can be expressed as

yk =

Desired signal︷ ︸︸ ︷
hhh∗k, j fff k, jsk +hhh∗k, j ∑

i∈Q j
i̸=k

fff i, jsi

︸ ︷︷ ︸
Intra-cell interference

+ ∑
z∈J
z̸= j

∑
i∈Qz

hhh∗k,z fff i,zsi

︸ ︷︷ ︸
Inter-cell interference

+ zk︸︷︷︸
Noise

, (30)

where the first term is the desired received signal from BS j, the second term is the
interference due to the transmitted signal from BS j intended for the other UEs served by
BS j, the third term represents the interference sent by the other BSs (z ̸= j) for serving
UEs associated with them, and the last term is the received noise at UE k. As shown in
(30), the activation sets Q j and Qz affect the interference terms. Therefore, the network
interference depends on the network user association. During a transmission, when UE
k is connected to BS j, considering the received SINR at UE k, its instantaneous rate is
given by

Rk, j = ln(1+SINRk)

= ln

1+
hhh∗k, j fff k, j fff ∗k, jhhhk, j

∑
z∈J

∑
i∈Qz,i̸=k

ai,zhhh∗k,z fff i,z fff ∗i,zhhhk,z +N0

 , (31)

where the binary association variable ak, j is defined as

ak, j =

1, if UE k is associated with BS j,

0. o.w.
(32)
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The association variables should satisfy the following conditions

C1: ∑
j∈J

ak, j = 1, ∀k ∈K (33)

C2: ∑
k∈K

ak, j ≤M, ∀ j ∈J (34)

where constraint C1 reflects that each UE must be connected to one and only one BS in
each transmission. Further, the second constraint C2 shows the resource allocation in
the network such that the number of UEs served by each BS cannot exceed the number
of antennas on that BS to avoid queuing and congestion at the BSs.

Problem formulation

By defining the instantaneous rate vector of the network as r ≜ (r1,r2, . . . ,rk), where
rk = ∑ j∈J ak, jRk, j, we aim to find the optimized association variables, and phase
shift matrices which maximize the network total achievable rate. First, let us denote
a = {ak, j|∀ j ∈J ,∀k ∈K } as the set of the association variables for all users to the
base stations, and ΘΘΘ = {ΘΘΘ j|∀ j ∈J } as the set of all reflective phase matrices of all
RISs in the network. The optimization problem framework for each transmission is
expressed as

P1: max
a,ΘΘΘ

U(r) = ∑
k∈K

∑
j∈J

ak, jRk, j (35)

s.t. C1: ∑
j∈J

ak, j = 1, ∀k ∈K ,

C2: ∑
k∈K

ak, j ≤M, ∀ j ∈J ,

C3: ak, j ∈ {0,1}, ∀k ∈K , j ∈J ,

C4:
∣∣θ j,n

∣∣2 ≤ 1, ∀n ∈N , j ∈J .

where C1 and C2 defined earlier in (33) and (34) guarantee that each BS can serve
all its associated UEs simultaneously, and thus scheduling is not required. C3 relates
to the binary nature of user association variables, and C4 represents the bounds on
the phase shifts of the elements at the RISs. The optimization problem in (35) is a
highly non-convex MINLP which is known to be NP-hard. Due to their combinatorial
structure and the potential presence of multiple local maxima in the search space, these
MINLP problems are typically challenging to be solved. The following sub-section will
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address the optimization problem in (35) in an alternating descent method, which aims
to improve the iterative solution.

3.2.2 Proposed alternating optimization

In this sub-section, we exploit alternating optimization algorithms to optimize a and ΘΘΘ.
For given ΘΘΘ, the successive convex approximation method is applied to optimize a.
Then, for given a, we apply the Lagrangian dual transform to decouple the objective,
and optimize ΘΘΘ based on the fractional programming method.

User association optimization

For a given fixed ΘΘΘ, the user association optimization problem is reformulated as

max
a

U(r) (36)

s.t. C1, C2, C3.

Since the optimization problem in (36) is neither convex nor concave, it is challenging to
solve analytically. Thus, we resort to transforming the problem to a tractable optimization
framework based on successive convex approximation (SCA). First, we deal with the
binary nature of user association variables, i.e., a. It can be proved that ak, j ∈ {0,1}, is
equivalent to a2

k, j = ak, j. However, this equality constraint is still non-linear. Therefore,
by adding a penalty term to the utility function in (36) to enforce a2

k, j = ak, j, the binary
constraints can be relaxed to ak, j ∈ [0,1]. This leads to the following optimization
problem

max
a

F1(a)≜U(r)+

Regulation term︷ ︸︸ ︷
λ ∑

k∈K
∑

j∈J

(
a2

k, j−ak, j
)

s.t. C1, C2,

C5: ak, j ∈ [0,1], k ∈K , j ∈J . (37)

where the regulation term is considered to force the optimization results to a binary
solution for ak, j. For λ >> 0, the relaxed problem results will be equivalent to the main
problem (36).

To solve the optimization problem in (37), the SCA method is applied. Since the
constraints C1, C2, and C5 are affine and convex, only a lower bound for the objective
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function must be computed to apply the SCA method. First, notice that the objective
function in (36), is expressed as

U(r) = ∑
k∈K

∑
j∈J

ak, j ln
(

1+
ak, jnk, j

dk

)
(38)

= ∑
k∈K

∑
j∈J

ak, j ln
(

1+
ak, j

bk, j

)
,

where nk, j, dk, and bk, j are as follows

nk, j = hhh∗k, j fff k, j fff ∗k, jhhhk, j, (39)

dk =

(
J

∑
z=1

K

∑
i=1,i̸=k

ai,zhhh∗k,z fff i,z fff ∗i,zhhhk,z

)
+N0, (40)

bk, j =
dk

nk, j
, (41)

Since f (x,y) = x ln
(

1+ x
y

)
are jointly convex in x and y, U(r) will be convex. Therefore,

U(r) admits its first-order approximation at the point a(l)k, j as a lower bound. In addition,
the regulation term in (37) is a summation of quadratic functions in terms of the
association variables which is also convex. Therefore, the lower bound of F1 is
approximated as given in (42)

F̃
(l)
1 (a)≜ ∑

k∈K
∑

j∈J
a(l)k, j ln

1+
a(l)k, j

b(l)k, j

+
(

ln

1+
a(l)k, j

b(l)k, j

+
a(l)k, j/b(l)k, j

1+ a(l)k, j/b(l)k, j

)(
ak, j−a(l)k, j

)

+

−
(

a(l)k, j/b(l)k, j

)2

1+ a(l)k, j/b(l)k, j

(bk, j−b(l)k, j

)
+λ

((
a(l)k, j

2
−a(l)k, j

)
+
(

2a(l)k, j−1
)(

ak, j−a(l)k, j

))
.

(42)

The following convex problem is a global bound maximization for (37) as

P1.1: max
a

F̃
(l)
1 (a)

s.t. C1, C2, C5. (43)

It can be readily proved that P1.1 is a linear optimization problem that can be solved by
various linear programming techniques such as the interior point method. The objective
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F̃
(l)
1 (a) in P1.1 is a global lower bound of the objective F1(a) in (37). Therefore, the

nonconvex problem in (37) can be replaced by its global lower bound maximization
problem in P1.1. A series of convex problems of P1.1 must be solved and repeated until
the convergence for the alternating optimization framework. With the initial feasible
point a(0), the proposed algorithm converges to a solution of problem (36) after a finite
number of iterations.

Phase shift optimization

In the second sub-problem, we optimize ΘΘΘ in (35) given the fixed association variables
a. First, a Lagrangian Dual Transform (LDT) is applied to tackle the logarithm in the
objective function of P1 [82]. Then, for given association variables a, the problem in
(35) is written as

max
ΘΘΘ,πππ

F1(ΘΘΘ,πππ) (44)

s.t. C4:
∣∣θ j,n

∣∣2 ≤ 1, ∀n ∈N ; j ∈J ,

The new utility function is defined by

F1(ΘΘΘ,πππ) = ∑
j∈J

∑
k∈Q j

(
ln(1+πk)−πk +

(1+πk)SINRk

1+SINRk

)
,

where πππ = [π1,π2, . . . ,πK ], and πk is an auxiliary variable for decoding SINRk. For a
fixed ΘΘΘ, the optimal value for πk is easily found as π

opt
k = SINRk. Thus, by substituting

π
opt
k in (44), the optimization of ΘΘΘ is reduced to

max
ΘΘΘ

U2(ΘΘΘ)

s.t. C4, (45)

where U2(ΘΘΘ) is given by
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U2(ΘΘΘ) = ∑
j∈J

∑
k∈Q j

π̃k|hhh∗k, j fff k, j|2

∑z∈J ∑i∈Qz |hhh
∗
k,z fff i,z|2 +N0

(46)

= ∑
j∈J

∑
k∈Q j

π̃k|(hhh∗rk, j
ΘΘΘ
∗
jGGG
∗
j +hhh∗dk, j

) fff k, j|2

∑z∈J ∑i∈Qz |(hhh
∗
rk,z

ΘΘΘ
∗
z GGG∗z +hhh∗dk,z

) fff i,z|2 +N0
,

and π̃k =(1+πk). By defining llli,k, j ≜ diag(hhh∗rk, j
)GGG∗j fff i, j, llli,k, j ∈CN , oi,k, j = hhh∗dk, j

fff i, j,
and |(hhh∗rk, j

ΘΘΘ
∗
jGGG
∗
j +hhh∗dk, j

) fff k, j|2 = |oi,k, j +θθθ
∗
jdiag(hhh∗rk, j

)GGG∗j fff i, j|2 = |oi,k, j +θθθ
∗
j llli,k, j|2, (46)

is equivalently reformulated to a new function of θθθ j

U3(θθθ j) = ∑
j∈J

∑
k∈Q j

π̃k|ok,k, j +θθθ
∗
j lllk,k, j|2

∑
z∈J

∑
i∈Qz

|oi,k,z +θθθ
∗
z llli,k,z|2 +N0

. (47)

Since (47) is fractional programming in terms of θθθ j, ∀ j ∈J , it can be translated to
the following equation based on the quadratic transform [82]

U3a(θθθ j,εεε) =
J

∑
j=1

[
∑

k∈Q j

2
√

π̃kℜ(ε∗k, jθθθ
∗
j lllk,k, j + ε

∗
k, jok,k, j)

− ∑
k∈Q j

|εk, j|2
(

∑
z∈J

∑
i∈Qz

|oi,k,z +θθθ
∗
z llli,k,z|2 +N0

)]
, (48)

where εεε = {εk, j|∀k, j} are auxiliary variables. Therefore, the optimization problem is
formulated as

max
θθθ j ,εεε

U3a(θθθ j,ε)

s.t. C4, (49)

such that εk, j and θθθ j are optimized alternatively. The optimal εk, j for given θθθ j is

obtained by setting ∂U3a(θθθ j ,εk, j)

∂εk, j
= 0, i.e.,

ε
opt
k, j =

√
π̃k(ok,k, j +θθθ

∗
j lllk,k, j)

∑z∈J ∑i∈Qz |oi,k,z +θθθ
∗
z llli,k,z|2 +N0

. (50)
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Given an optimal ε
opt
k, j , the optimization problem for θθθ j is represented as

max
θθθ j

U4(θθθ j) =
J

∑
j=1

(
−θθθ
∗
jBBB jθθθ j +2ℜ(θθθ ∗jNNN j)

)
(51)

s.t.
∣∣θ j,n

∣∣2 ≤ 1, ∀n ∈N ; j ∈J ,

where ℜ(·) denotes the real part of a complex number and

BBBz ≜
J

∑
j=1

∑
k∈Q j

|εk, j|2 ∑
i∈Qz

llli,k,zlll
∗
i,k,z, (52)

NNN j ≜ ∑
k∈Q j

√
π̃kε
∗
k, jlllk,k, j−

J

∑
z=1

∑
i∈Qz

|εi,z|2 ∑
k∈Q j

o∗k,i, jlllk,i, j. (53)

Since llli,k,zlll
∗
i,k,z for all i,k,z are positive definite matrices, BBB j is a positive definite matrice

and U4(θθθ j) is a quadratic concave function of θθθ j. Therefore, the problem is a QCQP and
the non-convexity of the problem arises solely from the constraints. These non-convex
constraints can be substituted by convex quadratic constraints as

θθθ
∗
jeeeneee∗nθθθ j ≤ 1, ∀n ∈N ; j ∈J , (54)

where eeen ∈RN is an elementary vector with a one at the nth position. Therefore, the
convex QCQP becomes as

P1.2: max
θθθ j

J

∑
j=1

(
−θθθ
∗
jBBB jθθθ j +2ℜ(θθθ ∗jNNN j)

)
(55)

s.t. θθθ
∗
jeeeneee∗nθθθ j ≤ 1, ∀n ∈N ; j ∈J ,

which is solved by CVX [83]. The proposed alternating optimization method is
summarized in Algorithm 2.
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Algorithm 2: Proposed iterative algorithm to optimize the user association and
reflective phase matrix at RISs

1 Set ii←− 0, l←− 0, î←− 0;

2 Set θθθ j such that θθθ
∗
jeeeneee∗nθθθ j ≤ 1,∀(n, j), a(0)k, j =

1
KJ ,∀k ∈K ; j ∈J ;

3 while convergence not met and ii < Iout do
4 while convergence not met and l < L do
5 Solve convex program P1.1 in (43) to find aopt;
6 Set a(l+1) := aopt;
7 Set l←− l +1;
8 end
9 while convergence not met and î < Iin do

10 Compute π
opt
k = SINRk, ∀k;

11 Compute ε
opt
k, j , ∀k, j from (50);

12 Solve convex program P1.2 in (55) to find optimal solution θθθ j ∀ j;
13 Set î←− î+1;
14 end
15 set ii←− ii+1;
16 end

3.2.3 Simulation results

In this sub-section, the effect of the RIS and performance of the proposed joint user
association-phase optimization in the downlink cellular network are evaluated. We
consider a cellular network with 5 BSs (J = 5), 5 RISs (each RIS is associated with one
BS), and 25 UEs (K = 25), while each BS can serve 5 UEs simultaneously. Each BS is
equipped with a 8×8 UPA of antennas, and each RIS is equipped with 10×10 arrays.
The noise power spectral density is −174dBm/Hz, and all BSs transmit with equal
power Pj. The BSs are located at specific locations, while the RISs are located randomly
around the BSs, and the UEs are distributed randomly in a region size of 250m×250m.
For the RIS to be useful, an LoS path between each BS and its corresponding RIS is
considered. To evaluate the proposed scheme, we compare our proposed algorithm with
three algorithms: 1) DA-MG+PPO: which uses a deferred acceptance matching game
(DA-MG) method for user association, and the proposed phase optimization (PPO) is
applied at the RIS, 2) RP+PUA: which uses a random phase (RP) at the RIS and the
proposed user association (PUA), and 3) Without RIS + PUA: which uses the only direct
link between the BSs and UEs and the proposed user association (PUA).

Fig. 6 compares the network spectral efficiency (SE) based on the sum rate under
different settings of transmit power. As shown in the figure, our proposed joint user
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Fig. 6. Network spectral efficiency in a cellular network (Reprinted with permission from [23]
©2022, IEEE).

association-phase optimization scheme outperforms the others due to better phase arrays
at the RISs and user association gain. Moreover, the network interference is adapted to
the user association. As shown in the figure, an RIS is mostly useful and a higher sum
rate is provided when an RIS is applied in the cellular network.

Fig. 7 shows the effect of the RIS array size (N) on the network spectral efficiency.
It can be seen that by increasing the size of the RIS arrays, the spectral efficiency
in all algorithms except without RIS + PUA increases. Moreover, when the number
of phase shifters is sufficiently large, the sum rate of using RIS is significant due to
providing more reflected links. Additionally, the proposed algorithm outperforms the
other compared algorithms mainly due to the joint optimization of user association and
phase shifters at the RISs.

Fig. 8 shows the impact of the number of UEs (K) on the SE of the network. We can
observe that all four schemes ascend as K increases within a specific range because of
the higher utilization of network resources. However, due to the limited power resources
in the BSs, the SE cannot be infinitely improved by increasing K. Moreover, benefiting
from the optimal gain brought by the PPO at RIS and the effective PUA algorithm, our
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proposed algorithm achieves higher performance than the others. As shown in Fig. 8,
when K = 60, our proposed algorithm can improve the performance compared to the
DA-MG+PPO algorithm, RP+PUA algorithm, and without RIS + PUA algorithm by
19%, 24%, and 110%.
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3.2.4 Conclusion

In this section, we considered an RIS-assisted multi-cell network and formulated the
problem of joint user association and reflective phase shift optimization to investigate
the impact of using an RIS to improve the total achievable rate. Since the formulated
problem is intractable to solve, an iterative method based on an alternating optimization
technique was proposed by utilizing fractional programming for phase shift optimization
and successive convex programming to determine the association variables. Extensive
simulation results demonstrated that the proposed joint optimization algorithm achieves
a higher total achievable rate and outperforms the conventional association schemes,
e.g., in a matching game significantly.
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3.3 Joint active-passive beamforming and user association in
RIS-assisted mmWave cellular networks

This section proposes an interference-aware UA scheme for mmWave multiple-input
single-output (MISO) cellular networks, in which RISs are used for coverage enhance-
ment, particularly at the cell edge, and reduce the vulnerability of mmWave to N-LoS
paths. We study the joint design of passive beamforming at the RISs, active beamforming
at the BSs, and the UA optimization problem in RIS-assisted mmWave MISO cellular
networks. This section takes into account both active and passive beamforming in
mmWave cellular networks as a means of improving system performance and provides a
thorough and detailed analysis of the effectiveness of RIS in improving the system
spectral efficiency and cell edge coverage.

3.3.1 System model and problem formulation

mmWave channel Model

There is a considerable difference in mmWave channels’ characteristics and typical
microwave channels, which are independent and identically distributed (i.i.d) channels
with rich scattering. As is shown in this sub-section, the mmWave channel model is
designed on the basis of the cluster channel model proposed in [66], which consists of C
clusters, where each cluster involves L rays as follows

H =
1√
CL

C

∑
c=1

L

∑
l=1

√
γca
(
φ

R
c,l ,ψ

R
c,l
)

a∗
(
φ

T
c,l ,ψ

T
c,l
)
, (56)

where γc is the gain of the cth cluster, and the azimuth and elevation angles of arrival
and departure are indicated by φ R

c,l ,ψ
R
c,l ,φ

T
c,l ,ψ

T
c,l , respectively. a(φ ,ψ) represents the

uniform planar array (UPA)’s response vector, enabling 3D beamforming in both the
azimuth and elevation directions.

Furthermore, two link states, LoS and N-LoS, are considered with the probability
obtained from the measurements in [68] as

pLoS(d) =
[

min
(

dBP

d
,1
)
.
(

1− e−
d
η

)
+ e−

d
η

]2

, (57)

pN−LoS (d) = 1− pLoS (d) , (58)
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where d is the transmitter-receiver distance in meters, dBP is the breakpoint distance,
which shows that there is no longer a %100 probability of LoS, and η is a decay
parameter. Based on the measurements, dBP = 27m and η = 71m are considered.

Moreover, the path loss model for both LoS and N-LoS links can be expressed as

PL [dB] = 20log10

(
4πd0

λ

)
+10n log10

d
d0

+XσSF , (59)

where d0 is the reference distance, λ is the wavelength, n is the path loss exponent, and
XσSF indicates the shadowing lognormal random variable with standard deviation as σSF .
Based on the LoS or N-LoS path, these parameters vary at 28GHz and can be expressed
as nLoS = 1.7, nN−LoS = 3, σSF,LoS = 3.6dB, and σSF,N−LoS = 9.7dB.

RIS-assisted mmWave cellular network

As illustrated in Fig. 1, we present an RIS-assisted mmWave cellular network in which
several single-antenna UEs are served by several multi-antenna BSs with the assistance
of RISs. Indoor applications with dense users, such as exhibition centers, stadiums, and
shopping malls can benefit from such a cellular network [73]. The coverage area of
each cellular network is relatively small due to the vulnerability of the BS-UE path to
blockage in mmWave communications. Therefore, assigning an RIS to each cell extends
the coverage region without consuming any additional power. In this scenario, an RIS is
mounted in the LoS path of each BS to reflect the BS’s signal and provide an additional
path to compensate N-LoS vulnerability in mmWave communications. Hence, the signal
is received from two links: the direct path (BS-UE) and the reflected path (RIS-UE).
Compared to conventional cellular networks without RIS, the SINR can be significantly
improved when an RIS is applied to each BS.

A downlink mmWave MISO cellular network with J M−antenna BSs and K UEs is
assumed. Additionally, an RIS with N phase shifters is assigned to each BS. The sets of
BSs, UEs, and RIS phase shifters are denoted by J = {1, ...,J}, K = {1, ...,K}, and
N = {1, ...,N}, respectively. Additionally, we define Q j as the Activation Set, which
provides the set of active UEs served by BS j such that Q j ⊂K and |Q j| ≤ K. The
transmitted signal from BS j is as

xxx j = ∑
k∈Q j

fff k, jsk, (60)

where sk is a zero mean and unit variance i.i.d random variable denoted as data for UE k
and fff k, j ∈CM is a beamformer vector optimized for each UE k by BS j. The power
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constraint at BS j is expressed as

E
[
xxx∗jxxx j

]
= ∑

k∈Q j

Tr
(

fff k, j fff ∗k, j
)
≤ P, (61)

where P is the transmit power at each BS.
A multiuser mmWave cellular network with J BSs is shown in Fig. 1, where BS j,

j ∈J , is associated with RIS j with N reflecting passive arrays. The RISs are capable
of dynamically adjusting the phase shifts of their reflecting passive arrays and installed
to facilitate communication between the BS and the UE. At UE k, the received signal is
expressed as follows

yk = ∑
j∈J

hhh∗k, jxxx j + zk, (62)

where hhhk, j ∈ CM shows the channel vector between BS j and UE k and zk is the
white Gaussian noise at UE k such that zk ∼CN(0,N0). It is noteworthy that, hhhk, j is a
concatenation of three components: the BS-RIS link (GGG j ∈CM×N), the RIS reflecting
link with phase shifts (hhhrk, j ∈CN), and the BS-UE direct link (hhhdk, j ∈CM). Let us define
θθθ j = [θ j,1,θ j,2, . . . ,θ j,N ]

T as a phase-shift vector with reflection coefficients (θ j,n),
and ΘΘΘ j = diag(θ j,1,θ j,2, . . . ,θ j,N) as the diagonal phase-shift matrix (n ∈N , j ∈J ).
Therefore, hhhk, j is described as

hhhk, j = GGG jΘΘΘ jhhhrk, j +hhhdk, j , (63)

In terms of interference, the cellular network structure and the UA have a significant
impact. Therefore, besides considering fast channel variations in the mmWave [79],
interference should be taken into account in the UA. The received signal at UE k can be
expressed as

yk =

Desired signal︷ ︸︸ ︷
hhh∗k, j fff k, jsk +hhh∗k, j ∑

i∈Q j
i̸=k

fff i, jsi

︸ ︷︷ ︸
Intra-cell interference

+ ∑
z∈J
z̸= j

∑
i∈Qz

hhh∗k,z fff i,zsi

︸ ︷︷ ︸
Inter-cell interference

+ zk︸︷︷︸
Noise

, (64)

where the first term represents the desired received signal from BS j. Interference
caused by transmitted signals from BS j designed for the other UEs associated with BS
j is presented as the second term, while interference signals sent by other BSs (z ̸= j)
to serve UEs connected with them are represented as the third term, and the last term
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represents noise received at UE k. The activation sets Q j and Qz significantly influence
the interference terms, as shown in (64). As a result, network interference is determined
by the network UA. Assuming that UE k is connected to BS j during a transmission,
regarding the received SINR at UE k, the instantaneous rate is determined as follows

Rk, j = ln(1+SINRk, j)

= ln

1+
hhh∗k, j fff k, j fff ∗k, jhhhk, j

∑
z∈J

∑
i∈K ,i̸=k

ai,zhhh∗k,z fff i,z fff ∗i,zhhhk,z +N0

, (65)

where ak, j is defined as the binary association variable

ak, j =

1, if UE k is served by BS j,

0, o.w.
(66)

In order for the association variables to be meaningful, they must satisfy the following
conditions

C1: ∑
j∈J

ak, j = 1, ∀k ∈K (67)

C2: ∑
k∈K

ak, j ≤M, ∀ j ∈J (68)

As reflected in constraint C1, each UE must be served by one and only one BS at a given
time. In addition, constraint C2 represents the resource allocation across the network in
such a manner as to avoid queuing and congestion at the BSs by preventing the number
of UEs assigned to each BS from exceeding its number of antennas.

As illustrated in (65), the association variables affect instantaneous rate. Thus, the
instantaneous rate for UE k is expressed as

rk = ∑
j∈J

ak, jRk, j. (69)

Problem formulation

By defining the network’s instantaneous rate vector as r ≜ (r1,r2, . . . ,rk), we find the
optimized association variables, beamforming matrices, and phase shift matrices that
maximize the network’s sum rate. Denote a = {ak, j|∀ j ∈J ,∀k ∈K }, fff = { fff k, j|∀ j ∈
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J ,∀k ∈K }, ΘΘΘ = {ΘΘΘ j|∀ j ∈J }, and θθθ = {θθθ j|∀ j ∈J } as the set of the association
variables for all UEs to the BSs, the set of all active beamforming matrices of the BSs,
the set of all reflective phase matrices (passive beamforming matrices) of the RISs, and
the set of all reflective phase vectors of the RISs, respectively. The optimization problem
framework is presented as

P1: max
a,f,ΘΘΘ

U(r)≜ ∑
k∈K

∑
j∈J

ak, jRk, j (70)

s.t. C1: ∑
j∈J

ak, j = 1, ∀k ∈K ,

C2: ∑
k∈K

ak, j ≤M, ∀ j ∈J ,

C3: ak, j ∈ {0,1}, ∀k ∈K , j ∈J ,

C4: ∑
k∈Q j

∥ fff k, j∥2 ≤ P, ∀ j ∈J ,

C5:
∣∣θ j,n

∣∣2 ≤ 1, ∀n ∈N , j ∈J .

As described earlier in (67) and (68), C1 and C2 ensure that all the UEs are served
by their associated BSs with no need for scheduling. Additionally, C3 is due to the
binary nature of the UA variables, C4 relates to the transmit power constraint, and C5
represents the RIS phase shift bounds. There is a highly non-convex MINLP problem in
(70), known to be NP-hard. MINLP problems are challenging to solve because of their
combinatorial structure and the possibility of multiple local maxima in the search space.
By using an AO method, the following sub-sections will enhance the solution iteratively
to the optimization problem in (70).

3.3.2 Proposed IUA/PB algorithm

Due to the non-convexity of the objective function and the constraints, it is not easy to
find the optimum global point of the optimization problem in (70). Therefore, based
on the AO technique, a tractable algorithm is proposed to iteratively and separately
solve a, f,ΘΘΘ. In particular, for given f and ΘΘΘ, a is optimized by applying a successive
convex approximation. A fractional programming technique is then used to optimize f
with a fixed a and ΘΘΘ using the Lagrangian dual transform to decouple the objective
function. Next, we solve ΘΘΘ by utilizing the fractional programming method. Iterating
this process of finding a solution to the problem improves the sum rate at each iteration
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since, on the feasible set, (70) is upper-bounded. The objective eventually converges
to the approximate optimum value. Finally, the IUA/PB algorithm is proposed, and
its complexity is analyzed. Note that we use instantaneous channel knowledge in
the following analysis and simulation to develop an upper performance bound for
the UE-RIS-BS association. However, the proposed algorithms are not specific to
instantaneous channel knowledge and can be applied using other types of CSI, including
long-term statistical CSI or a CIS mixture as discussed in more detail in the complexity
analysis section.

3.3.3 User association optimization

This sub-section focuses on problem (70) to optimize the association variables a.
Considering fixed f and ΘΘΘ, our focus is on solving the assignment problem

max
a

U(r) (71)

s.t. C1, C2, C3.

Since problem (71) is an integer problem and hence is combinatoric in nature, solving
it optimally will require an exponential complexity. Here we design a customized,
low complexity algorithm involving two steps to solve this problem. The first step is
relaxing the integer constraint by using regularization, which results in a continuous but
non-convex optimization problem. The second step is to apply a series of first-order
convex lower bounds (Lemma 1) to the non-convex objective function to create a
sequence of linear optimization problems which can be solved very efficiently with
low complexity. We show (in Theorem 1) that the solution to this sequence of linear
problems converges to the optimal solution of the regularized problem. By setting a
suitable value for the regularization parameter, the regularized problem will yield a
solution near the optimal integer association variable. These two steps are described
next.

Integer relaxation via regularization

There is a challenge in solving the optimization problem in (71) analytically because it
is not convex or concave. To achieve a solution, we propose a heuristic algorithm. First,
the binary nature of UA variables (a) is investigated. It can be proved that ak, j ∈ {0,1},
is equivalent to a2

k, j = ak, j. Moreover, it holds that in range ak, j ∈ [0,1], a2
k, j ≤ ak, j.

A penalty term is added to the utility function in (71) enforcing a2
k, j = ak, j. Hence,
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the binary integer constraints will be relaxed to ak, j ∈ [0,1]. Therefore, we have the
following optimization problem to solve

max
a

F1(a)≜U(r)+

Regulation term︷ ︸︸ ︷
λ ∑

k∈K
∑

j∈J

(
a2

k, j−ak, j
)

s.t. C1, C2,

C6: ak, j ∈ [0,1], k ∈K , j ∈J . (72)

which is equivalent to (71) when λ >> 0 [84]. Note that the constant λ signifies
the importance of the recovering binary variables for ak, j over maximizing the utility
function. Additionally, since the term (a2

k, j−ak, j) is always non-positive, the regulation
term defined above can be considered as the degree of satisfaction of the binary
constraints ak, j ∈ {0,1} when (72) is solved for λ ̸= ∞ in practice. In other words, in
the objective function of (72), the regulation term is added to achieve the optimization
results to a binary solution for ak, j. Hence, for λ >> 0, the relaxed problem and the
main problem obtain equivalent results [84–86].

Successive convex approximation method for the regularized problem

For the purpose of solving the optimization problem in (72), the successive convex
approximation (SCA) technique is considered. Due to the affine nature of the constraints
C1, C2, and C6, only a lower bound for the objective function is required to apply the
SCA method. Note that for a convex function f (x), we have f (x)≥ f (x0)+ f ′(x0)(x−
x0) around x0, where f ′(x0) is the first derivative of f (x) evaluated at point x0. The
lower bound of f (x) is affine and can be used to approximate f (x) in the maximization
problem using the SCA method. Note that the utility function in (71), U(r), can be
expressed as

U(r) = ∑
k∈K

∑
j∈J

ak, j ln
(

1+
ak, jnk, j

dk

)
(73)

= ∑
k∈K

∑
j∈J

ak, j ln
(

1+
ak, j

bk, j

)
,
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where nk, j, dk, j, and bk, j are as follows

bk, j =
dk

nk, j
=

∑
J
z=1 ∑

K
i=1,i̸=k ai,zhhh∗k,z fff i,z fff ∗i,zhhhk,z +N0

hhh∗k, j fff k, j fff ∗k, jhhhk, j
, (74)

Since f (x,y) = x ln
(

1+ x
y

)
are jointly convex in x and y, U(r) will be convex ( the

proof of the convexity is derived in Appendix 1). Therefore, the lower bound of U(r)
can be first-order approximated at point a(î). Furthermore, the regulation term in (72)
is the sum of quadratic functions in terms of the association variables, which is also
convex.

Lemma 1. The first order lower bound of F1 at a given point a(î) is shown in (75) as

F̃
(î)
1 (a)≜ ∑

k∈K
∑

j∈J
a(î)k, j ln

1+
a(î)k, j

b(î)k, j

+
(

ln

1+
a(î)k, j

b(î)k, j

+
a(î)k, j/b(î)k, j

1+ a(î)k, j/b(î)k, j

)(
ak, j−a(î)k, j

)

+

−
(

a(î)k, j/b(î)k, j

)2

1+ a(î)k, j/b(î)k, j

(bk, j−b(î)k, j

)
+λ

((
a(î)k, j

2
−a(î)k, j

)
+
(

2a(î)k, j−1
)(

ak, j−a(î)k, j

))
.

(75)

Proof. The proof is given in Appendix 2.

A global lower bound maximization for (72) can be expressed as the following
convex problem

P1.1: max
a

F̃
(î)
1 (a)

s.t. C1, C2, C6. (76)

Since problem P1.1 is a linear optimization, it can be solved very efficiently with low
complexity. Using linear programming methods, such as the interior point, it is easy to
solve the optimization problem in (76). Considering (72), (76), F̃

(î)
1 (a) is the global

lower bound of F1(a), i.e.

F1(a)≥ F̃
(î)
1 (a), and F1(a(î)) = F̃

(î)
1 (a(î)). (77)

It is, therefore, possible to replace the non-convex problem in (72) with a sequence of
global lower bound linear maximization problems in (76) as follows: first, initialize
from a feasible point a(0) of the problem (72), after that, the optimization problem
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in (76) is solved iteratively to generate a sequence {a(î)}, î = 1,2, . . . of feasible and
improved points toward the optimal solution of (72). Note that at iteration î, a(î−1) is
used as a feasible initial point for solving (76) and obtaining a(î).

Theorem 1. After initializing from a feasible point a(0), a sequence {a(î)} is obtained
by solving the linear optimization problem in (76) iteratively. This sequence provides a
series of improved points to the regularized problem in (72) and converges to an optimal
KKT point for (72).

Proof. The proof is given in Appendix 3.

In order to achieve convergence for the AO framework, a series of convex problems
(76) must be solved and repeated. For a given error tolerance ξ > 0, with the initial
feasible point, a(0), finite iterations of the UA algorithm lead to the solution of problem
(71). ∣∣∣∣∣F1(a(î))−F1(a(î−1))

F1(a(î−1))

∣∣∣∣∣≤ ξ . (78)

By applying the proposed UA algorithm,
(

a2
k, j−ak, j

)
is enforced to be 0 by setting

ak, j = 0 or 1, and therefore, the integer constraints are satisfied. Additionally, the UA
algorithm terminates after limited iterations for a given ξ > 0.

3.3.4 Active-passive beamforming optimization

This sub-section focuses on problem (70) to optimize the active and passive beamforming
variables (f,ΘΘΘ). We solve the beamforming problem by considering fixed a. Here the
problem is non-convex, and we apply the Lagrangian Dual Transform technique and
Fractional Programming of [82] to arrive at a set of closed-form solutions for the active
beamforming f and passive beamforming ΘΘΘ. These closed-form solutions can then
be integrated with an overall iterative algorithm to arrive at a solution to the original
problem (P1).

Lagrangian dual transform

In order to deal with the logarithm in the objective function of P1, the Lagrangian Dual
Transform (LDT) is applied [82]. Therefore, the problem in (70) can be expressed as
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follows for given association variables a

max
f,ΘΘΘ,πππ

U1(f,ΘΘΘ,πππ) (79)

s.t. C4: ∑
k∈Q j

∥ fff k, j∥2 ≤ P, ∀ j ∈J ,

C5:
∣∣θ j,n

∣∣2 ≤ 1, ∀n ∈N , j ∈J .

The equivalent utility function is

U1(f,ΘΘΘ,πππ)≜ ∑
j∈J

∑
k∈Q j

(
ln(1+πk)−πk +

(1+πk)SINRk

1+SINRk

)
, (80)

where πππ = [π1,π2, . . . ,πK ], and πk is auxiliary variable for decoding SINRk. For given
f,ΘΘΘ, the optimal value of πk can be found as π

opt
k = SINRk. Thus, by substituting π

opt
k

in (79), the optimization problem is reduced to

max
f,,,ΘΘΘ

U2(f,ΘΘΘ)≜ ∑
j∈J

∑
k∈Q j

π̃k|hhh∗k, j fff k, j|2

∑z∈J ∑i∈Qz |hhh
∗
k,z fff i,z|2 +N0

s.t. C4, C5, (81)

where π̃k = (1+ πk). (81) is the multiple-ratio FP summation, and fractional pro-
gramming techniques can solve the non-convexity of the problem due to the ratio
operation [82]. The following two sub-sections provide further details on how to solve f
by fixing ΘΘΘ, and to solve ΘΘΘ by fixing f, respectively.

Active BS beamforming

This sub-section investigates how to achieve optimal active beamforming matrix f given
fixed ΘΘΘ for (81). Thus, the optimization problem in (81) becomes as

max
f

F2(f)≜ ∑
j∈J

∑
k∈Q j

π̃k|hhh∗k, j fff k, j|2

∑z∈J ∑i∈Qz |hhh
∗
k,z fff i,z|2 +N0

s.t. C4. (82)
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Using quadratic transform, F2(f) is reformulated as [82]

F2a(f,βββ )≜
J

∑
j=1

∑
k∈Q j

2
√

π̃kℜ(β ∗k, jhhh
∗
k, j fff k, j)

−
J

∑
j=1

∑
k∈Q j

|βk, j|2
(

∑
z∈J

∑
i∈Qz

|hhh∗k,z fff i,z|2 +N0

)
, (83)

where βββ = {βk, j|∀k, j} are auxiliary variables. The optimization problem in (82) can be
reformulated to the following problem over f and βββ

P1.2: max
f,βββ

F2a(f,βββ )

s.t. C4. (84)

(84) is a biconvex optimization problem. To solve it, one common method is to fix
one of f and βββ , then to solve the convex optimization problem corresponding to the
other [87]. The optimal βββ for given fff is obtained by setting ∂F2a(f,βββ )

∂β
= 0 as

β
opt
k, j =

√
π̃khhh∗k, j fff k, j

∑z∈J ∑i∈Qz |hhh
∗
k,z fff i,z|2 +N0

. (85)

Then, fixing βββ , the optimal f is

fff opt
k, j =

√
π̃kβk, j

(
λ
′
jIIIM +

J

∑
z=1

∑
i∈Qz

|βi,z|2hhhi, jhhh∗i, j

)−1

hhhk, j,

(86)

where λ ′j is the dual variable introduced for the power constraints that can be determined
by applying the sub-gradient method.
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Passive RIS beamforming

Finally, ΘΘΘ is optimized in (81) given fixed f. Using hhhk, j defined in (63), the utility
function of (81) is represented as

max
ΘΘΘ

F3(ΘΘΘ)≜ ∑
j∈J

∑
k∈Q j

π̃k|(hhh∗rk, j
ΘΘΘ
∗
jGGG
∗
j +hhh∗dk, j

) fff k, j|2

∑z∈J ∑i∈Qz |(hhh
∗
rk,z

ΘΘΘ
∗
z GGG∗z +hhh∗dk,z

) fff i,z|2 +N0
,

s.t. C5. (87)

By defining llli,k, j ≜ diag(hhh∗rk, j
)GGG∗j fff i, j, llli,k, j ∈ CN , oi,k, j = hhh∗dk, j

fff i, j, and |(hhh∗rk, j
ΘΘΘ
∗
jGGG
∗
j +

hhh∗dk, j
) fff i, j|2 = |oi,k, j +θθθ

∗
jdiag(hhh∗rk, j

)GGG∗j fff i, j|2 = |oi,k, j +θθθ
∗
j llli,k, j|2, F3(ΘΘΘ) is equivalently

reformulated to F3a(θθθ) as a function of θθθ

F3a(θθθ)≜ ∑
j∈J

∑
k∈Q j

π̃k|ok,k, j +θθθ
∗
j lllk,k, j|2

∑
z∈J

∑
i∈Qz

|oi,k,z +θθθ
∗
z llli,k,z|2 +N0

. (88)

Since F3a(θθθ) is fractional programming, on the basis of the quadratic transform, it can
be expressed as follows [82]

F3b(θθθ ,εεε)≜
J

∑
j=1

[
∑

k∈Q j

2
√

π̃kℜ(ε∗k, jθθθ
∗
j lllk,k, j + ε

∗
k, jok,k, j)

− ∑
k∈Q j

|εk, j|2
(

∑
z∈J

∑
i∈Qz

|oi,k,z +θθθ
∗
z llli,k,z|2 +N0

)]
, (89)

where εεε = {εk, j|∀k, j} are auxiliary variables. The optimization problem is therefore
reformulated as

P1.3: max
θθθ ,εεε

F3b(θθθ ,ε)

s.t. C5, (90)

such that εεε and θθθ are optimized alternatively. By setting ∂F3b(θθθ ,εεε)
∂εεε

= 0, it is possible to
obtain the optimal εεε for a given θθθ , i.e.,

ε
opt
k, j =

√
π̃k(ok,k, j +θθθ

∗
j lllk,k, j)

∑z∈J ∑i∈Qz |oi,k,z +θθθ
∗
z llli,k,z|2 +N0

. (91)
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Given the optimal εεεopt, the optimization problem for θθθ is expressed as

max
θθθ

F3c(θθθ)≜
J

∑
j=1

(
−θθθ
∗
jBBB jθθθ j +2ℜ(θθθ ∗jNNN j)

)
(92)

s.t.
∣∣θ j,n

∣∣2 ≤ 1, ∀n ∈N ; j ∈J ,

where ℜ(·) represents the real part of a complex number and

BBB j ≜
J

∑
z=1

∑
i∈Qz

|εi,z|2 ∑
k∈Q j

lllk,i, jlll
∗
k,i, j, (93)

NNN j ≜ ∑
k∈Q j

√
π̃kε
∗
k, jlllk,k, j−

J

∑
z=1

∑
i∈Qz

|εi,z|2 ∑
k∈Q j

o∗k,i, jlllk,i, j. (94)

Since lllk,i, jlll
∗
k,i, j for all k, i, j are positive definite matrices, BBB j is a positive definite

matrices and F3c(θθθ) is a quadratic concave function of θθθ . As a result, the problem can
only be characterized as QCQP, and its non-convexity can only be attributed to the
constraints. As an alternative to non-convex constraints, the following convex quadratic
constraints may be substituted as

θθθ
∗
jeeeneee∗nθθθ j ≤ 1, ∀n ∈N ; j ∈J , (95)

where eeen ∈RN represents an elementary vector involving a one at the nth position. As a
result, the convex QCQP can be described as follows

max
θθθ

F3c(θθθ)≜
J

∑
j=1

(
−θθθ
∗
jBBB jθθθ j +2ℜ(θθθ ∗jNNN j)

)
(96)

s.t. θθθ
∗
jeeeneee∗nθθθ j ≤ 1, ∀n ∈N ; j ∈J ,

The above problem is convex, and it can be reformulated to the dual problem via
Lagrange dual decomposition (LDD) as

min
λλλ

L (λλλ ) = max
θθθ

{G (θθθ ,,,λλλ )} (97)

s.t. λ j,n ≥ 0, ∀n ∈N ; j ∈J ,
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where λλλ = {λλλ j,n|∀ j,n},λ j,n is the dual variable for the constraint θθθ
∗
jjjeeennneee∗nnnθθθ jjj ≤ 1 and

L (θθθ ,,,λλλ ) denotes the dual objective function given by

G (θθθ ,,,λλλ )≜ F3c(θθθ)−
J

∑
j=1

N

∑
n=1

λ j,n(θθθ
∗
jjjeeennneee∗nnnθθθ jjj−1). (98)

G (θθθ ,,,λλλ ) is a concave function of θθθ satisfying the Slater’s condition; thus, the duality
gap is indeed zero [83]. Therefore, the optimal θθθ for a given λλλ can be obtained by
setting ∂L

∂θθθ
= 0 as

θθθ
opt
jjj =

(
N

∑
n=1

λ j,neeennneee∗nnn +BBB j

)−1

NNN j, (99)

Proposing a closed-form solution for dual variables (λλλ ) is infeasible. However, it can be
determined by applying the sub-gradient method to update λλλ according to the constraints
in (95).

3.3.5 Computational complexity analysis

Algorithm 3 summarizes our proposed IUA/PB algorithm for the initial problem (70). In
particular, the association variable and formulation can work with any time scale, as
long as the SINR in the sum rate used for the association problem (P1.1) is updated at
that time scale. For the proposed algorithms, different optimization parts can work at
different CSI time scales, for example, UA (problem P1.1) works with statistical CSI,
while beamforming and RIS phase shifts (problem P1.2, P1.3) work with instantaneous
CSI. As stated before, our approach to solving a, f,ΘΘΘ consists of continuous and
alternative iterations until a stable optimal point is reached. Algorithm 3 is guaranteed to
converge since each optimization increases the sum rate value after each iteration, and
the objective is an upper bound over the feasible set of (70).

In general, the complexity of the proposed algorithm varies with the number of
iterations in the outermost layer alternation and with the complexity required to solve
each subproblem at each iteration. For the UA subproblem, the computational complexity
of solving (76) is polynomial in the number of variables and constraints. Equation
(76) is an optimization problem with a ≜ (KJ) real-valued scalar decision variables, a
linear objective, and b ≜ (K + J +KJ) linear constraints. Therefore, the complexity
required to solve (76) is O((1+a+b)a2√b+1) [88]. On the other hand, for the active
beamforming subproblem, the complexity of the summation operation (O(M)), the
matrix inversion (O(M3)), and the final matrix multiplication (O(M2)) in (86) must be
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Algorithm 3: IUA/PB Algorithm
Result: a, f,ΘΘΘ

1 The initial values for phase shift vector θθθ , active beamformer f, and association vector a
such that θθθ

∗
j eeeneee∗nθθθ j ≤ 1, fff k, j =

hhhk, j
||hhhk, j || , a(0)k, j =

1
KJ ,∀(n,k, j);

2 Set i←− 0, î←− 0, ˆ̂i←− 0;

3 while convergence not met
(∣∣∣U(r)(i)−U(r)(i−1)

U(r)(i−1)

∣∣∣≤ ξ

)
do

4 while convergence not met
(∣∣∣∣F1(a(î))−F1(a(î−1))

F1(a(î−1))

∣∣∣∣≤ ξ

)
do

5 Solve convex program P1.1 in (76) to find aopt;

6 Set a(î+1) := aopt;
7 Set î←− î+1;
8 end
9 Set a := aopt;

10 while convergence not met
(∣∣∣∣U(r)(

ˆ̂i)−U(r)(
ˆ̂i−1)

U(r)(ˆ̂i−1)

∣∣∣∣≤ ξ

)
do

11 Compute πππ = [SINR1,SINR2, . . . ,SINRK ], as auxilary variables vector;
12 Compute βββ

opt from (85), using a, f,θθθ ,πππ;
13 Compute fff opt from (86), using a,βββ ,θθθ ,πππ;
14 Compute εεεopt from (91), using a, f,θθθ ,πππ;
15 Compute θθθ

opt from (99), using a, f,εεε,πππ;

16 Set ˆ̂i←− ˆ̂i+1;
17 end
18 Set i←− i+1;
19 end

computed. Hence, the complexity of the subproblem is O(M3). Further, for the phase
optimization subproblem, the highest complexity operation is to find θθθ

opt in (99), in
which the complexity of the summation operation, the matrix inversion, and the final
matrix multiplication are O(N), O(N3), and O(N2), respectively. Thus, the complexity
of the subproblem is O(N3).

3.3.6 Simulation results

An evaluation of the effects of RIS and the performance analysis of the proposed IUA/PB
algorithm are presented in this sub-section in a simulated downlink mmWave cellular
network that employs J BSs and K UEs operating at 28 GHz. Based on the explanation
in Sub-section 3.3.1, mmWave channels are generated such that there are 5 clusters
in each channel, with 10 rays per cluster. There are 8×8 UPA antennas installed at
each BS, 5×5 arrays installed at each RIS (the number of passive elements in the RIS
needs to be adequate to achieve an effective indirect path), and a single antenna at each
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UE. The BSs transmit with equal power P, and the power spectral density of noise is
−174dBm/Hz. While the BSs’ locations are fixed and known, the RISs are located at
random locations surrounding the BSs, and the UEs are randomly distributed within a
region of 100m×100m. It is necessary to consider an LoS path between each BS and
its corresponding RIS in order for the RIS to be effectively utilized. Furthermore, D j is
the maximum number of allowed active user items of equipment at each BS. If the
number of UEs associated with a BS is more than D j, the BS suffers overloading, and
congestion occurs.

To evaluate our proposed IUA/PB algorithm, we compare it with four algorithms
under various scenarios:

– DA-MG+PPB+MRT: A deferred acceptance-matching game (DA-MG) method
for user association, and the proposed passive beamforming (PPB) at the RISs, and
maximum ratio transmission (MRT) at the BSs are applied.

– Max-SINR+PPB+PAB: The conventional max-SINR scheme [33] is utilized for UA.
Additionally, PPB and the proposed active beamforming (PAB) approach are applied
at the RISs and BSs, respectively.

– PUA+RPB+PAB: The proposed user association (PUA) and PAB are considered,
while the phases of the RIS arrays are assigned randomly to achieve random passive
beamforming (RPB).

– PUA+No-RIS+PAB: While PUA and PAB are applied, no RIS is considered in
BS/UE communications.

In this simulation, we consider 5 mmWave BSs and 25 UEs, while an RIS is associated
with each BS for improving the communications link. Further, it is assumed that each
BS can simultaneously serve at most 5 UEs.

Spectral and energy efficiency

For the different UA schemes with and without RIS assistance in the network, Fig. 9
shows the network spectral efficiency (SE) based on the sum rate utility function U(r)
given in (70). The figure illustrates that our proposed IUA/PB algorithm outperforms
the others and the network interference is adapted accordingly. Furthermore, since
joint UA, active beamforming, and passive beamforming optimization are performed
simultaneously in the proposed scheme, it achieves higher SE in comparison with the
other schemes. Specifically, when P = 10dBm, based on our proposed algorithm, we
can achieve a 109% sum rate in comparison to DA-MG+PPB+MRT and a 116% sum
rate in comparison to Max-SINR+PPB+PAB. Additionally, the impact of the RIS in the
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Fig. 9. Average network spectral efficiency for different schemes in a mmWave cellular
network (Under CC BY 4.0 license from [20] ©2023, Authors).

mmWave cellular network is illustrated in Fig. 9. RIS is mostly useful at mmWave
frequencies, where there may be a sparse channel and no LoS in the BS-UE link. Thus,
an additional propagation path through RIS is required, despite the fact that this path is
weak as a result of channel attenuation at this frequency. The RIS is therefore able to
provide a higher sum rate when applied to cellular networks.

Similarly, Fig. 10 illustrates the energy efficiency (EE) performance trend under the
same settings as Fig. 9. Note that the EE of the system is expressed as the network
spectral efficiency over the network power consumption as

EE =
U(r)

∑
J
j=1 P+Pcir

, (100)

where Pcir is the total circuit power in the cellular network considered as 20dBm. As
shown in the figure, our proposed IUA/PB algorithm can provide the best EE, where
the EE of the IUA/PB algorithm is 9% greater than that of DA-MG+PPB+MRT and
16% higher than that of Max-SINR+PPB+PAB, respectively. This is due to the joint
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Fig. 10. Average energy efficiency for different schemes in a mmWave cellular network
(Under CC BY 4.0 license from [20] ©2023, Authors).

optimization gain from the UA and active/passive beamforming. Moreover, all of these
algorithms have an increased EE with increasing transmit power in the low transmit
power range, similar to the trend of Fig. 9. The EE performance is primarily influenced
by the SE rather than the transmit power in the low region. However, after increasing
from a specific transmit power value, we can foresee that since the excess BS transmit
power is not utilized in the existing mmWave system, the EE performance is negatively
affected by the increased transmit power. As a result, our algorithm offers significant EE
gains within a range of acceptable sum rates.

Impact of BS and RIS antenna sizes

The impact of the array size on the network spectral efficiency is shown in Fig. 11,
which illustrates the network spectral efficiency versus array size at each BS, and each
RIS. In Fig. 11(a), the number of antennas at each UE and RIS are fixed (N = 5×5),
and the number of BS antenna are increased. It is shown that by increasing the antenna
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array size from 3× 3 UPA to 10× 10 UPA, the network spectral efficiency of the
proposed algorithm improves by 95%. Furthermore, comparing the proposed joint
optimization IUA/PB algorithm with the other algorithms, it achieves the highest spectral
efficiency. This is because, an increase in M will result in an increase in the number
of antennas that can be used for beamforming, thereby improving the efficiency of
active beamforming and the spectral efficiency of the network. In addition, the proposed
algorithm achieves significant improvements in spectral efficiency due to better UA,
active beamforming, and passive beamforming gains, demonstrating the effectiveness of
our joint optimization process.

In Fig. 11(b), the RIS array size affects the network spectral efficiency while the
array size at the BS is fixed (M = 8× 8). The greater the number of RIS arrays N,
the greater the network’s spectral efficiency. In general, as the number of reflective
arrays increases, more signals can be reflected, and therefore more effective passive
beamforming can be achieved. The RIS may also have a significant effect when there
are a sufficient number of phase shifters.

All the results confirm that increasing the array sizes at either the BS or RIS
significantly impacts the network spectral efficiency. Also note that since random phase
beamforming is applied in the PUA+RPB+PAB method, the reflected links will not
be added constructively to the desired signals. Furthermore, the wireless propagation
environment created by random RIS phases might be shaped differently than the desired
one. These non-constructive reflected links are more apparent when the number of
passive elements is not large enough (such as 4×4) to provide a significant reflected
link. Therefore, applying RIS without optimizing its phases might be useless, and the
system performance might be the same without RIS.
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Fig. 11. Network spectral efficiency for different schemes versus the number of arrays at
each BS (Fig. 11(a)) and at each RIS (Fig. 11(b)) (Under CC BY 4.0 license from [20] ©2023,
Authors).
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Authors).

Fig. 12 illustrates how the number of UEs (K) impacts the SE of the network.
In general, there is an apparent ascending trend among all five schemes when K
increases within a specific range due to providing higher network resource utilization.
Despite this, the power resources in the BSs limit the SE’s improvement indefinitely.
In addition, our proposed algorithm has a higher performance than other algorithms
by taking advantage of the optimal gain brought about by active beamforming at the
BS, passive beamforming at the RIS, and UA algorithms. As shown in Fig. 12, when
K = 50, based on our proposed algorithm, we can achieve a 6%, 13%, 21%, and 45%
improvement in performance compared to DA-MG+PPB+MRT, Max-SINR+PPB+PAB,
PUA+RPB+PAB, and PUA+No-RIS+PAB, respectively.

Achievable rate distributions

Cell edge users typically experience the lowest transmission rates. The probability
density function (PDF) and the cumulative distribution function (CDF) of the users’
data rate in the mmWave cellular network for different schemes are depicted in Fig.
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13. It can be inferred that the probability of the users having a low rate becomes small
by applying the proposed IUA/PB algorithm in comparison with the other algorithms.
Due to the fact that most users located at the cell-edge would belong to the low-rate
region, these results confirm that using the proposed IUA/PB algorithm increases the
data rate for cell-edge users. As shown in these figures, the low-rate region occurs with
very low probability (lowest among all schemes) because of the improved link quality
provided by the RIS and the proposed IUA/PB algorithm. Furthermore, using the RISs
and our proposed algorithm increases the high transmission rates significantly, which is
evident from the probability density function achieving a much higher rate range. This
result shows that our proposed algorithm helps to both improve the cell edge users, who
typically suffer from low rates and it increases the probability of a user achieving a high
transmission rate.
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Fig. 13. Comparing the effect of the proposed IUA/PB algorithm on the fairness in the
mmWave cellular network. (a) The PDF, and (b) CDF of the users’ data rate. Inserts in the CDF
figure show a lower probability of users having extremely low rates, which usually happen at
the cell edge (Under CC BY 4.0 license from [20] ©2023, Authors).
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Fig. 14. Comparison of convergence performance of the proposed IUA/PB algorithm in
an RIS-assisted mmWave network with 5 BSs, K UEs, and N passive elements (K = 25,50,
75;N = 5×5,8×8) (Under CC BY 4.0 license from [20] ©2023, Authors).

Algorithm convergence

Finally, Fig. 14 shows the convergence of Algorithm 3 for the proposed IUA/PB
algorithm with 5 BSs, K UEs, and N passive elements (K = 25,50,75;N = 5×5,8×8).
As shown in the figure, the proposed algorithm is fast to converge and requires only
a maximum of five iterations to achieve convergence. There are only three convex
problems with polynomial complexity to be solved at each iteration of the proposed
IUA/PB algorithm. An average is calculated over 500 channel realizations, and the
elapsed time of the proposed algorithm is calculated. As expected, based on our
complexity analysis in Sub-section 3.3.5, the actual elapsed time is raised by increasing
the number of UEs and RIS passive arrays due to the complexity increments.

Figure 15(a) shows the convergence of the objective function (76) in the inner loop
(î) for the user association optimization sub-problem in (71). By using the regularization
method to transform (71) into (72), the regularization parameter needs to be large
enough to enforce the integer constraint. However, at the same time, a larger λ will
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result in a worse original objective function, and Fig. 15(a) illustrates this trade-off.
Note that due to the penalty term in (72), which is non-positive, the objective function
at the first iteration is negative. By iteratively enforcing the regulation term to zero,
the algorithm converges to a positive sum rate value. Fig. 15(b) shows that after some
iterations, the optimal association variables become very close to either 0 or 1 to force
the regulation term toward zero and make the integer constraints valid. Additionally,
there is a trade-off between having a large λ to enforce the association variable to be an
integer with fewer iterations for convergence and having a small λ with many iterations
for convergence and achieving an exact optimal point. As a compromise between them,
in our simulations, λ is chosen to be 5.

Figure 15(b) displays a scatter plot of the distribution of one of the association
variables, which ultimately converges to 1 based on different λ . As the figure shows,
the convergence rate depends on the value of λ . Larger values of λ result in faster
convergence with fewer iterations.
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Fig. 15. Convergence of the user association sub-problem based on different values of λ

(Under CC BY 4.0 license from [20] ©2023, Authors).
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3.3.7 Conclusion

To realize cost-effective and high-coverage mmWave communication, we considered an
RIS-assisted mmWave cellular network. Considering the RIS effect on UA, a spectral
efficiency maximization problem is formulated by jointly optimizing UA with load
balancing constraints, active beamforming at the BSs under transmit power constraints,
and passive beamforming at the RISs under phase constraints. Since the formulated
problem is non-convex and mathematically intractable, by combining successive convex
programming with the penalty method and fractional programming, an iterative method
on the basis of alternative optimization has been developed. The proposed joint algorithm
improved the objective spectral efficiency in each iteration and was shown to converge.
The feasibility and effectiveness of our proposed algorithm were demonstrated through
extensive simulations. Specifically, as compared with the benchmark, the proposed
algorithm is capable of providing significantly higher SE, while having low computation
complexity by achieving convergence within only a few iterations. These results also
showed that the use of RISs helped improve the coverage probability for low-rate users
by significantly boosting their spectral efficiency.
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4 Environment-aware communications
leveraging channel knowledge map

By reconfiguring the wireless propagation environment in 6G communications systems,
reconfigurable intelligent surfaces (RIS) offer spectrum and energy efficient wireless
communication cost effectively. However, channel estimation is the major challenge in
realizing the advantages of RIS-aided communications due to the passive elements in
the RIS and the prohibitive overhead caused by massive elements. Therefore, obtaining
the required channel state information (CSI) for beamforming becomes intractable [89].

Extensive research has been devoted to proposing efficient RIS channel estimation
schemes. Methods for estimating the cascaded channels between user equipment (UEs)
and base stations (BS) through the RIS were proposed in [90–93]. The authors in [91]
provided a cascaded channel by turning on only one RIS passive element at each time
and successively estimating the channel with each RIS passive element. However,
the accuracy of the estimated CSI is vulnerable to noise due to the weak training
signal estimated by one element turned on. Additionally, a subgroup-based channel
estimation was proposed in [92] for RIS-aided communications. The authors in [93]
considered the properties of channel correlation between UEs based on the common
BS-RIS link to propose a multi-user channel estimation scheme. Furthermore, cascaded
channel estimation based on compress sensing techniques, considering BS-RIS channel
sparsity properties, were investigated in [94–96]. Searching for the optimal passive
beamforming given a predefined codebook is another practical approach instead of
CSI estimation [97]. However, this approach increases the beam training overhead to
ensure high resolution. The above techniques disregard the UE’s location and the actual
communication environment. Recent advances in localization and sensing technologies
have increased interest in utilizing location information and geolocation-based databases
for wireless communication systems. One such concept is a channel knowledge map
(CKM) which provides location-specific information regarding intrinsic radio channels
with no need for sophisticated real-time CSI acquisitions [98]. Additionally, [99]
analyses the key features involved in the construction and utilization of CKM.

This chapter proposes a new approach for joint optimized active/passive beamforming
in RIS-aided communications, enabling environment-aware communication through
the use of CKM which does not require any real-time channel training. CKM is a
site-specific database that involves the transceivers’ locations and channel-related
information which is useful to enhance environmental awareness and facilitate real-
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time CSI acquisition. Due to the drastic increase in channel dimensions and training
overhead, CKM plays a vital role in 6G networks that aim to achieve extremely high
capacity, low latency, and ultra-massive connectivity. With the proposed training-free
beamforming, the most appropriate and optimized active and passive beams are designed
with both the location and the environmental information provided by the CKM. The
simulation results show that the proposed environment-aware beamforming scheme
significantly outperforms the training-based baseline and the proposed method is robust
to uncertainties associated with the location of UEs in practice.

The rest of the chapter is organized as follows: The following section presents
the system model. The environment-aware optimal beamforming based on CKM is
proposed in Section 4.2. Section 4.3 provides the simulation results and theoretical
analysis. Finally, this chapter is concluded in Section 4.4.

4.1 System model

Consider a downlink RIS-aided mmWave cell, where a multi-antenna BS serves K
single-antenna UEs with the help of the RIS as shown in Fig. 16. We assume the BS
has M >> 1 antennas, and the RIS is equipped with N >> 1 passive elements. There
is no direct link between the BS and the UEs due to severe blockage in the mmWave
communications. Let us denote fff k ∈CM as the active transmit beamforming vector for
each UE k. Furthermore, θθθ = [θ1,θ2, . . . ,θN ]

T as the passive beamforming vector, i.e.,
the reflection coefficients applied to the incident signal at the RIS. Our aim is to design an
optimized environment-aware active/passive beamforming ( fff ,θθθ) ∈H . The transmitted
signal from the BS is xxx = ∑k∈K fff ksk where sk is the symbol data for UE k distributed as
a zero mean and unit variance i.i.d random variable and E [xxx∗xxx] = ∑k∈K Tr ( fff k fff ∗k)≤ P
where P is the maximum transmit power of the BS.

Therefore, the received signal at UE k will be yk = hhh∗rk
ΘΘΘ
∗GGG∗xxx+ zk and the corre-

sponding signal-to-interference-plus-noise ratio (SINR) at UE k is given by

SINRk(H )≜
|hhh∗k fff k|2

∑ j∈K , j ̸=k |hhh∗k fff j|2 +N0
. (101)

where zk ∼CN(0,N0) is the receiver noise. It is noteworthy that hhhk = GGGΘΘΘhhhrk , hhhrk ∈CN

is denoted as the reflected link between RIS and UE k, GGG ∈CM×N relates to BS-RIS
link, and ΘΘΘ = diag(θ1,θ2, . . . ,θN) as the diagonal phase-shift matrix. Based on the
assumption of perfect CSI availability, the maximum energy efficiency (EE) is written
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Fig. 16. The architecture for environment awareness enabled by CKM. A CKM database,
which contains channel-related information and is tagged with the transceivers’ locations,
which enables environmental awareness and provides channel knowledge (Under CC BY 4.0
license from [21] ©2023, Authors).

by

Ue f f (H
∗) =

∑k∈K log(1+SINRk(H
∗))

UT P(H ∗)
, (102)

where ( fff ∗,θθθ ∗)∈H ∗ are the optimal active and passive beams. In this case, UT P(H ) =

∑k∈K ∥ fff k∥2+PCir represents the total power consumed by the system. Furthermore,
PCir represents the constant circuit power dissipation, including the power consumption
of the BS, RIS, and all UEs.

However, achieving the maximum EE in practice is problematic because it requires
perfect CSI, which is very difficult for RIS-aided communication. In spite of the fact
that several channel estimation approaches have been proposed, they often result in
high training overheads that increase as the number of RIS elements increases (N≫ 1).
Considering Str as the number of symbol durations used for channel training (Str ≤ S),
based on the assumption that the cascaded channel matrices hk have M×N unknown
entries; hence, Str ≥MN≫ 1 is generally required for channel training. As a result,
channel training-based beamforming can effectively achieve an average network spectral
efficiency (SE) of

SEtr =
S−Str

S ∑
k∈K

log(1+SINRk(H
∗))

≤ S− (M×N)

S ∑
k∈K

log(1+SINRk(H
∗)), (103)
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Taking into account the channel training overhead as factor S−Str
S , the result of (103)

indicates that for RIS-aided communication when M×N is comparable or exceeds
channel coherent duration S, which is expected since M and N are typically quite large,
a significant gap exists between practically achievable SE and maximum possible SE
assuming perfect CSI.

On the basis of CKM, we propose a new approach to RIS-aided communication,
which integrates active and passive beamforming to address the above issues. It
is possible to design optimal active beamformers as well as passive beamformers
based on the location of the UE, without requiring any real-time channel training (i.e.,
training-free beamforming). As a result of exploiting the UEs’ readily available location
information in today’s wireless networks with increasingly accurate location information,
environment-aware wireless communication enabled by CKM has high practical appeal.

4.2 Environment-aware optimal beamforming

4.2.1 Environment-aware communications enabled by CKM

Typically, wireless channels are determined by several factors, including the radio
wave properties (such as wavelength), the transceivers’ locations, as well as the actual
environment of radio propagation. In recent decades, there have been extensive attempts
to characterize wireless channels using stochastic or geometric methods mathematically.
In reality, however, the models that are proposed to model the channel utilize partial
information about the transceivers’ locations, such as distances between the transmitter
and receiver, rather than precise locations, as well as very coarse information about the
environment (such as urban, suburban, or rural areas, rather than the actual environment
in which the communication occurs). While the channel models developed using
these approaches are tractable and easy to generalize, when they are applied to actual
communication scenarios, the modeled channels are inevitably subject to non-negligible
errors. So, it is necessary to perform real-time channel estimations using pilot-based
channel training. Conversely, environment-aware wireless communication is expected to
substantially reduce the training overhead in large-dimension MIMO systems due to the
continuous advancements in localization technologies and improved environmental
awareness of UEs [98].

With no need for traditional channel training, the important features of the wireless
channels can be attained with a CKM. The transmitter and receiver locations, radio wave
properties (such as wavelength), and the actual radio propagation environment determine
the wireless channel gain. Additionally, by advancing localization and environmental
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awareness, there is a possibility of resolving the issue of prohibitive training overheads
for large dimension MIMO systems [100]. By utilizing a CKM database, which contains
channel-related information and is tagged with the transmitters’ and receivers’ locations,
enabling environmental awareness, as illustrated in Fig. 16, channel knowledge is
provided [101]. The equivalent cascaded channel (hhhk) of an RIS-aided communication
system is primarily affected by the location of the UEs (Qk) and the environment in
which it is propagated (Ek) such as:

hhhk = G1(Qk,Ek), (104)

In practice, it is challenging to characterize G1 precisely because it is an unknown
function. It is fortunate that a novel approach to tackle this intractable problem is the use
of a CKM, which aims to map any possible UE location and its channel knowledge
specific to that location. Compared to the UE locations, the wireless propagation
environment (such as the location, height, and dielectric properties of surrounding
objects) changes on a much larger time scale, as illustrated in Fig. 16. It is notable that
the impact of these environmental factors that may vary with comparable time scales
as UE locations (such as pedestrians) on the wireless channel is much less than UE
locations in practice. Therefore, the CKM needs to be updated only when there is a
significant environmental change (which can be detected by environment-sensing nodes
as illustrated in Fig. 16) that happens on a much larger time scale than the channel
coherence time. Hence, having known the UE locations with high accuracy (provided
via GPS and other innovative technologies for localization), the wireless channel gain
can be approximately provided with the CKM without any channel training needed as

hhhk ≈ G2(Qk), (105)

Note that the key techniques to build a CKM were investigated in [99, 102, 103]. CKM
is a training-free approach that does not require channel estimation. Instead, a CKM
can be obtained by using an environment sensing technique to extract environmental
features, such as the location and type of obstacles and reflecting surfaces, and then
mapping these features to the wireless propagation characteristics in the environment. A
CKM can be stored in a database and updated only when there is a significant change in
the environment, which can be detected by using environment sensing nodes.

Regarding the complexity of obtaining the CKM, it mainly depends on the com-
plexity of the environment sensing technique used and the frequency of updating the
CKM. However, once the CKM is obtained and stored, the complexity of using it for
environment-aware communications is low, as the wireless propagation characteristics in
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the environment can be easily retrieved from the CKM. Nonetheless, directly obtaining
the MIMO channel coefficients requires a substantial amount of computing and storage
resources. As a solution to this problem, we propose the following approach based on
the concept of CKM to obtain optimal beamforming.

4.2.2 Environment-aware active/passive beamforming

As discussed in the previous sub-section, the channel information in contemporary
wireless systems is attainable based on CKMs. To provide optimal active/passive
beamforming in RIS-aided communications with no challenge in computing and storage
of CKMs, the coverage area of the BS is divided into several sections such that the
large-scale parameters in each section do not vary significantly. Hence, the wireless
channel gain in each section can be assumed to be a specific value (regardless of path
loss which can be determined precisely) provided by a CKM. In the proposed scenario,
only the wireless channel information of the sections is stored and calculated in the
CKM, which is significantly less than the wireless channel information of all possible
locations in the cell. Therefore, based on the CKM and the UEs’ location, the wireless
channel gain of the UEs (hhhk) can be attained considering the path loss attenuation and
the sections where the UEs are located. Hence, by assigning the provided wireless
channel gain of the sections to the wireless channel gain of the UEs (hhhk), the EE will be
maximized by designing passive beamforming at the RIS and active beamforming at the
BS as follows

max
H

Ue f f (H ) =
∑k∈K log(1+SINRk(H ))

UT P(H )
, (106)

s.t. C1: ∑
k∈K
∥ fff k∥2 ≤ P,

C2: |θn|2 ≤ 1, ∀n ∈N .

In order to deal with the logarithm in the objective function of (106), the Lagrangian
Dual Transform (LDT) is applied [82]. Therefore, the problem in (106) can be expressed
as follows

max
H ,πππ

∑
K
k=1(log(1+πk)−πk +

(1+πk)SINRk
1+SINRk

)

∑k∈K || fff k||2 +PCir
, (107)

s.t. C1, C2 .
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where πππ = [π1,π2, . . . ,πK ], and πk is auxiliary variable for decoding SINRk. For a given
H , the optimal value of πk can be found as π

opt
k = SINRk. Thus, by substituting π

opt
k in

(107), the optimization problem is reduced to

max
H

∑
K
k=1

π̃kSINRk
1+SINRk

∑k∈K ∥ fff k∥2+PCir
, (108)

s.t. C1, C2.

where π̃k = (1 + πk). (108) is the multiple-ratio FP summation, and a fractional
programming techniques can solve the non-convexity of the problem due to the ratio
operation [82]. The following two subsections provide further details on how to solve f
by fixing ΘΘΘ, and to solve ΘΘΘ by fixing f , respectively.

Active BS beamforming

Given a fixed ΘΘΘ in (108), the sub-problem for active beamforming matrix f will be

max
f

∑
K
k=1
( π̃k|hhh∗k fff k|2

∑ j∈K |hhh∗k fff j |2+N0

)
∑k∈K ∥ fff k∥2+PCir

, (109)

s.t. C1.

Using a quadratic transform to represent the numerator in (109), we get the following
problem:

P1: max
f ,βββ

Ue f f 2(f ,βββ )≜ (110)

∑
K
k=1
(
2
√

π̃kℜ(β ∗k hhh∗k fff k)−|βk|2
(
∑ j∈K |hhh∗k fff j|2 +N0

))
∑k∈K || fff k||2 +PCir

,

s.t. C1.

where βββ = {βk|∀k} are auxiliary variables. (110) is a biconvex optimization problem.
To solve it, one common method is to fix one of f and βββ , then to solve the convex
optimization problem corresponding to the other [87]. The optimal βββ for a given fff is
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obtained by setting ∂Ue f f 2(f ,βββ )
∂β

= 0 as:

β
opt
k =

√
π̃khhh∗k fff k

∑ j∈K |hhh∗k fff j|2 +N0
. (111)

Then, fixing βββ , and considering ∆∆∆ ≜ ∑ j∈K |β j|2hhh jhhh∗j , ΓΓΓk ≜
√

π̃kβ ∗k hhhk, Ue f f 2(f ,βββ ) can
be represented as a fraction of the concave function over the convex function:

Ue f f 2( fff ) =
∑k∈K (− fff ∗k∆∆∆ fff k +2ℜ( fff ∗kΓΓΓk))

∑k∈K || fff k||2 +PCir
. (112)

The solution to single-ratio concave-convex fractional problems can be achieved by
applying fractional programming techniques such as Generalized Dinkelbach’s algorithm.
Hence, a global bound maximization for (112) can be expressed as the following convex
problem leads to the optimal f :

P1.1(i): max
f

Ue f f 3( fff (i))≜ (113)

∑
k∈K

(− fff ∗k∆∆∆ fff k +2ℜ( fff ∗kΓΓΓk))− y(i)
(

∑
k∈K
∥ fff k∥2+PCir

)
,

s.t. C1.

where y is a new auxiliary variable, which is iteratively updated with the iteration index
(i) as

y(i+1) =
∑k∈K

(
− fff (i)

∗

k ∆∆∆ fff (i)k +2ℜ( fff (i)
∗

k ΓΓΓk)
)

∑k∈K ∥ fff (i)k ∥2+PCir

, (114)

As y is non-decreasing with each iteration of the algorithm, convergence can be proved
by updating y in accordance with (114) and solving for fff in (113). The iterative
algorithm actually converges to the global optimum solution of (112) when the single-
ratio problem (112) consists of concave-convex fractional programming. To reach the
the optimal f , first, initialize y(0) from a feasible point fff (0) of the problem (110), after
that, the optimization problem in (113) is solved iteratively to generate a sequence
{ fff (i)}, i = 1,2, . . . of feasible and improved points toward the optimal solution of (110).
It is also notable that at iteration (i), fff (i−1) is used as a feasible point for solving (113)
and obtaining fff (i). Also, note that CVX easily solves the optimization problem in (113)
as a convex quadratically constrained quadratic program (QCQP). In order to achieve

94



convergence, a series of convex problems (113) must be solved and repeated. For a
given error tolerance ξ > 0, with the initial feasible point fff (0), the solution for problem
(109) is achieved when |Ue f f 3( fff (i))−Ue f f 3( fff (i−1))| ≤ ξ .

Passive RIS beamforming

Similarly, given fixed f and by denoting hhhk = GGGΘΘΘhhhrk , the utility function in (108) is

max
ΘΘΘ

∑
K
k=1
( π̃k|(hhh∗rk

ΘΘΘ
∗GGG∗) fff k|2

∑ j∈K |(hhh∗rk
ΘΘΘ
∗GGG∗) fff j |2+N0

)
∑k∈K ∥ fff k∥2+PCir

, (115)

s.t. C2.

By defining lll j,k ≜ diag(hhh∗rk
)GGG∗ fff j, lll j,k ∈CN , and |(hhh∗rk

ΘΘΘ
∗GGG∗) fff j|2 = |θθθ ∗diag(hhh∗rk

)GGG∗ fff j|2 =
|θθθ ∗lll j,k|2, the utility function in (115) is equivalently reformulated as

Ue f f 4(θθθ)≜
∑

K
k=1

(
π̃k|θθθ∗lllk,k|2

∑ j∈K |θθθ∗lll j,k|2+N0

)
∑k∈K ∥ fff k∥2+PCir

. (116)

Since the numerator in the fraction Ue f f 4(θθθ) is found via fractional programming, on
the basis of the quadratic transform, it can be expressed as follows [82]

Ue f f 5(θθθ ,,,εεε)≜
K

∑
k=1

(
2
√

π̃kℜ(ε∗k θθθ
∗lllk,k)−|εk|2

(
∑

j∈K
|θθθ ∗lll j,k|2 +N0

))
, (117)

where εεε = {εk|∀k} are auxiliary variables. The optimization problem is therefore
reformulated as

P2: max
θθθ ,εεε

Ue f f 5(θθθ ,,,εεε) (118)

s.t. C2,

such that εεε and θθθ are optimized alternatively. By setting ∂Ue f f 5(θθθ ,εεε)

∂εεε
= 0, the optimal εεε

for a given θθθ is

ε
opt
k =

√
π̃kθθθ

∗lllk,k

∑ j∈K |θθθ ∗lll j,k|2 +N0
. (119)
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Given the optimal εεεopt, the optimization problem for θθθ is expressed as:

max
θθθ

−θθθ
∗BBBθθθ +2ℜ(θθθ ∗NNN) (120)

s.t. C2,

where ℜ(·) represents the real part of a complex number and

BBB ≜ ∑
k∈K
|εk|2 ∑

j∈K
lll j,klll∗j,k, (121)

NNN ≜ ∑
k∈K

√
π̃kε
∗
k lllk,k. (122)

Since lllk, jlll
∗
k, j for all k, j are positive definite matrices, BBB is a positive definite matrix.

Furthermore, the utility function in (120) is a quadratic concave function of θθθ . As
a result, the problem can only be characterized as QCQP, and its non-convexity can
only be attributed to the constraints. As an alternative to non-convex constraints, the
following convex quadratic constraints can be substituted as θθθ

∗eeeneee∗nθθθ ≤ 1 for ∀n ∈N

where eeen ∈RN represents an elementary vector involving a one at the nth position. As a
result, the convex QCQP is formulated as

P2.1(î): max
θθθ

−θθθ
∗BBBθθθ +2ℜ(θθθ ∗NNN) (123)

s.t. θθθ
∗eeeneee∗nθθθ ≤ 1, ∀n ∈N ,

which is solved by CVX [83].

Computational Complexity Analysis

A summary of our proposed environment-aware active/passive beamforming is provided
in Algorithm 4. In our proposed approach, we assume that the wireless channel
information is attained through a channel knowledge map. This channel knowledge map
provides a pre-determined estimate of the wireless channel characteristics. By utilizing
this channel knowledge map, our algorithm eliminates the need for overhead in training
and channel estimation.

Furthermore, our proposed algorithm has no additional overhead besides the
computational complexity of obtaining the active and passive beamforming. The
computational complexity of our algorithm is mainly determined by the number
of variables in the quadratic optimization problems. However, by utilizing convex
optimization solvers, such as CVX, the problem can be solved efficiently without
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Algorithm 4: Environment-aware active/passive beamforming algorithm
Input :Location information of the UEs, the environment information offered by

CKM
Output :Environment-aware active/passive beamformers

1 Attaining the wireless channel gain of UEs (hhhk) based on CKM;
2 Set î←− 0 and initialize fff ,,,θθθ ;
3 while convergence not met and î < Iout do
4 Set î←− î+1, i←− 0;
5 Compute πππ from π

opt
k = SINRk;

6 Compute βββ from (111);
7 Initialize y(0);
8 while convergence not met and i < Iin do
9 Set i←− i+1;

10 Solve convex program P1.1(i) from (113) to find optimal solution fff (i),
using πππ,βββ ,y(i);

11 Compute y(i+1) from (114), using fff (i),,,βββ ,πππ;

12 Compute εεε from (119);
13 Solve convex program P2.1(î) in (123) to find optimized θθθ ;

incurring a significant computational overhead. Therefore, our proposed approach
provides a practical and efficient solution for wireless communication systems that
require low overheads in channel estimation and training.

In the proposed algorithm, two QCQP problems are solved using CVX at each
iteration. The size of the problem is determined by the number of variables M, and N,
respectively. For both sub-problems, the constraints are quadratic, and the objective
function is also quadratic, which means that the problem is convex and can be solved
efficiently using a suitable convex optimization solver.

The complexity of solving a convex optimization problem using an interior-point
method such as those used by Gurobi, MOSEK, or SeDuMi is typically polynomial in
the size of the problem. In particular, the complexity of interior-point methods is usually
proportional to the cube of the number of variables, M3, and N3, respectively.

To provide a more specific solution, the complexity of Algorithm 4 can be estimated
by considering the number of variables in each of the two QCQP sub-problems. For the
sub-problem defined in P1.1 from (113), the number of variables is M, while for the
sub-problem defined in P2.1 from (123), the number of variables is N. The complexity
of solving each QCQP sub-problem using CVX is proportional to the cube of the number
of variables, which gives a complexity of M3 for sub-problem P1.1 in (113) and N3 for
sub-problem P2.1 in (123).
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Therefore, the overall complexity of Algorithm 1 can be estimated as M3 +N3.
However, it is worth noting that this is only an estimate, and the actual complexity may
depend on various factors, such as the specific implementation of the optimization solver
and the problem instance.

4.3 Simulation results

Based on the concept of CKMs and knowing the UEs’ locations, the active beamformers
at the BS and passive beamformers at the RIS are optimized to achieve maximum
network EE. An actual physical environment is considered while fixing the BS and RIS
locations. Additionally, the UEs are randomly distributed in a 50m×50m square area.
The BS and RIS are placed in such a way that a LoS path exists between them, but the
links between BS and UEs are blocked. In addition to these blockers, other obstructions
may be located randomly within the square area, which may affect the LoS link for
the RIS-UEs channels. There are 8×8 uniform planar array (UPA) antennas installed
at the BS. Besides, the RIS is composed of 10×10 reflecting passive elements. At a
carrier frequency of 73GHz, and a system bandwidth of 300MHz, the power spectral
density of the noise is −174dBm/Hz. Additionally, the transmit power P at the BS
varies from 20dBm to 40dBm. It is assumed that the channel coherent time spans over
for S = 104 symbols, and the simulations presented below are the result of averaging
over 104 iterations.

Figure 17 shows the average network SE and EE for perfect CSI, and CKM based
on estimating the UEs’ locations with error,s and channel training-based, respectively.
By comparing the curves, it can be observed that although the error in estimating the
locations degrades the rate performance logarithmically, it still outperforms the channel
training-based scheme that affects the communication rate linearly. Hence, the proposed
environment-aware beamforming demonstrates its robustness to UE location errors in
practice.

Considering the training overhead, the average network SE is depicted in Fig. 18.
The results indicate that the training-based SE experiences a significant decrease as the
number of RIS arrays increases. This is because the training overhead surpasses the
resulting gain for RIS elements in passive beamforming. In contrast, the proposed CKM
schemes consistently improve as N increases. As the number of reflective arrays grows,
more signals can be reflected, which results in enhanced passive beamforming.
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Fig. 17. Average network SE and EE for perfect CSI, CKM based on estimating the UEs’
locations with error, and training-based beamforming (Under CC BY 4.0 license from [21]
©2023, Authors).

99



9*9 10*10 11*11 12*12

RIS array size

0

0.5

1

1.5

2

2.5

3

3.5

A
v
e

ra
g

e
 N

e
tw

o
rk

 S
E

 (
b

p
s
/H

z
)

CKM Training-based Perfect CSI

Average UE location error (AULE)

                  = 0.3 [m]

AULE = 0.5 [m]

AULE = 0.7 [m]

Fig. 18. Average Network SE versus the number of RIS arrays (Under CC BY 4.0 license
from [21] ©2023, Authors).

4.4 Conclusion

We investigated environment-aware active/passive beamforming for RIS-aided commu-
nication enabled by CKM, which requires no online training and reduces the overhead
for mmWave systems while achieving high energy-efficient performance. According
to simulation results, CKM can significantly improve active/passive beamforming
compared to training-based beamforming and is quite robust to errors associated with
the location of UEs in practice.
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5 Conclusions and future works

In order to provide cost-effective and high-coverage communication, we explored the
use of reconfigurable intelligent surfaces (RIS) in cellular networks. One of the key
challenges we encountered was the issue of user association, which is the process of
determining which users should be assigned to which base stations in order to maximize
network efficiency. We approached this problem from a new perspective, taking into
account the effects of the RIS on user association and interference.

Our research showed that the conventional user association schemes developed for
4G and legacy cellular networks are not well-suited for 5G and beyond networks due to
the highly directional transmissions via beamforming and abrupt channel variations at
mmWave bands. The thesis provided an in-depth analysis and novel active beamforming
at the BSs under transmit power constraints, passive beamforming at the RISs under
phase constraints, as well as centralized and distributed algorithms for user association in
5G and beyond cellular networks by employing different techniques, including matching
theory and optimization. Our research included in-depth performance analyses and
comparisons with conventional and state-of-the-art user association schemes, confirming
our proposed approaches’ effectiveness.

Overall, this thesis has significantly contributed to the understanding and optimization
of RIS-assisted cellular networks. This chapter summarizes the main results and
conclusions of the thesis and suggests possible future research directions in this area.

5.1 Thesis summary

In conclusion, this thesis focused on investigating user association in RIS-assisted
mmWave cellular networks and proposed novel solutions to improve the system’s
spectral efficiency and cell edge coverage. Chapter 1 provided an introduction to the
problems and motivations that are considered in this thesis. Meanwhile, Chapter 2
presented a review of previous and concurrent works related to the thesis’s contributions.

Chapter 3 specifically studied user association in an RIS-assisted cellular network
and proposed interference-aware user association schemes for cellular networks that
balance the BS loads and maximizes network spectral efficiency. One of the proposed
schemes employs a matching game to optimize the user association. Furthermore, the
joint design of active beamforming at the BSs, passive beamforming at the RISs, and
user association optimization problem in RIS-assisted mmWave MISO cellular networks
were considered to formulate the problem of sum rate maximization.
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To solve the non-convex and complex problem, an iterative algorithm for user
association, active beamforming, and passive beamforming was proposed based on
alternating optimization techniques. The algorithm decomposes the original problem
into three non-convex subproblems, and two effective approaches were proposed to
solve each of them. The proposed joint algorithm was shown to provide significant
improvements in terms of spectral efficiency and coverage, especially for cell edge
users, when compared to benchmarking algorithms and a system without RIS.

Overall, this thesis significantly contributes to understanding RIS-assisted cellular
networks and proposes effective solutions to improve their performance.

In Chapter 4, a novel approach to RIS-aided wireless communication is proposed by
leveraging the interplay between communication and sensing with radio waves. This is
achieved through the introduction of a new concept called a Channel Knowledge Map
(CKM), which combines radio environment information with user equipment (UE)
location information to enable efficient beamforming without real-time training. The
potential of sensing with radio waves is discussed in terms of enabling new use cases
and applications and improving communication aspects of 6G systems. The proposed
scheme’s performance was evaluated through simulations, and the results demonstrate
its superiority over training-based beamforming while being robust to errors related
to UE location in practice. This work highlights the importance of considering the
environment in wireless communication and lays the foundation for further research on
the potential of CKM and sensing with radio waves in various wireless communication
scenarios.

5.2 Directions for future work

Future research in this area has the potential to further enhance the performance of
RIS-assisted networks by exploring other optimization problems, such as power control
and resource allocation. Investigation of the application of RIS in other wireless
communication scenarios, such as vehicular communication and IoT networks, could
also be a promising avenue for future research.

Furthermore, the Channel Knowledge Map (CKM) concept can be extended to
explore other communication aspects, such as energy harvesting and simultaneous
wireless information and power transfer (SWIPT). By incorporating machine learning
algorithms, the performance of user association, active beamforming at the BSs, and
passive beamforming at the RISs can be optimized while considering the trade-off
between complexity and convergence speed. The performance of these learning-based
algorithms can also be compared with optimization-based algorithms to identify the most
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effective approach. Additionally, exploring the feasibility of implementing the proposed
solutions in practical scenarios can be a promising direction for future research.

103



104



References

[1] C. Forecast, “Cisco visual networking index: Global mobile data traffic forecast update,
2016–2021 white paper,” Cisco Public Information, 2017.

[2] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz,
M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It
will work!” IEEE Access, vol. 1, pp. 335–349, 2013.

[3] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip,
“Millimeter wave channel modeling and cellular capacity evaluation,” IEEE Journal on
Selected Areas in Communications, vol. 32, no. 6, pp. 1164–1179, 2014.

[4] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar,
“Millimeter-wave beamforming as an enabling technology for 5G cellular communications:
Theoretical feasibility and prototype results,” IEEE communications magazine, vol. 52,
no. 2, pp. 106–113, 2014.

[5] D. Bethanabhotla, O. Y. Bursalioglu, H. C. Papadopoulos, and G. Caire, “Optimal user-
cell association for massive MIMO wireless networks,” IEEE Transactions on Wireless
Communications, vol. 15, no. 3, pp. 1835–1850, 2016.

[6] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews, “User
association for load balancing in heterogeneous cellular networks,” IEEE Transactions on
Wireless Communications, vol. 12, no. 6, pp. 2706–2716, 2013.

[7] G. Athanasiou, P. C. Weeraddana, C. Fischione, and L. Tassiulas, “Optimizing client asso-
ciation for load balancing and fairness in millimeter-wave wireless networks,” IEEE/ACM
Transactions on Networking, vol. 23, no. 3, pp. 836–850, 2015.

[8] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint
active and passive beamforming,” IEEE Transactions on Wireless Communications, vol. 18,
no. 11, pp. 5394–5409, 2019.

[9] M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and
S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces:
How it works, state of research, and the road ahead,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 11, pp. 2450–2525, 2020.

[10] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting
surface aided wireless network,” IEEE Communications Magazine, vol. 58, no. 1, pp.
106–112, 2020.

[11] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable
intelligent surfaces for energy efficiency in wireless communication,” IEEE Transactions
on Wireless Communications, vol. 18, no. 8, pp. 4157–4170, 2019.

[12] M. Cui, G. Zhang, and R. Zhang, “Secure wireless communication via intelligent reflecting
surface,” IEEE Wireless Communications Letters, vol. 8, no. 5, pp. 1410–1414, 2019.

[13] C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan, and L. Hanzo, “Multicell
MIMO communications relying on intelligent reflecting surfaces,” IEEE Transactions on
Wireless Communications, vol. 19, no. 8, pp. 5218–5233, 2020.

[14] G. Lee, M. Jung, A. T. Z. Kasgari, W. Saad, and M. Bennis, “Deep reinforcement learning
for energy-efficient networking with reconfigurable intelligent surfaces,” in ICC 2020 -
2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–6.

[15] X. Yu, D. Xu, and R. Schober, “MISO wireless communication systems via intelligent
reflecting surfaces : (invited paper),” in 2019 IEEE/CIC International Conference on
Communications in China (ICCC), 2019, pp. 735–740.

105



[16] G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “Intelligent reflecting surface
aided multigroup multicast MISO communication systems,” IEEE Transactions on Signal
Processing, vol. 68, pp. 3236–3251, 2020.

[17] S. Hu, Z. Wei, Y. Cai, D. W. K. Ng, and J. Yuan, “Sum-rate maximization for multiuser
MISO downlink systems with self-sustainable IRS,” in GLOBECOM 2020 - 2020 IEEE
Global Communications Conference, 2020, pp. 1–7.

[18] H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate maximization for
reconfigurable intelligent surface aided wireless networks,” IEEE Transactions on Wireless
Communications, vol. 19, no. 5, pp. 3064–3076, 2020.

[19] X. Wang, Z. Fei, J. Huang, and H. Yu, “Joint waveform and discrete phase shift design
for RIS-assisted integrated sensing and communication system under cramer-rao bound
constraint,” IEEE Transactions on Vehicular Technology, vol. 71, no. 1, pp. 1004–1009,
2022.

[20] E. Moeen Taghavi, R. Hashemi, A. Alizadeh, N. Rajatheva, M. Vu, and M. Latva-aho,
“Joint active-passive beamforming and user association in irs-assisted mmwave cellular
networks,” IEEE Transactions on Vehicular Technology, vol. 72, no. 8, pp. 10 448–10 461,
2023.

[21] E. Moeen Taghavi, R. Hashemi, N. Rajatheva, and M. Latva-Aho, “Environment-aware joint
active/passive beamforming for ris-aided communications leveraging channel knowledge
map,” IEEE Communications Letters, vol. 27, no. 7, pp. 1824–1828, 2023.

[22] E. Moeen Taghavi, A. Alizadeh, N. Rajatheva, M. Vu, and M. Latva-aho, “User association
in millimeter wave cellular networks with intelligent reflecting surfaces,” in 2021 IEEE
93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021, pp.
1–6.

[23] E. Moeen Taghavi, R. Hashemi, N. Rajatheva, and M. Latva-aho, “Joint user association and
phase optimization for IRS-assisted multi-cell networks,” in ICC 2022 - IEEE International
Conference on Communications, Seoul, Korea, 2022, pp. 2035–2040.

[24] R. Hashemi, S. Ali, E. Moeen Taghavi, N. H. Mahmood, and M. Latva-Aho, “Deep
reinforcement learning for practical phase shift optimization in RIS-assisted networks
over short packet communications,” in 2022 Joint European Conference on Networks and
Communications & 6G Summit (EuCNC/6G Summit). IEEE, 2022, pp. 518–523.

[25] Hexa-X project deliverable D3.2, “Initial models and measurements for localisation and
sensing,” European Commission, Deliverable, Eds. E. Moeen Taghavi and H. Wymeersch,
Oct. 2022.

[26] B. Massod Khorsandi and et al., “The 6G architecture landscape - european perspective,”
Feb. 2023.

[27] E. U. T. R. Access, “Small cell enhancements for E-UTRA and EUTRAN-Physical layer
aspects,” Rel, vol. 12, p. v12, 2013.

[28] S. Das, H. Viswanathan, and G. Rittenhouse, “Dynamic load balancing through coordinated
scheduling in packet data systems,” in IEEE INFOCOM 2003. Twenty-second Annual
Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat.
No.03CH37428), vol. 1, 2003, pp. 786–796 vol.1.

[29] Y. Bejerano and S.-J. Han, “Cell breathing techniques for load balancing in wireless LANs,”
IEEE Transactions on Mobile Computing, vol. 8, no. 6, pp. 735–749, 2009.

[30] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and
D. Malladi, “A survey on 3GPP heterogeneous networks,” IEEE Wireless Communications,
vol. 18, no. 3, pp. 10–21, 2011.

106



[31] Y. Lin and W. Yu, “Optimizing user association and frequency reuse for heterogeneous
network under stochastic model,” in 2013 IEEE Global Communications Conference
(GLOBECOM), 2013, pp. 2045–2050.

[32] O. Semiari, W. Saad, and M. Bennis, “Downlink cell association and load balancing for
joint millimeter wave-microwave cellular networks,” in 2016 IEEE Global Communications
Conference (GLOBECOM), 2016, pp. 1–6.

[33] A. Alizadeh and M. Vu, “Load balancing user association in millimeter wave MIMO
networks,” IEEE Transactions on Wireless Communications, vol. 18, no. 6, pp. 2932–2945,
2019.

[34] ——, “Distributed user association in B5G networks using early acceptance matching
game,” IEEE Transactions on Wireless Communications, vol. 20, no. 4, pp. 2428–2441,
2021.

[35] A. M. Al-samman, M. H. Azmi, and T. A. Rahman, “A survey of millimeter wave
(mm-wave) communications for 5G: Channel measurement below and above 6 GHz,”
in International Conference of Reliable Information and Communication Technology.
Springer, 2018, pp. 451–463.

[36] M. Hong and Z.-Q. Luo, “Distributed linear precoder optimization and base station
selection for an uplink heterogeneous network,” IEEE transactions on signal processing,
vol. 61, no. 12, pp. 3214–3228, 2013.

[37] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “Linear transceiver design for a MIMO interfering
broadcast channel achieving max–min fairness,” Signal Processing, vol. 93, no. 12, pp.
3327–3340, 2013.

[38] Y. Liu, X. Fang, M. Xiao, and S. Mumtaz, “Decentralized beam pair selection in multi-beam
millimeter-wave networks,” IEEE Transactions on Communications, vol. 66, no. 6, pp.
2722–2737, 2018.

[39] S. Cetinkaya, U. S. Hashmi, and A. Imran, “What user-cell association algorithms will
perform best in mmwave massive MIMO ultra-dense HetNets?” in 2017 IEEE 28th
Annual International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), 2017, pp. 1–7.

[40] S. Goyal, M. Mezzavilla, S. Rangan, S. Panwar, and M. Zorzi, “User association in 5G
mmwave networks,” in 2017 IEEE Wireless Communications and Networking Conference
(WCNC), 2017, pp. 1–6.

[41] B. Soleimani and M. Sabbaghian, “Cluster-based resource allocation and user association
in mmwave femtocell networks,” IEEE Transactions on Communications, vol. 68, no. 3, pp.
1746–1759, 2020.

[42] X. Qin, X. Yuan, Z. Zhang, F. Tian, Y. T. Hou, and W. Lou, “Joint User-AP association
and resource allocation in Multi-AP 60-GHz WLAN,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 6, pp. 5696–5710, 2019.

[43] R. Dong, A. Li, W. Hardjawana, Y. Li, X. Ge, and B. Vucetic, “Joint beamforming and user
association scheme for full-dimension massive MIMO networks,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 8, pp. 7733–7746, 2019.

[44] L. Shen, Y. Chen, and K. Feng, “Design and analysis of multi-user association and beam
training schemes for millimeter wave based WLANs,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 7, pp. 7458–7472, 2020.

[45] H. H. M. Tam, H. D. Tuan, D. T. Ngo, T. Q. Duong, and H. V. Poor, “Joint load balancing
and interference management for small-cell heterogeneous networks with limited backhaul
capacity,” IEEE Transactions on Wireless Communications, vol. 16, no. 2, pp. 872–884,
2017.

107



[46] H. Shokri-Ghadikolaei, C. Fischione, G. Fodor, P. Popovski, and M. Zorzi, “Millimeter
wave cellular networks: A MAC layer perspective,” IEEE Transactions on Communications,
vol. 63, no. 10, pp. 3437–3458, 2015.

[47] A. Talukdar, M. Cudak, and A. Ghosh, “Handoff rates for millimeterwave 5G systems,” in
2014 IEEE 79th Vehicular Technology Conference (VTC Spring), 2014, pp. 1–5.

[48] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” The
American Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[49] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching theory for future wireless
networks: fundamentals and applications,” IEEE Communications Magazine, vol. 53, no. 5,
pp. 52–59, 2015.

[50] Y. Du, J. Li, L. Shi, T. Liu, F. Shu, and Z. Han, “Two-tier matching game in small cell
networks for mobile edge computing,” IEEE Transactions on Services Computing, vol. 15,
no. 1, pp. 254–265, 2022.

[51] O. Semiari, W. Saad, S. Valentin, M. Bennis, and B. Maham, “Matching theory for
priority-based cell association in the downlink of wireless small cell networks,” in 2014
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2014, pp. 444–448.

[52] W. Saad, Z. Han, R. Zheng, M. Debbah, and H. V. Poor, “A college admissions game for
uplink user association in wireless small cell networks,” in IEEE INFOCOM 2014 - IEEE
Conference on Computer Communications, 2014, pp. 1096–1104.

[53] M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and
S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces:
How it works, state of research, and the road ahead,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 11, pp. 2450–2525, 2020.

[54] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new
wireless communication paradigm through software-controlled metasurfaces,” IEEE
Communications Magazine, vol. 56, no. 9, pp. 162–169, 2018.

[55] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting
surface aided wireless network,” IEEE Communications Magazine, vol. 58, no. 1, pp.
106–112, 2020.

[56] E. Björnson, Ö. Özdogan, and E. G. Larsson, “Reconfigurable intelligent surfaces: Three
myths and two critical questions,” IEEE Communications Magazine, vol. 58, no. 12, pp.
90–96, 2020.

[57] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network: Joint active
and passive beamforming design,” in 2018 IEEE Global Communications Conference
(GLOBECOM), 2018, pp. 1–6.

[58] C. Huang, A. Zappone, M. Debbah, and C. Yuen, “Achievable rate maximization by passive
intelligent mirrors,” in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2018, pp. 3714–3718.

[59] T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, and L. Hanzo, “MIMO assisted networks
relying on large intelligent surfaces: A stochastic geometry model,” arXiv preprint
arXiv:1910.00959, vol. 1, 2019.

[60] Q.-U.-A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M.-S. Alouini, “Asymptotic
Max-Min SINR analysis of reconfigurable intelligent surface assisted MISO systems,”
IEEE Transactions on Wireless Communications, vol. 19, no. 12, pp. 7748–7764, 2020.

[61] M.-M. Zhao, Q. Wu, M.-J. Zhao, and R. Zhang, “Intelligent reflecting surface enhanced
wireless networks: Two-timescale beamforming optimization,” IEEE Transactions on
Wireless Communications, vol. 20, no. 1, pp. 2–17, 2021.

108



[62] D. Zhao, H. Lu, Y. Wang, H. Sun, and Y. Gui, “Joint power allocation and user associa-
tion optimization for IRS-assisted mmwave systems,” IEEE Transactions on Wireless
Communications, vol. 21, no. 1, pp. 577–590, 2022.

[63] W. Ni, X. Liu, Y. Liu, H. Tian, and Y. Chen, “Resource allocation for multi-cell IRS-aided
NOMA networks,” IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp.
4253–4268, 2021.

[64] W. Mei and R. Zhang, “Performance analysis and user association optimization for
wireless network aided by multiple intelligent reflecting surfaces,” IEEE Transactions on
Communications, vol. 69, no. 9, pp. 6296–6312, 2021.

[65] S. Liu, P. Ni, R. Liu, Y. Liu, M. Li, and Q. Liu, “BS-RIS-user association and beamforming
designs for RIS-aided cellular networks,” in 2021 IEEE/CIC International Conference on
Communications in China (ICCC), 2021, pp. 563–568.

[66] 3rd Generation Partnership Project (3GPP), “Study on channel model for frequencies from
0.5 to 100 GHz,” Technical Report 38.901, Apr. 2022, v. 17.0.0.

[67] T. A. Thomas, H. C. Nguyen, G. R. MacCartney, and T. S. Rappaport, “3D mmwave channel
model proposal,” in 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall),
2014, pp. 1–6.

[68] M. K. Samimi, T. S. Rappaport, and G. R. MacCartney, “Probabilistic omnidirectional path
loss models for millimeter-wave outdoor communications,” IEEE Wireless Communications
Letters, vol. 4, no. 4, pp. 357–360, 2015.

[69] C. Pan, M. Elkashlan, J. Wang, J. Yuan, and L. Hanzo, “User-Centric C-RAN architecture
for ultra-dense 5G networks: Challenges and methodologies,” IEEE Communications
Magazine, vol. 56, no. 6, pp. 14–20, 2018.

[70] M. Peng, Y. Li, J. Jiang, J. Li, and C. Wang, “Heterogeneous cloud radio access net-
works: a new perspective for enhancing spectral and energy efficiencies,” IEEE Wireless
Communications, vol. 21, no. 6, pp. 126–135, 2014.

[71] Y. Shi, J. Zhang, K. B. Letaief, B. Bai, and W. Chen, “Large-scale convex optimization for
ultra-dense cloud-RAN,” IEEE Wireless Communications, vol. 22, no. 3, pp. 84–91, 2015.

[72] E. Onggosanusi, M. S. Rahman, L. Guo, Y. Kwak, H. Noh, Y. Kim, S. Faxer, M. Harrison,
M. Frenne, S. Grant, R. Chen, R. Tamrakar, Gao, and Qiubin, “Modular and high-resolution
channel state information and beam management for 5G new radio,” IEEE Communications
Magazine, vol. 56, no. 3, pp. 48–55, 2018.

[73] Q. Wu and R. Zhang, “Beamforming optimization for wireless network aided by intelligent
reflecting surface with discrete phase shifts,” IEEE Transactions on Communications,
vol. 68, no. 3, pp. 1838–1851, 2020.

[74] Y. Cui and H. Yin, “An efficient CSI acquisition method for intelligent reflecting surface-
assisted mmwave networks,” arXiv preprint arXiv:1912.12076, 2019.

[75] Y. Han, W. Tang, S. Jin, C.-K. Wen, and X. Ma, “Large intelligent surface-assisted wireless
communication exploiting statistical CSI,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 8238–8242, 2019.

[76] H. Zhou, Y. Ji, X. Wang, and B. Zhao, “Joint user scheduling, user association, and resource
partition in heterogeneous cellular networks,” in 2014 IEEE 11th International Conference
on Mobile Ad Hoc and Sensor Systems. IEEE, 2014, pp. 46–54.

[77] D. Park, H. Seo, H. Kwon, and B. G. Lee, “Wireless packet scheduling based on the
cumulative distribution function of user transmission rates,” IEEE Transactions on Commu-
nications, vol. 53, no. 11, pp. 1919–1929, 2005.

[78] X. Ge, H. Jin, and V. C. Leung, “Opportunistic downlink scheduling with resource-based
fairness and feedback reduction in distributed antenna systems,” IEEE Transactions on
Vehicular Technology, vol. 65, no. 7, pp. 5007–5021, 2016.

109



[79] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding
in millimeter wave MIMO systems,” IEEE transactions on wireless communications,
vol. 13, no. 3, pp. 1499–1513, 2014.

[80] E. Björnson, Ö. Özdogan, and E. G. Larsson, “Intelligent reflecting surface versus
decode-and-forward: How large surfaces are needed to beat relaying?” IEEE Wireless
Communications Letters, vol. 9, no. 2, pp. 244–248, 2020.

[81] A. Alizadeh and M. Vu, “Early acceptance matching game for user association in 5G
cellular hetnets,” in 2019 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2019, pp. 1–6.

[82] K. Shen and W. Yu, “Fractional programming for communication systems—part i: Power
control and beamforming,” IEEE Transactions on Signal Processing, vol. 66, no. 10, pp.
2616–2630, 2018.

[83] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,
version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[84] B. Khamidehi, A. Rahmati, and M. Sabbaghian, “Joint sub-channel assignment and
power allocation in heterogeneous networks: An efficient optimization method,” IEEE
Communications Letters, vol. 20, no. 12, pp. 2490–2493, 2016.

[85] E. Che, H. D. Tuan, and H. H. Nguyen, “Joint optimization of cooperative beamforming
and relay assignment in multi-user wireless relay networks,” IEEE Transactions on Wireless
Communications, vol. 13, no. 10, pp. 5481–5495, 2014.

[86] J.-F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, Numerical optimization:
theoretical and practical aspects. Springer Science & Business Media, 2006.

[87] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization with biconvex
functions: a survey and extensions,” Mathematical methods of operations research, vol. 66,
no. 3, pp. 373–407, 2007.

[88] A. Nemirovski, “Interior point polynomial time methods in convex programming,” Lecture
notes, 2004.

[89] Y. Wei, M.-M. Zhao, M.-J. Zhao, and Y. Cai, “Channel estimation for IRS-aided multiuser
communications with reduced error propagation,” IEEE Trans. Wireless Commun., vol. 21,
no. 4, pp. 2725–2741, 2022.

[90] X. Guan, Q. Wu, and R. Zhang, “Anchor-assisted channel estimation for intelligent
reflecting surface aided multiuser communication,” IEEE Trans. Wireless Commun., vol. 21,
no. 6, pp. 3764–3778, 2022.

[91] D. Mishra and H. Johansson, “Channel estimation and low-complexity beamforming
design for passive intelligent surface assisted MISO wireless energy transfer,” in IEEE Int.
Conf. on Acoustics, Speech and Signal Process. (ICASSP), 2019, pp. 4659–4663.

[92] B. Zheng and R. Zhang, “Intelligent reflecting surface-enhanced OFDM: Channel estimation
and reflection optimization,” IEEE Wireless Commun. Lett., vol. 9, no. 4, pp. 518–522,
2020.

[93] Z. Wang, L. Liu, and S. Cui, “Channel estimation for intelligent reflecting surface assisted
multiuser communications: Framework, algorithms, and analysis,” IEEE Trans. Wireless
Commun., vol. 19, no. 10, pp. 6607–6620, 2020.

[94] P. Wang, J. Fang, H. Duan, and H. Li, “Compressed channel estimation for intelligent
reflecting surface-assisted millimeter wave systems,” IEEE Signal Process. Lett., vol. 27,
pp. 905–909, 2020.

[95] G. Zhou, C. Pan, H. Ren, P. Popovski, and A. L. Swindlehurst, “Channel estimation for
RIS-Aided multiuser millimeter-wave systems,” IEEE Trans. Signal Process., vol. 70, pp.
1478–1492, 2022.

110



[96] Z.-Q. He and X. Yuan, “Cascaded channel estimation for large intelligent metasurface
assisted massive MIMO,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 210–214, 2020.

[97] C. You, B. Zheng, and R. Zhang, “Fast beam training for IRS-Assisted multiuser communi-
cations,” IEEE Wireless Commun. Lett., vol. 9, no. 11, pp. 1845–1849, 2020.

[98] Y. Zeng and X. Xu, “Toward environment-aware 6G communications via channel knowl-
edge map,” IEEE Wirel. Commun., vol. 28, no. 3, pp. 84–91, 2021.

[99] K. Li, P. Li, Y. Zeng, and J. Xu, “Channel knowledge map for environment-aware
communications: Em algorithm for map construction,” in IEEE Wirel. Commun. and Netw.
Conf. (WCNC), 2022, pp. 1659–1664.

[100] D. Wu, Y. Zeng, S. Jin, and R. Zhang, “Environment-aware and training-free beam
alignment for mmwave massive MIMO via channel knowledge map,” in Proc. IEEE Int.
Conf. Commun. Work. (ICC Work.), 2021, pp. 1–7.

[101] D. Ding, D. Wu, Y. Zeng, S. Jin, and R. Zhang, “Environment-aware beam selection for
IRS-Aided communication with channel knowledge map,” in IEEE Globecom Workshops
(GC Wkshps), 2021, pp. 1–6.

[102] S. Bi, J. Lyu, Z. Ding, and R. Zhang, “Engineering radio maps for wireless resource
management,” IEEE Wirel. Commun., vol. 26, no. 2, pp. 133–141, 2019.
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Appendix 1 Proof of the convexity of
f (x,y) = x ln(1+ x

y)

Calculating the 2×2 Hessian matrix elements of the function x ln(1+ x
y ) yields

∂ 2 f
∂x2 =

2+ x
y

y

(1+ x
y )

2 , (124)

∂ 2 f
∂y2 =

2x2y+ x3

y4(1+ x
y )

2 , (125)

∂ 2 f
∂x∂y

=
∂ 2 f

∂y∂x
=
− x2

y3 −2 x
y2

(1+ x
y )

2 . (126)

The determinant of Hessian matrix is

det(Hessian) = 0. (127)

Therefore, one of the Hessian matrix eigenvalues is zero, and the other one is always
positive since the summation of all diagonal elements of the Hessian matrix is always
positive for x,y≥ 0.
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Appendix 2 The lower bound approximation of F1

(F1(a)≜U(r)+λ ∑k∈K ∑ j∈J

(
a2

k, j−ak, j

)
)

Since U(r) in (73) is convex, its lower bound can be first-order approximated at point
a(î) as follows [104]

U(r) = ∑
k∈K

∑
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ak, j ln
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ak, j
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a(î)k, j
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(ak, j−a(î)k, j

)

+

−
(
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, (128)

Also, (a2
k, j − ak, j) is a convex quadratic function, and its lower bound can be

approximated as

(
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)
≥
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a(î)k, j

2
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)
+
(
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)
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(129)

therefore, considering (128) and (129) at the point a(î), F1(a) can be approximated as
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a(î)k, j/b(î)k, j
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Appendix 3 Proof of Theorem 1

Since a(î) and a(î+1) are the feasible points and the optimal solution of (76), considering
(77):

F1(a(î+1))≥ F̃
(î)
1 (a(î+1))≥ F̃

(î)
1 (a(î)) = F1(a(î)). (131)

Therefore, a(î+1) is a better point than a(î) in (72). Since {a(î)} is a bounded sequence,
considering Cauchy’s theorem, there is a convergent subsequent {a(îν )} with a limit
point ā, i.e.

lim
îν→+∞

[
F1(a(îν ))−F1(ā)

]
= 0. (132)

For each î, there is îν such that îν ≤ î≤ îν+1, so

0 = lim
îν→+∞

[
F1(a(îν ))−F1(ā)

]
≤ lim

îν→+∞

[
F1(a(î))−F1(ā)

]
≤ lim

îν→+∞

[
F1(a(îν+1))−F1(ā)

]
= 0. (133)

Hence, limî→+∞
F1(a(î)) = F1(ā) and each accumulation point at ā of the sequence

{a(î)} can be considered as a KKT-point [105].
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