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A B S T R A C T   

The NRF2 pathway is frequently activated in various cancer types, yet a comprehensive analysis of its effects 
across different malignancies is currently lacking. We developed a NRF2 activity metric and utilized it to conduct 
a pan-cancer analysis of oncogenic NRF2 signaling. We identified an immunoevasive phenotype where high 
NRF2 activity is associated with low interferon-gamma (IFNγ), HLA-I expression and T cell and macrophage 
infiltration in squamous malignancies of the lung, head and neck area, cervix and esophagus. Squamous NRF2 
overactive tumors comprise a molecular phenotype with SOX2/TP63 amplification, TP53 mutation and CDKN2A 
loss. These immune cold NRF2 hyperactive diseases are associated with upregulation of immunomodulatory 
NAMPT, WNT5A, SPP1, SLC7A11, SLC2A1 and PD-L1. Based on our functional genomics analyses, these genes 
represent candidate NRF2 targets, suggesting direct modulation of the tumor immune milieu. Single-cell mRNA 
data shows that cancer cells of this subtype exhibit decreased expression of IFNγ responsive ligands, and 
increased expression of immunosuppressive ligands NAMPT, SPP1 and WNT5A that mediate signaling in 
intercellular crosstalk. In addition, we discovered that the negative relationship of NRF2 and immune cells are 
explained by stromal populations of lung squamous cell carcinoma, and this effect spans multiple squamous 
malignancies based on our molecular subtyping and deconvolution data.   

1. Introduction 

Carcinogenesis – the gradual path from normal cellular behavior to 

malignant growth – requires a cell to acquire a set of distinct hallmark 
properties over time. These properties comprise functional changes in 
pre-malignant cells, as well as in various proximate stromal cells 
through intercellular crosstalk. From this standpoint, malignant tumors 
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can be considered as complex organs harnessed to sustain neoplastic 
growth [1]. Due to the increase in proliferation and cellular metabolism, 
an inevitable consequence of malignant growth is increased oxidative 
stress, which renders pathways with antioxidant effects under positive 

selection [2]. The principal regulator of the cellular redox homeostasis is 
the transcription factor Nuclear factor erythroid 2-related factor 2 
(NRF2, NFE2L2 gene), which is frequently hyperactive in malignant 
disease. Especially in non-small cell lung cancer, the oncogenic activa-
tion of NRF2 is highly frequent: somatic NRF2 activating mutations 
alone are among the most frequently occurring subtype specific aber-
rations [3]. The cytoplasmic inhibitor of NRF2, Kelch-like ECH Associ-
ated Protein 1 (KEAP1), is an E3 ubiquitin ligase substrate adaptor 
targeting NRF2 for proteasomal degradation under unstressed condi-
tions. In oxidative or electrophile stress, the interaction is disrupted and 
de novo synthesized NRF2 is translocated to the nucleus to drive target 
gene expression. NRF2 target genes have antioxidant and detoxifying 
effects via various mechanisms including upregulation of glutathione 
S-transferases, as well as NAD(P)H quinone oxidoreductase, which has 
multiple roles in adaptive cellular responses to stress [4]. In cancer, the 
regulation of NRF2 is disturbed rendering NRF2 constitutively active. 
Mechanisms of NRF2 activation include somatic mutations and 
copy-number variation in NFE2L2 (gain-of-function or amplification) 
and KEAP1 (loss-of-function or deletion), as well as positive regulation 
by p62 [5,6]. Along with its antioxidant effects, NRF2 hyperactivity is 
known to promote cancer cell proliferation and survival via various 
other mechanisms, for instance by promoting anabolic metabolism and 
increasing chemoresistance via enhanced phase II enzyme and drug 
efflux transporter expression [7]. 

One hallmark property of cancer is its ability to evade destruction by 
the immune system [1]. The past decade has complemented 
oncogene-centric targeted therapies with treatments that modulate the 
antitumor immune response. However, current diagnostic approaches 
fail to detect the clinical responders for immune-checkpoint blockade 
(ICB) with reproducible precision [8]. From this viewpoint, the effects of 
known oncogenic events on the crosstalk between cancer cells and im-
mune cells should be elucidated, as these events are often straightfor-
ward to identify, and if associated with altered immune responses, may 
serve as predictive biomarkers for ICB. It has been previously shown that 

NRF2 drives PD-L1 expression and leads to reduced leukocyte infiltra-
tion in mouse allograft models of melanoma and lung adenocarcinoma 
[9,10], but a comprehensive characterization of the effect of NRF2 
overactivity on cancer immunity is currently lacking. The aim of this 

study was therefore to characterize NRF2 hyperactivity at a pan-cancer 
scale and interrogate unknown biological effects of oncogenic NRF2 
activation, with a special emphasis on cancer immunity. To this end, we 
utilized The Cancer Genome Atlas (TCGA) and Cancer Cell Line Ency-
clopedia (CCLE), which are publicly available multi-omics databases of 
tumors and cell lines, respectively. Furthermore, the key findings of this 
work were validated with independent clinical cohorts. 

2. Results 

2.1. NRF2 activity score improves detection of NRF2 driven malignancies 

We developed a NRF2 activity scoring metric from experimentally 
confirmed robust NRF2 target genes (Fig. 1A). The utility of such a score 
is to overcome the limitations of using gold-standard mutations as a 
classifier, namely low sample size and the lack of statistical power, as 
well as ambivalent functionality of rare variants. Furthermore, alter-
native NRF2 activation mechanisms exist [5,6], highlighting the 
importance of using NRF2 target gene expression as a marker of activity 
instead of somatic variants. Our goal was to generate a metric that is: a) 
based on expression of evident target genes with robust responses to 
NRF2 activity; b) tissue-agnostic; and c) unbiased towards signal arising 
from the TME. The score was developed as follows: first, we used A549 
lung adenocarcinoma cells harboring the KEAP1 inactivating mutation 
G333W rendering NRF2 overactive (A549-NRF2OE) and knocked out 
NRF2 with Cas9-sgNRF2 (comparison of A549 NRF2 overexpressed vs 
knockout, hereafter referred to as A549-NRF2OEvsKO) to detect NRF2 
dependent differentially expressed genes (Figs. S1A and S1B, list of 
genes in Supplementary Table 1). Second, we used publicly available 
functional genomics data (See materials & methods, Functional genomics 
analysis of NRF2 target genes) to subset the genes that are directly regu-
lated by NRF2 (See Supplementary Table 2 for a complete reference of 
candidate targets). Third, we utilized public tissue as well as stromal cell 
transcriptomic data from Genotype Tissue Expression portal (GTEx) and 
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UVM Uveal Melanoma 
TCGA The Cancer Genome Atlas 
CCLE Cancer Cell Line Encyclopedia 
IFNγ Interferon gamma 
GTEx Genotype Tissue Expression Portal 
SqCC Squamous cell carcinoma 
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Database of Immune Cell Expression (DICE), respectively, to discard 
genes that are clearly tissue specific or prominently expressed in 
TME-populations (Fig. S1C and Fig. S1D). The final NRF2 signature 
comprised genes CBR1, SRXN1, GCLC, GCLM, AKR1C3 and ME1 and the 
final score was defined as a geometric mean of their linear TMM 
normalized mRNA-expression. The score values were scaled within 
disease entities (to density distribution peak) in TCGA-samples to 
decrease variance between cancer types. 

We assessed the score performance with ROC-analysis against 
OncoKB [11] defined hotspots in NFE2L2 and KEAP1 and functional 
variants (KEAP1-truncating aberrations) in TCGA-data (Fig. 1B). The 
score exhibited excellent overall discrimination (AUC = 0.94) and genes 
showed markedly different distributions in mRNA-expression in TCGA 
KEAP1/NFE2L2 mutated vs wild type samples (Fig. 1C). Individual ROC 
analyses for cohorts with somatic mutations in NFE2L2/KEAP1 are 
shown in Fig. S1E. We computed the correlations of NRF2 score to 
NFE2L2 mRNA expression. Based on the correlation patterns, multiple 
cancer types display significant positive correlations (Fig. S1F). As ca-
nonical NRF2 regulation is based on protein turnover, upregulation of 
NFE2L2 mRNA and its correlation with target gene expression suggests 
additional contribution of an upstream regulator or regulators. Score 
variance correlated considerably with KEAP1/NFE2L2 mutation fre-
quency (r = 0.8, P < 0.0001), thereby predicting the oncogenicity of 
NRF2 irrespective of activating mechanism (Fig. S1G). By this rationale, 
diseases associated with >5% mutation frequency or σ2 > 0.75 were 
defined to harbor significant oncogenic NRF2 activity. From these ma-
lignancies, we discarded TCGA cohorts with N < 100 to maintain high 
statistical power across the datasets. The score distribution and cohort 
selection are shown in Fig. 1D (colored mutations above the specified 
hyperactivity cutoff of TPR >0.85 are shown in Fig. S1H). NRF2 activity 
scores for all TCGA samples are listed in Supplementary Table 3). 
Notably, malignancies in the lung, uterus, bladder, kidney and those 
with dominating squamous histology had a significant proportion of 
high scoring samples. 

2.2. Enriched pathways in NRF2 hyperactive cancers reveal differential 
immunomodulatory association across cancer types 

For TCGA cohorts meeting the inclusion criteria, as well as for the 
A549-NRF2OEvsKO and CCLE transcriptome and proteome data, we 
conducted gene set enrichment analysis (GSEA) to assess the pathways 
enriched with NRF2 hyperactivity (Fig. 2A. See Supplementary Table 4 
for all data). Interestingly, two directly oncogenic signaling pathways, 
MYC and WNT, showed prominent global positive enrichment. Other 
global pathways associated with NRF2 hyperactivity were mainly 
metabolic, drug efflux and redox-regulatory processes, whereas immune 
microenvironment related processes were negatively enriched in NSCLC 
and squamous diseases in contrast to other diseases, which exhibited 
positive enrichment. With the curated data, cohorts clustered into two 
populations based on the immune milieu associated gene sets. Notably, 
IFNγ response, HLA- and T cell signaling gene sets enriched to the 
negative end in lung adenocarcinoma (LUAD), lung squamous cell car-
cinoma (LUSC), esophageal carcinoma (ESCA), cervical carcinoma 
(CESC) as well as head and neck cancer (HNSC), while the same path-
ways had positive enrichment scores in kidney renal papillary cell car-
cinoma (KIRP), uterine corpus endometrial carcinoma (UCEC), bladder 
carcinoma (BLCA) and liver hepatocellular carcinoma (LIHC) 
(Fig. 2A–B). As the immunological gene sets were not enriched in the 

pure cell populations (A549-NRF2OEvsKO or CCLE), they likely emerge 
from the crosstalk between cancer- and TME-cell populations. Of note, 
downregulation of cytokines, HLA-I, IL-12, IFNγ and TCR signaling are 
all characteristic to ‘immune cold’ tumors with documented poor re-
sponses to ICB therapies [12]. Upon further characterization of the 
pathways differing between the defined disease groups, we observed 
further differences in TME-related enrichment terms (Fig. 2C). As the 
pathways comprised largely lymphoid cell associated signatures, these 
data suggest that oncogenic NRF2 signaling is, in the context of NSCLC 
and squamous diseases, associated with less lymphocyte infiltration. The 
data also shows a dichotomous association of NRF2 to IFNγ response and 
lymphocyte associated pathway enrichment between NSCLC and squa-
mous cancers vs kidney, uterine and liver cancer. 

2.3. Squamous diseases comprise a NRF2 hyperactive subtype with SOX2 
amplification, CDKN2A/B and TP53 loss and upregulated 
immunosuppressive genes 

Since we observed similar immune cold characteristics across the 
TCGA squamous diseases, we proceeded to study subtype-effects within 
the diseases using Uniform Manifold Approximation and Projection 
(UMAP) and community detection-based clustering. We identified a 
distinct pan-squamous subtype with hyperactive NRF2 (identified 
communities are shown in Fig. 3A, TCGA cohorts in Fig. 3B and NRF2 
activity in Fig. 3C). Associated to this subtype, we observed co-occurring 
copy number variation (CNV) and a characteristic mutational landscape, 
most notably amplified SOX2/TP63 (q-arm of chromosome 3) and loss of 
CDKN2A/CDKN2B (9p21) (Fig. 3D and S2 A-D), as well as mutated TP53 
and CDKN2A (Figs. S2E and F). Furthermore, we identified a group of 
cell lines with similar genomic profiles using the CCLE/DepMap dataset, 
confirming the genomic determinants of this subtype (Figs. S2G, H, I, J, 
K, L, and M). There were no prominent peaks in chromosome 6, sug-
gesting that HLA-I loss events do not contribute to the phenotype. To 
confirm this, we defined HLA-I loss as at least one shallow deletion or 
LoF-mutation in major HLA-I genes and did not observe an association 
between the two variables with Fisher’s test (OR = 0.40, P = 0.09). The 
association of tumor mutational burden and NRF2 overexpression has 
been reported before [13]. Thus, we assessed the prospect of immuno-
logical effects arising from differential neoantigen load by computing 
mutational burden (log2 total mutation count) across the cluster 
comprising cohorts with respect to NRF2 activity, and did not observe a 
uniform trend between mutation count and NRF2 (Fig. S2N). To follow 
up on amplified transcription factors SOX2 and TP63, we downloaded 
publicly available ChIP-seq data (GSE46837) in squamous cancer cell 
lines and generated a list of target genes (pipeline as in Fig. 1A, func-
tional genomics) to interrogate direct targets of these transcription 
factors (see Supplementary Tables 5 and 6 for a complete reference of 
targets). To specifically assess differentially expressed, putative direct 
targets in immunomodulatory genes, we studied the overlap of the 
differentially expressed genes in the squamous cluster and the target 
gene list as well as curated genes from the CellPhoneDB framework [14] 
and TISIDB [15] (Fig. 3E). From these results, SLC7A11, NAMPT, 
SLC2A1 and MPP3 were identified to confer resistance to T cell mediated 
killing by high-throughput screening. Moreover, the listed genes had 
evidence for upstream activation by NRF2. SLC7A11, NAMPT and 
SCL2A1 are genes attributed to metabolism, involved in cysteine uptake, 
NAD + biosynthesis and glucose uptake, respectively. From the litera-
ture annotated genes, while most were ambivalent, SOX2 was shown to 

Fig. 1. NRF2 score development, performance and distribution across TCGA malignancies. 
A: Schematic of the score development procedure. NRF2 perturbation, functional genomics and tissue-specific expression data were integrated together and the NRF2 
score was defined as a geometric mean of the mRNA expression of overlapping genes. 
B: Receiver operating characteristic (ROC) curve for the NRF2 score in classifying functionally relevant somatic variants defined in OncoKB. 
C: Differential log2 CPM gene expression distribution between NFE2L2/KEAP1 mutated and non-mutated NRF2 score comprising genes in TCGA cohorts. 
D: NRF2 score with NFE2L2/KEAP1 mutations shown as a boxplot across TCGA-cohorts sorted by variance. The cohorts chosen into subsequent analyses are colored 
in black. The hyperactivity threshold was chosen with values of TPR >0.85 and FPR <0.1. 
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Fig. 2. NRF2 activity associates with disease specific immunoevasive characteristics. 
A: Pan-cancer GSEA analysis. GSEA normalized enrichment scores for pathways correlated to NRF2 activity shown as a Heatmap for TCGA, A549-NRF2OEvsKO, CCLE 
mRNA and CCLE protein. Significance of enrichment is shown as: <0.1, * <0.05, ** <0.01, *** <0.001, **** <0.0001. For TCGA, combined p-values (Stouffer’s 
method) are shown. Redundant pathway terms were discarded, See Table S2 for full list of pathway terms. Pathways were curated to reflect cancer hallmarks that are 
shown on the right. 
B: Correlation of ssGSEA Hallmarks IFNγ response and NRF2 score. Cohorts in blue, red and grey have negative, positive or insignificant correlation, respectively. 
C: Top enrichment terms deviating between the defined cancer groups with differential enrichment scores in the IFNγ response pathway. Normalized enrichment 
scores are shown on the heatmap. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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be a) upregulated in the case of effector cell resistance in co-culture; b) 
downregulate IFN type I response in vitro and c) decrease T cell infil-
tration in a HNSC murine model [16]. Interestingly, we observed 
increased NFE2L2 mRNA in SOX2 amplified TCGA squamous cell car-
cinoma (SqCC) cases, suggesting the presence of an upstream regulator 
in Chr3 q2 locus (Fig. S2O). Finally, in the squamous NRF2 cluster, we 
identified prominent downregulation of the IFNγ response analogous to 
the initial GSEA analysis (Fig. 3F). Taken together, these data support 
the notion that downregulation of IFNγ-response and/or HLA-I genes is 
downstream of NRF2 or other co-expressed transcription factors (SOX2 
or TP63). Based on the functional role of the identified immunomodu-
latory genes (Fig. 3E), modification of the tumor metabolic landscape 
may contribute to the immune escape of NRF2 hyperactive cancer. 

2.4. Interferon-gamma response pathway is downregulated in NRF2 
hyperactive cancer cells in situ 

To follow up on the identified targets, we proceeded to further 
explore signaling between NRF2 hyperactive cancer cells and immune 
cells in higher resolution in an in situ setting in a relevant cancer type. 
Thereby, we assigned NRF2 activity score to cells in a publicly available 
HNSC single-cell-RNAseq dataset (GSE103322). UMAP projection of 
single cells revealed distinct clustering of cancer cells with high NRF2 
score across patient samples, suggesting that NRF2 activation could be 
linked to global shifts in cell phenotype (Fig. 4A and B). Similar to bulk 
tumors, the cluster exhibited high expression of SOX2 (Fig. 4C). In 
addition, TP63 was also overexpressed in the NRF2 hyperactive cancer 
cell cluster, although its expression was also present in other clusters 
(Fig. S3A). In further agreement with the bulk-tumor analysis, inflam-
matory response and IFNγ-signaling were the most prominent nega-
tively enriched pathways in the NRF2 cluster relative to other cancer cell 
clusters (Fig. 4D). The single cell analysis distinguished that the response 
to interferon is downregulated in malignant cells with NRF2 hyperac-
tivity (Fig. S3B). These data suggest that the negative correlation be-
tween IFNγ response and NRF2 in squamous cancer types originates 
from the response in cancer cells, either due to low interferon ligand or 
by intrinsic properties of NRF2 hyperactive cancer cells. 

2.5. NRF2 hyperactive cancer cells are associated with less TME 
interactions via HLA-I and increased interactions via NAMPT, SPP1 and 
WNT5A 

We used the statistical framework of CellPhoneDB to interrogate 
putative intercellular ligand-receptor interactions between cancer- and 
TME cells in the whole HNSC single-cell dataset. With integration of our 
NRF2 target catalogue and a priori IFNγ gene sets from MSigDB (Hall-
marks and Reactome), we identified multiple differential interactions 
between the cancer clusters against TME clusters with either direct 
NRF2 targets or genes involved in IFNγ mediated signaling. The most 
prominent hits were downregulated HLA type I interactions with cyto-
toxic T cells, and upregulated NAMPT, SPP1, WNT5A (Fig. 4E and F). 

These hits were also differentially expressed genes in the earlier pan- 
SqCC bulk tumor analysis and in CCLE cell lines mRNA, while SPP1 
and WNT5A proteins were also upregulated (Figure S3C, D and E). 
Furthermore, NAMPT and SPP1 were differentially expressed in 
A549OEvsKO and all of the hits were in our NRF2 target catalogue 
(Fig. S3F). Moreover, in line with earlier observations, PD-L1 - PD1 
interaction between NRF2 hyperactive cancer cells and T cells was sta-
tistically significant, further corroborating the role of PD-L1 in NRF2 
driven immune-escape and suggesting that its effect extends the previ-
ously studied melanoma [10] (Fig. S3G). From the direct targets, 
NAMPT is the rate-limiting enzyme in the biosynthesis of NAD+. While 
its interaction with P2RY6 in CellPhoneDB was inferred with protein 
pulldown and lacks functional data, NAMPT knockdown was recently 
shown to increase CD8+ T cell infiltration in murine tumors via atten-
uating inducible PD-L1 expression [17]. The second hit, Osteopontin 
(SPP1), has been shown to inhibit T cell proliferation and IFNγ pro-
duction in vitro [18]. The third hit, WNT5A with frizzled receptors, also 
has implications in tumor immunity: WNT5a signaling in cancer cells 
has been attributed to immunosuppressive metabolite induction via 
dendritic cells through FZD [19]. To assess the clinical relevance of these 
findings, we downloaded a publicly available targeted 
mRNA-expression dataset of PD-1 inhibitor treated HNSC and NSCLC 
patients and established SPP1 mRNA as a negative predictive biomarker 
to treatment-response (Odds ratio = 0.20 for response with high SPP1 
expression; P < 0.05, Fisher’s test) and therapy associated 
progression-free survival (mPFS 2.8 vs mPFS 12.33 months, P < 0.01) in 
pan HNSC-LUSC-LUAD (n = 5; n = 22; n = 13, respectively) (Fig. 4G). 
The inferior survival may either be directly caused by effects of SPP1 or 
arise from NRF2 activation where SPP1 mRNA acts as a surrogate 
marker. This clinical observation might prove relevant in classifying 
non-responders to ICB, as the current biomarkers suffer from inadequate 
reproducibility. In summary, these data demonstrate that NRF2 hyper-
active cancer cells overexpress unique TME interacting ligands NAMPT, 
SPP1 and WNT5A, which have been shown to cause immunoevasion in 
cancer. 

2.6. NRF2 hyperactivity associates with reduced stromal lymphocyte and 
macrophage infiltration and increased inducible cancer cell PD-L1 
expression in squamous cancers 

Finally, to explore the relationship between NRF2 activity and the 
immune milieu in greater detail, we performed deconvolution for the 
TCGA gene expression data with CIBERSORT [20] to infer immune cell 
content and correlated the cell fractions to the NRF2 score. In the NRF2 
hyperactive IFNγ negative malignancies (Fig. 5A, cohorts color coded as 
cadet blue), many lymphocyte populations and different macrophage 
polarization states correlated negatively with NRF2 activity, while the 
correlations of cell subsets varied between cancer types. In the NRF2 
hyperactive IFNγ positive cancers (cohorts color coded as coral), we 
observed mostly positive correlations to different immune cells with 
variability in the correlating cell types between diseases: in KIRP, there 

Fig. 3. NRF2 hyperactivity is associated with a distinct squamous subtype with SOX2/TP63 amplification, CDKN2A/CDKN2B loss and downregulated IFNγ-response 
in TCGA. 
A: UMAP representation and Louvain clustering of included TCGA cohorts. 
B: TCGA diseases in Louvain clusters. 
C: NRF2 score in Louvain clusters. 
D: Gistic2 copynumber profile of the NRF2 hyperactive cluster*. The G-score in gistic2 is CNV amplitude multiplied by CNV frequency, which measures the sig-
nificance of a CNV event in a dataset. 
E: A heatmap of differentially expressed immunomodulatory genes between the NRF2 hyperactive cluster and other SqCC putatively regulated by NRF2, SOX2 or 
TP63. From the TISIDB-database, genes colored with green indicate a literature cited effect, whereas genes colored in magenta depict a hit from CRISPR/Cas9 
functional screens. Panel on the right depicts hits from a functional genomics target gene analysis on NRF2, SOX2 and TP63, mint green hits designate a direct target 
based on the analysis (See methods for details). 
F: Volcano plot of enriched pathways in the NRF2 hyperactive cluster*. 
*All analyses were conducted against squamous samples; LUSC, HNSC, ESCA and CESC. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 

J. Härkönen et al.                                                                                                                                                                                                                              



Redox Biology 61 (2023) 102644

8

was a strong association to macrophages and in UCEC to other antigen 
presenting cells (Fig. 5A). Different malignancies have variability in 
their immune cell contents [21]. Therefore, we compared the overall 
distribution of each immune cell type using Mann-Whitney U tests be-
tween the IFNγ response curated NRF2 hyperactive cancers and 
observed that the NRF2 hyperactive IFNγ negative malignancies often 
had a higher disease-intrinsic proportion of immune cells, including 
macrophages, lymphocytes and dendritic cells (Fig. 5A, side panel). To 
evaluate the relationship of NRF2 and total T lymphocyte content, we 
calculated the sum of T cell fractions and observed fewer bulk 

lymphocytes in all of the IFNγ-negative NRF2 hyperactive cancers 
(Fig. 5B). We proceeded to validate the result in LUSC with a different 
approach utilizing a publicly available TIL dataset generated from TCGA 
H&E images with deep learning [22] and observed a decrease in the 
median percentage of tumor-infiltrating lymphocytes (TILs) in the NRF2 
hyperactive cases (P < 0.05, Fig. 5C). To corroborate this, we stained an 
independent tissue-microarray dataset of NSCLC (obtained from Auria 
Biobank, 117 and 211 cases of LUSC and LUAD, respectively) with 
NQO1 (a marker of NRF2 activity) and the universal T cell marker CD3, 
and observed a similar result in LUSC, that is, NQO1 positive tumors 

Fig. 4. NRF2 hyperactive cancer cells have a dampened IFNγ response in situ and exhibit unique immunomodulatory intracellular interactions. 
A: UMAP representation for cell populations. 
B: UMAP representation for NRF2 score. 
C: UMAP representation for SOX2 mRNA. 
D: Volcano plot of GSEA enriched pathways in NRF2 hyperactive vs other cancer cells. 
E: Curated interactions from the CellPhoneDB analysis. CellPhoneDB statistical significance is denoted as: *P < 0.05; *P < 0.001. Heatmap colors show the ratio of 
CellPhoneDB interaction mean for the clusters NRF2 hyperactive cancer cells vs other cancer cells. Panel on the left shows CellPhoneDB annotation for secreted 
(orange) and non-secreted (grey) factors. Panel on the right portrays hits from the functional genomics target gene analysis on NRF2, SOX2 and TP63 (light green), 
and shows genes included in the IFNγ signaling pathway (yellow). 
F: UMAP representation for SPP1 mRNA. 
G: Kaplan-Meier survival for SPP1 high vs low in pan–HNSC–LUAD-LUSC. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

J. Härkönen et al.                                                                                                                                                                                                                              



Redox Biology 61 (2023) 102644

9

(caption on next page) 

J. Härkönen et al.                                                                                                                                                                                                                              



Redox Biology 61 (2023) 102644

10

(above the upper quartile of the mean intensity distribution) harbored 
less CD3+ cells (P < 0.05, Fig. 5D and E). In our TMA data, the cytotoxic 
T cell marker CD8 showed a similar trend but did not reach statistical 
significance (P = 0.09, Fig. S4A), and in LUAD, the relationship was not 
observed (Data not shown). In addition, the contribution of NFE2L2 and 
KEAP1 mutations was assessed separately in TCGA LUSC cohort, and a 
lower median fraction of total lymphocyte infiltration was present in all 
groups, irrespective of mutated gene (Fig. S4B). As the earlier methods 
did not differentiate between stromal and epithelia infiltrating pop-
ulations (defined as cells within the malign epithelial component), we 
next sought to assess the relationship between NRF2 activity and 
intraepithelial immune cells with multiplexed immunohistochemistry 
(mIHC, Fig. 5F) in a separate NSCLC-cohort of resected cases (obtained 
from Central Finland Biobank, final sample sizes after quality control 
filtering, 67 and 53 for LUSC and LUAD, respectively), using AKR1B10 
as a marker for NRF2 activation (cutoffs for groups are presented in 
Fig. S4C). Surprisingly, we did not observe differences in the intra-
epithelial populations in either LUSC or LUAD, except AKR1B10 high 
LUSC harbored fewer intraepithelial granulocytes (Supplementary 
Figs. S4D–E). However, in LUSC, most of the stromal population den-
sities from the total core area, that is CD8+ and CD4+ positive T cells as 
well as M2 macrophages and granulocytes were decreased (Fig. 5G and 
H). Expectedly, also tumor purity, defined as the relative tumor area to 
total area had a positive relationship to NRF2 activity (Fig. 5I). We 
validated this result with TCGA using ABSOLUTE quantifications 
(Fig. S4F). Similar effects on tumor purity were observed in the rest of 
the NRF2 immune cold TCGA cancer types, HNSC, CESC, ESCA and 
LUAD. In LUAD mIHC, we did not observe differences in lymphocytes, 
but there were fewer unspecified macrophages in the AKR1B10-high 
group. In addition, median tumor purity was greater in LUAD 
AKR1B10-high but not at a statistically significant level (Supplementary 
Figs. 5G–E). Interestingly, in the LUSC stromal macrophages, the ratio of 
PD-L1+ cells correlated significantly with mean cancer cell AKR1B10 
expression (Fig. 5J and K). Given the observed effect on stromal mac-
rophages and the earlier observations of PD-L1 as a downstream target 
of NRF2 [9,10], we asked whether NRF2 activity would contribute to 
inducible PD-L1 expression in LUSC. In cancer cells, intraepithelial 
CD8+ T cell infiltration (E-CD8+) had a positive correlation to PD-L1 
expression, which is an expected effect from proximal proin-
flammatory signaling (Supplementary Fig. 5I). Given this baseline ef-
fect, we grouped the samples to E-CD8+ infiltrated and deserted cases 
(that is, high density of CD8+ cells adjacent to cancer cells, cutoff in red 
in Supplementary Fig. 5I) and observed that in infiltrated samples, mean 
of cancer cell AKR1B10 expression correlated positively with the frac-
tion of PD-L1+ cancer cells (R = 0.69, P < 0.001, Fig. 5L-M). The cor-
relation between cancer cell AKR1B10 and PD-L1 expression was not 

present with low E-CD8+ suggesting that proinflammatory stimulation is 
needed to induce NRF2 driven PD-L1 (Fig. S4J). Of note, only one of 
these E-CD8+ infiltrated samples exceeded our cutoff to be defined as 
NRF2 hyperactive (intensity of 180 A U.) and the fraction of E-CD8+

infiltrated samples was less than 25% (Fig. S4K). In order to corroborate 
the positive association between PD-L1 and NRF2, we computed purity 
corrected CD274 mRNA between the NRF2 basal and hyperactive groups 
of TCGA LUSC and observed increased median expression in the NRF2 
hyperactive group (P < 0.0001, Fig. S4L). We did not discover similar 
associations between NRF2 and PD-L1 in LUAD in either our mIHC-data 
or TCGA (data not shown). The effects of NRF2 signaling to the immune 
milieu in LUAD remain largely elusive, as our data did not indicate 
similar differences between the groups. However, the PD-L1 association 
was present in other TCGA squamous cancers (Fig. S4M). Taken 
together, these data suggest that overactive NRF2 associates with less 
overall stromal cell infiltration in pan-squamous cell carcinoma, mainly 
lower lymphocyte and macrophage density as well as a decline in stro-
mal cell occupied area of the tumor. The TMA data and the tumor purity 
associations suggest that the differences observed in TCGA deconvolu-
tion data may arise specifically from the stroma occupied populations, 
which is expected as large proportion of the immune cells reside in the 
stroma instead of epithelium. Moreover, these results indicate that 
overall PD-L1 expression is associated with increased cancer cell NRF2 
activity, both in cancer cells and stromal macrophages, suggesting a 
global PD-L1 immunosuppressive milieu across the stromal and tumoral 
landscapes of NRF2 hyperactive LUSC. The CD274 mRNA expression 
distributions imply that this effect extends to other squamous malig-
nancies (Fig. S4M). 

3. Discussion 

Cancer immunotherapies, especially ICB, has become a mainstay in 
cancer care. Despite its undeniable success, biomarkers to stratify re-
sponders and non-responders are currently elusive. Recently, the rela-
tionship between oncogenic pathways and the TME have been explored. 
For instance, the effect of MYC and WNT signaling, as well as the loss of 
TP53, LKB1 and PTEN on tumor immune responses have been previ-
ously characterized [23]. In this work, we identified a phenotype of high 
NRF2 activity accompanied with low lymphocyte content, HLA-I and 
IFNγ, spanning multiple cancer types. Since the negative relationship 
between immune infiltration and immunotherapy responses has been 
clearly established before, it is reasonable to assume that NRF2 hyper-
active cases of the characterized malignancies would associate with 
weaker responses, and that alternative strategies to activate the anti-
tumor immune response should be studied. Indeed, during the course of 
this study, an association between NRF2 pathway mutations and inferior 

Fig. 5. NRF2 hyperactive tumors display negative correlations to overall lymphocytes in pan-squamous diseases. 
A: Correlation matrix of NRF2 score vs CIBERSORT cell types. Right annotation panel depicts the distributions of respective immune cells in the IFNγ pathway 
classified diseases. Statistical significance is shown as: *P < 0.05, **P < 0.01, ***P < 0.001. Negative correlations in lymphocytes and macrophages are largely 
present in squamous cancers and lung adenocarcinoma. 
B: Violin plots for CIBERSORT bulk T lymphocyte fractions. Less bulk T lymphocytes were observed in silico in squamous cancers and lung adenocarcinoma, while in 
KIRP, UCEC, BLCA and LIHC there was no association. 
C: Percentage of tumor-infiltrating lymphocytes (TIL) in digitized TCGA LUSC H&E images. 
D: Tissue microarray IHC staining of NQO1 (NRF2 activity marker) and CD3+ cells. 
E: Representative images of the NQO1-stained groups. 
F: Schematic of the mIHC workflow. 
G: AKR1B10 vs stromal immune cell correlations in mIHC LUSC TMAs. 
H: Representative pseudofluorescence images of mIHC LUSC tumor cores. Cancer AKR1B10, macrophages, T cells and granulocytes are shown in magenta, red, green 
and cyan, respectively. 
I: Tumor purity by AKR1B10 groups in LUSC tumor cores. 
J: Scatter plot of mean cancer AKR1B10 expression and macrophage PD-L1. 
K: Representative image of macrophage PD-L1 expression from AKR1B10-high samples. 
L: Scatter plot of mean cancer AKR1B10 expression and the fraction of PD-L1+ cancer cells. 
M: Representative image of PD-L1 expression from a high AKR1B10 expressed CD8+ T-cell infiltrated sample. Upper image comprises PD-L1+ and CD8+, and lower 
shows AKR1B10 pseudofluorescence for the matching area. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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ICB-response was shown in NSCLC [24]. The present study, to our un-
derstanding, is the first attempt to provide pan-cancer wide perspective 
to NRF2 signaling and tumor immunity, with important implications for 
future studies: first, immune checkpoint inhibitor treatment efficacy 
should be assessed prospectively across all squamous malignancies with 
NRF2 hyperactivity and eligibility for ICB; and second, if proven infe-
rior, alternative first-line or effective adjuvant treatment options should 
be explored. 

Characterizing cancers by mutational profiling of large datasets has 
been invaluable in gaining insight into the biological processes enabling 
and governing malignant growth. However, profiling only by mutational 
status has limitations: The functional consequences of individual mu-
tations may be ambivalent, other mechanisms for perturbation of the 
same pathway are overlooked, or the frequency of events is too low for 
robust statistical inference. Relevant to NRF2 mediated oncogenic 
signaling, mutation-independent means of activation are common, 
necessitating the use of gene expression classifier to deduct NRF2 acti-
vation [25]. Herein, we introduce a robust NRF2 scoring metric 
comprising genes that have minimal tissue specificity and sound evi-
dence for direct, prominent activation. The score performs well in all of 
the tested TCGA cohorts (Fig. S1E) and it can be applied to bulk tissue 
and single cell data. Moreover, the metric was constructed to support 
ease of use by utilizing a low number of genes and prioritizing global, 
robust targets. Finally, we demonstrated the utility of the score by 
predicting a distinct immunological phenotype in NRF2 hyperactive 
cases in an external dataset using IHC staining as an alternative method 
for NRF2 activity assessment. 

Our study provided several leads towards elucidating the mecha-
nisms by which NRF2 overactivity affects the host immune response. We 
ruled out the contribution of HLA-I loss and neoantigen effects. We 
identified a distinct squamous cell subtype that was characterized by 
NRF2 overactivation together with SOX2/TP63 amplification and im-
mune cold TME. SOX2 is a key driver of malignant transformation and 
stemness in squamous type cancers [26]. Our analysis showed the 
metabolic genes SLC2A1, SLC7A11 and NAMPT that associate with 
functional evidence in driving resistance to T cell mediated killing as 
downstream candidates of NRF2. Previous work shows that the 
expression of SLC2A1 - a glucose transporter - is enhanced by p63 and 
SOX2 [27]. Our work implicates functional synergy of NRF2 and 
p63/SOX2 in SLC2A1 driven glucose uptake. Increased glucose uptake 
via SLC2A1 has been shown to result in weaker anti tumoural immune 
responses in a murine model [28], supporting the functional role of this 
gene identified by the TISIDB high-throughput CRISPR-screen. 
SLC7A11, a well characterized NRF2 target gene [29], is a 
glutamate-cystine antiporter that increases intracellular cystine while 
exporting glutamate. IFNγ has been reported to downregulate the 
glutamate-cystine antiporter members SLC7A11 and SLC3A2, lowering 
intracellular cystine resulting in increased T cell induced ferroptosis 
[30]. Thus, the higher expression of SLC7A11 in NRF2 overactive can-
cers may render the cells resistant to immune destruction by this 
mechanism. NAMPT driven NAD + metabolism is involved in tumor 
immunity: increased NAD + by NAMPT enables inducible PD-L1 
expression by epigenetic regulation of Irf1, restricting the antitumor 
action of cytotoxic T cells [17]. To conclude, the results suggest meta-
bolic crosstalk between NRF2 overexpressing and TME cells through 
multiple mechanisms. 

SPP1 and WNT5A were hits in both the bulk tumor and single cell 
analysis. Both genes have implications in tumor immunity. In line with 
the immunoevasive phenotype, soluble SPP1 has been shown to directly 
inhibit T cell proliferation, decrease T cell activation and IFNγ produc-
tion in vitro [18]. The observed interaction of WNT5A and frizzled re-
ceptors in the single-cell data has implications in dendritic cell (DC) 
function: paracrine WNT5A signaling was shown to induce IDO1 in DCs, 
which increased extracellular kynurenine, supporting an immunosup-
pressive TME [19]. 

Our mIHC TMA data indicated that in LUSC, the stromal populations 

explain the negative relationship between NRF2-signaling and multiple 
immune cell types. The purity associations in other squamous cohorts 
suggest that this effect extends to HNSC, ESCA and possibly squamous 
CESC. Interestingly, macrophage as well as inducible cancer cell PD-L1 
correlated positively with cancer NRF2 activity. PD-L1 expression has 
been shown to decrease tumor infiltrating lymphocytes over time and 
may thus partly explain the observed phenotype [31]. Interestingly, the 
ICB-responses in NRF2 hyperactive NSCLC have been inferior despite of 
our observation of correlating inducible PD-L1 expression in LUSC, 
while PD-L1 serves as the gold-standard predictive marker for immu-
notherapy in NSCLC. Based on our findings, these seemingly conflicting 
observations may have multiple explanations. First, WNT signaling has 
been indicated to drive immunosuppression in the TME, and reversal of 
the WNT5A driven immunotolerant microenvironment augmented PD-1 
blockade response in a murine melanoma model [19]. As we found 
soluble WNT5A and WNT signaling gene sets upregulated in NRF2 hy-
peractive SqCC, this confounding factor in therapy response might 
extend to squamous cancers. Of note, WNT pathway activation has been 
shown to upregulate PD-L1 [32], and thus paracrine WNT5A could 
additionally explain the upregulated PD-L1 in stromal macrophages. 
Secondly, the other immunosuppressive ligands identified in this study 
could serve as confounding factors, as, for instance, high SPP1 
expressing cases had worse response rates in ICB-treatment. Finally, as 
the intraepithelial CD8+ infiltrated cases comprised a small subpopu-
lation of the whole cohort and having intraepithelial CD8+ infiltration 
and oncogenic NRF2 hyperactivity is exceedingly rare, they may 
constitute a unique subcategory responsive to PD-L1 blockade, as they 
do harbor both CD8+ cells and PD-L1+ cancer cells [33]. To this end, 
currently the contributions of stromal vs intraepithelial CD8+ cells to 
clinical response metrics are unclear, as the spatial information is often 
overlooked and cannot be accounted for with the current deconvolution 
methods or conventional single-cell RNAseq. Due to today’s predictive 
markers for ICB being clearly elusive and to the diversity of mechanisms 
in immune escape, a robust predictive metric will likely require multiple 
accounted factors, analogous to the immunoscore in prognostic evalu-
ation [34]. Given the similarities between NRF2 signaling and the mo-
lecular and TME phenotypes across squamous malignancies, these 
questions should span all cancer types with squamous histology. 

In summary, our results provide an integrated NRF2-centric resource 
in cancer biology, and establish a connection between immune cold 
tumors and NRF2 signaling across squamous carcinomas from a pan- 
cancer wide perspective. Finally, these data highlight multiple ave-
nues to pursue in future studies aiming to mechanistically characterize 
NRF2 signaling and its effect to the tumor immune milieu, including 
direct regulation via immunosuppressive ligands or immunosuppressive 
metabolites. 

4. Materials and methods 

4.1. Processing of genome-wide multilevel data 

4.1.1. TCGA 
Processed multiomics data, sample level analysis results and clinical 

data, were retrieved from https://gdc.cancer.gov/about-data/pub 
lications/panimmune (Thorsson et al., 2018) and https://gdc.cancer. 
gov/node/905/(PanCanAtlas) for 33 cancer types available in TCGA 
cohort. 

4.1.2. CCLE 
Preprocessed CCLE data was downloaded from https://portals. 

broadinstitute.org/ccle/data and https://depmap.org/portal/. 

4.2. Functional genomics analysis of NRF2 target genes 

4.2.1. Enhancer and promoter catalogue generation 
A549 and ENCODE genomic data for other cell types were used as 
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reference to generate broad catalogue of candidate regulatory elements, 
that could be linked with NRF2 regulation. DNAse hotspots and 
ChromHMM classified genomic sites were downloaded from ENCODE 
for A549. In addition, DNAse clustered sites version 3 were downloaded 
from ENCODE for all cell types. Promoters were defined primarily based 
on A549 ChromHMM annotation, but if the annotation was missing from 
the data, promoters were defined as 500 bp upstream and 1500 bp 
downstream from each transcription start sites. Next, A549 DNAse 
hotspot sites were integrated with ENCODE DNAse clusters for various 
cell types, with score above 400 and cluster identified in at least 20 cell 
types. Promoters were intersected with DNAse hotspots to identify 
regulatory sites at promoters. 

4.2.2. GRO-seq regression analysis of enhancer elements 
eRNA can be used to detect active enhancers and it correlates with 

the gene expression of the target gene [35]. To infer enhancer-gene 
pairs, we utilized publicly available GRO-seq data curated from Gene 
Expression Omnibus (GEO, GSE51225, GSE51633, GSE53964, 
GSE60454, GSE62046, GSE62296, GSE52642, GSE66448, GSE84432, 
GSE67519, GSE67540, GSE101803, GSE96859, GSE102819, GSE86165, 
GSE91011, GSE67295, GSE154427, GSE136813, GSE118530, 
GSE94872, GSE92375 and GSE117086). The final dataset comprised 
336 samples representing 45 cell types. Homer analyzeRepeats.pl soft-
ware was used for GRO-seq quantification of nascent RNA gene 
expression using gene introns as coordinates, with parameters: strand +
-noadj -noCondensing -pc 3. For enhancers, in case of intragenic en-
hancers, quantification was performed from the opposite strand and for 
intergenic enhancers from both strands, using the same parameters as 
before. Enhancers’ start and end coordinates were expanded by 500bp. 
Gene end coordinates were expanded by 5000bp for annotating intra-
genic gene enhancers and account for transcription at the end of tran-
scripts. A linear model was fitted for each gene-enhancer pair in the 
same topologically associating domain that had Spearman’s Rho >0 and 
P-value <0.05. R2 value was used to estimate, how much of the gene 
expression could be explained by the eRNA expression. The 
enhancer-gene pairs were defined as features with regression P-value 
<0.05 and R2 > 0.1, and the maximum distance was set to 500kbp. 

4.2.3. NRF2 target gene identification 
To infer NRF2 bound regions at the enhancer sites, the preprocessed 

ENCODE ChIP-seq data for NFE2L2 was downloaded from GEO (Datasets 
GSE91997, GSE91894, GSE91809, GSE91565). The ARE-motif from 
JASPAR database (NFE2L2, MA0150.1) was queried across the ChIP- 
peaks with Homer annotatePeaks, and NRF2 motif score cutoff for a 
binding site was set to 6. From these data, the minimum amount of ChIP- 
seq datasets with the given peak was set to two. Using this analysis 
framework 3000 bidirectional and 2000 intragenic enhancers were 
identified for NRF2. 

4.3. Development of the NRF2 score 

A computational NRF2 score was developed by utilizing multiple 
datasets. The final gene set was derived by applying the following 
rationale: a) ChIP-seq peaks must be present at ChromHMM-promoters 
across the ENCODE NFE2L2 ChIP-seq data b) the gene must be differ-
entially expressed in A549-NRF2OEvsKO (log2 fold-change >1.5, Bon-
ferroni adjusted p < 1e-5); and c) mRNA-expression must be observed 
across tissues in GETxportal data (https://www.gtexportal.org/home 
/datasets) and expression must be uniform across cell types in DICE- 
database (https://dice-database.org/), to counter variance arising 
from tissue specific expression and the immune-milieu, respectively. 

Differential expression analysis for A549-NRF2OEVSKO was conducted 
with limma. Direct NRF2 targets were defined as having a NRF2 binding 
in the NRF2 ChIP-seq data in the ChromHMM promoters: the peaks were 
narrowed down to regions that intersect all four datasets and include an 
ARE-sequence (motif score >6). 

Genes with tissue-specific expression patterns were excluded based 
on the expression profiles in the GETxportal data: median tissue 
expression cutoff was set to 1.5 log2 TPM for binary filtering (Fig. S1A). 
Genes exhibiting high values or observable variance in median expres-
sion in immune-cells were excluded heuristically (Fig. S1B). 

Genes passing all these steps were defined as the NRF2 signature. The 
samples were scored with a geometric mean from the genes’ linear 
mRNA-expression. For TCGA samples, the score was normalized within 
each disease to the peak of the score distribution (mode). Performance of 
the scores was evaluated with receiver operating characteristic against 
functional NRF2 activating somatic variants (defined in OncoKB) using 
the ROCR-package for R. 

4.4. Gene set enrichment analysis 

GSEA (Java-GSEA) was performed for the selected TCGA-cohorts and 
CCLE cell lines of the matching diseases using NRF2 score as a contin-
uous feature. Pan-cancer analysis for TCGA cancer types was conducted 
by calculating Stouffer’s statistic for each gene set across the selected 
cohorts. For the A549 cells, GSEA was conducted with a binary feature of 
NRF2− /− vs NRF2+/+. Multiple-comparison corrections were performed 
with the Benjamini-Hochberg (BH) –method. 

4.5. UMAP analysis and Louvain clustering of TCGA and CCLE data 

UMAP dimensionality reduction analysis was performed for 750 
most variable genes using uwot R package, with parameters set to n. 
neighbors = 12 and min. dist = 0.4. Community detection based clus-
tering for the same 750 most variable genes was performed using the 
Louvain algorithm, with k = 4 implemented in igraph R package. 
Similarly, for CCLE 750 most variable genes were used with n. neigh-
bors = 6 and min. dist = 0.3 and k = 4. Various number of most variable 
genes were used for UMAP to confirm robustness of sample group 
detection. 

4.6. Functional genomics analysis of SOX2 and TP63 target genes 

Target genes for SOX2 and TP63 were inferred from ChIP-seq data of 
the respective transcription factors (GEO dataset GSE46837). All pa-
rameters were set as in the analysis for NRF2 target genes (NRF2 target 
gene identification) using the enhancer and promoter catalogues defined 
earlier. 

4.7. Differential expression analysis for the NRF2 squamous cluster 

Fold-differences across the transcriptome were computed between 
the NRF2 squamous cluster vs other squamous samples, and the statis-
tical significance of differentials of gene-expression distributions were 
assessed with two-sided Wilcoxon tests, and subsequently multiple- 
comparison corrected with the BH-method. The result was filtered 
with FDR <0.001 and a logFC threshold of 1 for absolute values. The 
overlap of the resulting genes was assessed with a) CCLE gene- 
expression and protein correlation to NRF2-score; b) genes in Cellpho-
neDB and TISIDB (literature annotation and CRISPR-screen resistance 
genes); and c) the candidate target gene catalogues of NRF2, TP63 and 
SOX2. High-confidence hits (shown in Fig. 3E) were defined as genes 
that correlate in CCLE protein or mRNA (FDR <0.1, R > 0.25), are listed 
in CellPhoneDB or TISIDB and are listed in the target gene catalogues for 
at least one of the transcription factors. 

4.8. In vitro experiments 

4.8.1. Cell culture 
Cells were incubated in 37 ◦C and 5% CO2 throughout the experi-

ments and the passage number was kept under 10 over the course of this 
study. Cell passaging was conducted before reaching confluency. 
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4.8.2. CRISPR/Cas9 NRF2 knockout 
A549 cells were transfected with a 20bp single-guide-RNA 

(CAAGCTGGTTGAGACTACCA) targeting exon 5 of NFE2L2 
(ENST00000446151) and scramble-sequence including plasmid vectors 
(SpCas9(BB)-2 A-GFP (Addgene, PX458). NRF2 knockout and control 
cells were generated via CRISPR-Cas9-mediated non-homologous end- 
joining (NHEJ). Transfection-positive cells were sorted with 
fluorescence-activated cell sorting (FACS) to obtain clonal populations. 
Validation of the clones was conducted with NRF2 western blot 
(Fig. S1A), Sanger sequencing (Data not shown) and RT-qPCR (Fig. S1B). 
Sequencing confirmed a truncating homozygous frameshift mutation 
(c.562delA, p. T188fs*) in exon 5 of NFE2L2 (ENST00000446151). 

4.8.3. Sanger sequencing and western blot 
DNA was extracted with Genejet Genomic DNA purification kit 

(Thermo Scientific, catalog. no: K0702) and using the GENEWIZ Sanger 
Sequencing Services. 

Cells were lysed and protein concentration measured using BCA kit 
(Pierce). 30 μg of total protein with 1X SDS-PAGE sample buffer (Biorad) 
was loaded in 4–20% mini-Protean TGX gels (Biorad) and the gel elec-
trophoresis was done using Tris glycine running buffer containing SDS. 
Proteins were then transferred onto nitrocellulose membrane (0.2 μm, 
Biorad) using Owl Hep-1 semi-dry transfer system (Thermo scientific) 
following manufacturer’s instructions. The blots were blocked with 5% 
milk-TBST solution for 1 h at room temperature (RT). Blots were stained 
overnight at 4 ◦C with NRF2 (1:5000 dilution, catalog no.16396-1-AP, 
Proteintech) and beta-actin (1:5000 dilution, catalog no. sc-47778, 
Santa Cruz, USA) antibodies in 5% milk-TBST solution. And secondary 
staining was done for 1 h at RT using Alexafluor 488- or 680- labelled 
anti-rabbit and anti-mouse antibodies (Invitrogen) in 2% milk-TBST 
solution. The blots were then visualized using Biorad documentation 
system. 

4.9. Copy-number analysis 

Copy-number analysis was conducted for firehose-derived TCGA 
segment-files for HNSC, LUSC, ESCA, and CESC, stratified by the NRF2 
subtype (cluster 8) with Gistic2 using the following parameters: ta 0.1 
-Peakpeel 1 -brlen 0.7 -cap 1.5 -conf 0.99 -td 0.1 -genegistic 1 -gcm extreme 
-js 4 -maxseg 2000 -qvt 0.25 -rx 0 -savegene 1 -broad 1. 

4.10. Processing of single cell data 

The HNSC single cell dataset was downloaded from GEO 
(GSE103322) and processed with Seurat R-package v3. Cells with more 
than 8000 detected genes were filtered out. Seurat SCTransform with 
3000 variable features was used for data normalization. 25 principal 
components and default parameters were used for UMAP projection and 
Louvain clustering. SingleR 1.0.1 [36] was used for the automated cell 
type annotation. These annotations were manually refined according to 
cell types identified in Puram et al., 2017 [37]. 

4.11. CellPhoneDB analysis 

The HNSC single-cell dataset was analyzed with CellPhoneDB sta-
tistical analysis method using 1000 iterations and an expression 
threshold of 0.1. To assess the differential interactions, the data was 
visualized as a ratio of interactions means in the NRF2 cluster vs other 
cancer clusters, only including interactions that were exclusively sta-
tistically significant in either the NRF2 cluster (positive ratio) or the 
other clusters (negative ratio). Statistically non-significant ratios were 
removed from the heatmap for clarity. 

4.12. Survival analysis 

A pan–HNSC–NSCLC-SKCM dataset was downloaded from GEO 

(GSE110390) and the associated clinical data was obtained from TIDE- 
database (http://tide.dfci.harvard.edu/). SKCM samples were excluded 
from the analysis, and the nCounter PanCancer Immune Profiling Panel 
targets were normalized to 40 housekeeping genes with Nano-
StringNorm R-package. Mean normalized log2 mRNA expression was 
used as a cutoff to dissect SPP1 high and low expressing samples. Sur-
vival analysis was performed with survival R-package. The Kaplan- 
Meier curve was plotted with survminer R-package. 

4.13. CIBERSORT analysis for TCGA data 

CIBERSORT was run for the TCGA data with the CIBERSORT R- 
package separately for each cancer type with the absolute method (sig. 
score), using 100 permutations and without quantile normalization. 
Correlations to NRF2 score were assessed with Pearson’s method. The 
bulk lymphocyte analysis was conducted by taking the sum of all T 
lymphocyte fractions, and using a cutoff for NRF2 hyperactivity as TPR 
>0.85 from the ROC-analysis. The statistics were computed with Mann- 
Whitney U. 

4.14. Conventional immunohistochemistry 

NSCLC tissue microarray sections (LUAD n = 211, LUSC n = 117) 
were obtained from Auria Biobank, Turku University Hospital, Turku, 
Finland. NQO1 (Cell Signaling NQO1 A180 Mouse mAb, 1:250; catalog. 
no. 3187S) was stained by incubating overnight at +4C◦. NQO1 signal 
was quantified as the mean of relative positive-stained area across rep-
licates, and NQO1-positive samples were defined as Q3 of the mean 
NQO1-signal across biological replicates. For T lymphocyte immuno-
histochemistry, TMA sections were stained with anti-CD3 (LN10, 1:200; 
Novocastra) and anti-CD8 (SP16, 1:400; Thermo Scientific) using a 
LabVision Autostainer 480 (ImmunoVision Technologies Inc.). Antigen 
retrieval was done with Tris-EDTA buffer at pH 9 by microwaving the 
slides in 98◦ Celsius for 15 min. Samples were incubated with diluted 
antibodies for 30 min at room temperature. Diaminobenzidine (DAB) 
was used as a chromogen and haematoxylin as a counterstain. Positive 
control tissue for CD3 and CD8 immunohistochemistry was normal 
tonsil. The slides were digitized with a slide scanner (Nano Zoomer XR, 
Hamamatsu) and quantification of CD3+ and CD8+ T cells was per-
formed using QuPath, an open-source bioimage analysis software 
(version 0.1.2) (Bankhead, P., Loughrey, M.B., Fernández, J.A. et al. 
QuPath: Open source software for digital pathology image analysis [38]. 

4.15. Multiplex immunohistochemistry 

4.15.1. Staining 
NSCLC tissue microarray sections were obtained from the Biobank of 

Central Finland. We designed a panel of 10 markers to a) quantify PD-L1 
expression (E1L3N), and b) identify macrophages (CD68, KP1), T cells 
(CD3, LN10), granulocytes (CD66b, G10F5) and tumor cells (Pan-cyto-
keratin, BS5 & AKR1B10). T cells were further characterized to CD8+

and CD4+ cells with the respective markers (clones 4B11 and EP204, 
respectively), and macrophages to M1 and M2 polarization states with 
CD86 (E2G8P) and CD206 (E2L9N), respectively. The multiplex staining 
was conducted with Bond-III automated IHC stainer (Leica Biosystems) 
and Bond Refine Detection kit (DS9800, Leica Biosystems). ImmPACT 
AMEC Red (SK-4285, Vector Laboratories) was used as the chromogen, 
except for AKR1B10 which was stained with DAB on the final round. 
AKR1B10 was used instead of NQO1 based on antibody validation for 
Bond-III, where AKR1B10 outperformed NQO1. The slides were moun-
ted with VectaMount AQ Aqueous Mounting Medium (H-5501, Vector 
Laboratories), scanned with NanoZoomer XR (Hamamatsu) with a 20x 
objective. De-staining was conducted with ethanol and heating was 
applied between all cycles to remove prior antibodies. 
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4.15.2. Image analysis 
Digitized images of the mIHC-slides were processed with QuPath 

(version 0.2.3), and individual cores were recognized with TMA-dear-
rayer function to obtain single core images. We excluded cores that were 
folded or detached. Single core images were stacked into one multi-
channel image with pseudofluorescence colors using Fiji [39]. We 
further discarded cores that were misaligned in the stack images. The 
staining intensities were consistent between the TMA slides indicating 
uniform performance of the protocol. 

4.15.3. Data analysis 
Total sum of tissue areas and cell counts of the core replicates were 

used to collapse the dataset to true biological replicates. Cutoffs for 
markers and AKR1B10 groups were chosen based on density distribu-
tions across the patient merged TMA cores (intensities for LUSC and 
LUAD 180 A U. and 165 A U., respectively). Macrophage M1 and M2 
polarization was assessed by normalizing the CD206 and CD86 values to 
percentiles and calculating the difference between the normalized 
values. Quantiles of this polarization index were determined as M1 and 
M2 populations. Cell counts were normalized to the area (mm2) of the 
tumor (for epithelia infiltrating densities) and total area of the core (for 
stromal cells occupying the core). Statistical testing between the groups 
were conducted with two-sided Mann-Whitney U tests. Pearson’s cor-
relations were computed for linear relationship assessment between 
continuous variables. 

Author contributions 

Conceptualization, AL.L., P.P. and J.H.; Supervision, AL.L. and M.H.; 
methodology, P.P., J.H. and EY.D.; Software, P.P. and J.H.; Validation, 
T.K., M.A., EM. T, P.T., M.K., N.T., J.P.V., S.A.V., H.E. and T.E.; Formal 
analysis, J.H. and P.P.; Investigation, J.H., P.P., A.J.D. I.S. and HR.T.; 
Resources, AL.L., M.H., M.U.K., M.K, M.H., J.P.V. and T.K.; Data cura-
tion, P.P. and J.H.; Writing - Original Draft, J.H., AL.L., and P.P.; Writing 
- Review & Editing, M.H., T.K., A.J.D., J.P.V. and M.U.K.; Visualization, 
J.H., P.P. and A.J.D.; Project administration, AL.L.; Funding acquisition, 
AL. L and M.H. 

Declaration of competing interest 

The authors declare no potential conflicts interest. 

Data availability 

NGS-data has been submitted to GEO (GSE189804). Other data is 
either publicly available or clinical cohorts with sharing restrictions. 

Acknowledgements 

This study was supported by University of Eastern Finland Doctoral 
Program in Molecular Medicine, Finnish Cancer Foundation, The 
Academy of Finland (Grant number 332697), Sigrid Juselius Founda-
tion, Paavo Koistinen Foundation (AL.L. lab) and Aatos Erkko Founda-
tion (Grant number 210013) (T.K. lab). The study benefited from 
samples from Auria Biopankki Turku, Finland, and Central Finland 
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