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Moltafet, Mohammad, Information freshness in wireless networks. 
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering
Acta Univ. Oul. C 790, 2021
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

With the advent of new services in 5G and beyond such as real-time Internet of things (IoT)
applications, autonomous vehicles, and cyber-physical applications, the delivery of fresh status
updates is gaining increasing interest. In these networks, various sensors transmit status updates
about different monitored processes to a destination. Recently, the age of information (AoI) was
proposed as a destination-centric metric to measure the information freshness. The objective of
this thesis is to analyze the AoI and develop methods to improve the information freshness to
enable emerging time-critical applications in future networks.

In the second chapter, the average AoI for multi-source queueing models under a first-come
first-served (FCFS) serving policy is studied. For a multi-source M/M/1 queueing model, an exact
expression for the average AoI is derived. Then, for an M/G/1 queueing model having a general
service time distribution, three approximate average AoI expressions are calculated.

In the third chapter, a multi-source queueing model is considered and three source-aware
packet management policies are introduced. The average AoI and the moment generating function
(MGF) of the AoI are derived by using the stochastic hybrid systems (SHS) technique. The results
show that the AoI can be significantly decreased through an appropriate packet management
policy.

Fourth chapter considers a wireless sensor network (WSN), where the sensors can control the
sampling process and they communicate timely information about random processes. The
problem of jointly optimizing the sensors' sampling action, transmit power allocation, and sub-
channel assignment to minimize the average total transmit power subject to a maximum average
AoI constraint for each sensor is studied. By using the Lyapunov optimization method, a dynamic
control algorithm is provided to solve the problem.

In the fifth chapter, a WSN application for the average and peak AoI expressions, derived in
the second chapter, is presented. Sensors communicate status updates by contending for channel
access based on a carrier sense multiple access with collision avoidance (CSMA/CA) method.
Upper bounds for the average and peak AoI for each sensor are derived in a worst case scenario
where all the other sensors continually send packets.

Keywords: age of information (AoI), information freshness, Lyapunov optimization,
moment generating function (MGF), multi-access channel, multi-source queueing
model, packet management, stochastic hybrid systems (SHS)





Moltafet, Mohammad, Tiedon ajantasaisuus langattomissa verkoissa. 
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Acta Univ. Oul. C 790, 2021
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Uudet 5G-järjestelmien palvelut, kuten reaaliaikaiset esineiden internet -sovellukset, itsenäiset
ajoneuvot sekä kyberfyysiset sovellukset, kasvattavat ajantasaisten tilapäivitysten toimittamisen
kiinnostusta. Näissä verkoissa anturit lähettävät kohteelle tilapäivityksiä eri valvotuista proses-
seista. Tiedon ikä (age of information, AoI) ehdotettiin hiljattain kohdekeskeiseksi tiedon ajanta-
saisuuden mittariksi. Väitöskirjan tarkoituksena on analysoida AoI:ta ja kehittää menetelmiä tie-
don ajantasaisuuden parantamiseksi uusien aikakriittisten sovellusten mahdollistamiseksi tule-
vissa verkoissa.

Toisessa luvussa tutkitaan keskimääräistä AoI:ta monilähdejonomalleissa, joissa paketit pal-
vellaan niiden saapumisjärjestyksessä. Työssä johdetaan keskimääräisen AoI:n tarkka lauseke
monilähteiselle M/M/1-jonomallille. Lisäksi johdetaan yleisen palveluaikajakauman tapauksel-
le, eli M/G/1-jonomallille, kolme likimääräistä keskimääräisen AoI:n lauseketta.

Kolmannessa luvussa tarkastellaan monilähteistä jonotusmallia ja esitellään kolme pakettien
lähteen huomioivaa palvelukurimenetelmää. Luvussa johdetaan keskimääräisen AoI:n ja
momenttifunktion lausekkeet käyttäen SHS-menetelmää. Tulokset osoittavat, että asianmukai-
nen palvelukuri pienentää AoI:ta merkittävästi.

Neljäs luku tutkii langatonta anturiverkkoa, jossa anturit voivat ohjata näytteenottoprosessi-
aan, välittäen kohteelle ajantasaista tietoa satunnaisprosesseista. Verkossa optimoidaan kunkin
anturin näytteenotto, lähetysteho ja alikanavan valinta keskimääräisen kokonaislähetystehon
minimoimiseksi, kun jokaiselle anturille on asetettu keskimääräisen AoI:n rajoite. Ratkaisuksi
kehitetään dynaaminen ohjausalgoritmi Lyapunov-optimointia käyttäen.

Viidennessä luvussa esitetään kilpavarausmenetelmään pohjautuva anturiverkkosovellus toi-
sessa luvussa johdetuille AoI:n lausekkeille. Järjestelmässä johdetaan anturille keskimääräisen
sekä huippuarvoisen AoI:n ylärajat tilanteessa, jossa toiset kilpailevat anturit lähettävät alituises-
ti paketteja.

Asiasanat: Lyapunov-optimointi, momenttifunktio, monikäyttökanava, monilähde-
jonomalli, palvelukuri, stochastic hybrid systems (SHS) -menetelmä, tiedon
ajantasaisuus, tiedon ikä (AoI)
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List of abbreviations

5G Fifth Generation
AoI Age of Information
ACK Acknowledgment
CDF Cumulative Distribution Function
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
DIFS Distributed Interframe Space
FCFS First-Come First-Served
HARQ Hybrid Automatic Repeat Request
IoT Internet of Things
LCFS Last-Come First-Served
LCFS-S LCFS with Preemption Under Service
LCFS-W LCFS with Preemption Only in Waiting
MGF Moment Generating Function
PDF Probability Density Function
SHS Stochastic Hybrid Systems
SNR Signal-to-Noise Ratio
WSN Wireless Sensor Network

Mathematical symbols and operators:

max{·} the maximum element inside {·}
argmax{·} the argument that maximizes the term inside {·}
min{·} the minimum element inside {·}
E{·} the expectation operator
Var{·} the variance operator
|y| the absolute value of y
|A | the cardinality of set A

Γ(·) the gamma function
exp(·) the natural exponential function ex

Im(·) the modified Bessel function of the first kind of order m
Qm(·, ·) the generalized Q-function
Y1↔ Y2↔ Y3

a Markov chain formed by random variables Y1, Y2, and Y3

Y1 =
st Y2 random variables Y1 and Y2 are stochastically identical, i.e., they have a

same PDF
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loga(·) logarithm to base a
� component-wise inequality
diag{·} a diagonal matrix with the argument values on its diagonal
⊆ a subset
‖ · ‖0 the operator that counts the number of non-zero entries of a vector
, defined as
≈ approximately equal
dm( f (a))

dam the m–th derivative of f (a)

∂ f (·)
∂a

the partial derivative of f (·) with respect to a
1 a row vector with all entries 1
0 a row vector with all entries 0
/0 an empty set
Γ(κ1,κ2) the gamma distribution with parameters κ1 and κ2

Roman alphabet notations:

Â a non-negative real value
Ã a non-negative real value
Ā a non-negative real value
A an event
A the average peak AoI
Ac the average peak AoI of source c in a multi-source queueing model
Al a binary transition reset map matrix associated with transition l
Âl a binary transition reset map matrix associated with transition l
b̃k(t) the sampling action of sensor k at time slot t determined by the subopti-

mal solution
B a real value
bk(t) the sampling action of sensor k at time slot t as bk(t) ∈ {0,1}
b(t) a vector containing all the sampling action variables
ḃk(t) a sub-optimal sampling action of sensor k at time slot t
B the set of binary numbers
C̄ the contention window size
C number of sources in a multi-source queueing model
c source index in a multi-source queueing model
ck,n(t) a Rayleigh distributed random coefficient associated with sensor k over

sub-channel n in slot t
dk the distance from sensor k to the sink
d0 the far field reference distance

12



D an integer number representing the number of exponentially distributed
random variables in a hyper-exponential distribution

D̄ a matrix with real elements
EB

1,i the event where the interarrival time of packet 1, i is brief, i.e., the
interarrival time of packet 1, i is shorter than the system time of packet
1, i−1 in an FCFS multi-source queueing model

EL
1,i the event where the interarrival time of packet 1, i is long, i.e., the

interarrival time of packet 1, i is longer than the system time of packet
1, i−1 in an FCFS multi-source queueing model

fY (y) the PDF of random variable Y
fY1|Y2(y1) the conditional PDF of random variable Y1 given Y2

fY1,Y2|Y3(y1,y2)

the conditional joint PDF of random variables Y1 and Y2 given Y3

FY (y) the cumulative distribution function of random variable Y
Ĝ(·) a positive real value
Gopt the optimal value of the average total transmit power
hk,n(t) the channel coefficient from sensor k to the sink over sub-channel n in

slot t
J(·, ·) the Jain’s index
JL

2,i a random variable representing the number of source 2 packets in the
system at the departure instant of packet 1, i− 1 for event EL

1,i in an
FCFS multi-source queueing model

K number of sensors in a WSN
LY (a) the Laplace transform of the PDF of the random variable Y at a
L′Y (a) the first derivative of LY (a) at a
L′′Y (a) the second derivative of LY (a) at a
l a transition in the SHS technique
L(Q(t)) the quadratic Lyapunov function
MB

2,i a random variable representing the number of source 2 packets that must
be served before packet 1, i under the event EB

1,i in an FCFS multi-source
queueing model

M̂L
2,i a random variable representing the number of source 2 packets that must

be served before packet 1, i under the event EL
1,i in an FCFS multi-source

queueing model
M∆c(s) the MGF of the AoI of source c
M a random variable representing the number of attempts in a CSMA/CA-

based system
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N number of orthogonal sub-channels in a WSN
N0 the noise power spectral density
N̄(t) the index of the most recently received packet at time t
N̄c(t) the index of the most recently received packet of source c at time t
O a negative real value
Pr(y) the probability associated with a random variable Y as Pr(y), Pr(Y = y)
Pr(y1|y2) the conditional probability associated with a random variable Y1 given

Y2 as Pr(Y1 = y1|Y2 = y2)

P̄m| j(τ) the probability that a single-source M/M/1 queueing system with arrival
rate λ2 and which initially holds j packets (either in the queue or under
service) ends up holding m packets after τ = x− t seconds

pk the weight factor of k–th exponentially distributed random variable in
the hyper-exponential distribution

p∗k,n(t) the allocated power to sensor k over sub-channel n in slot t determined
by a channel-only policy

p̄k,n(t) the allocated power to sensor k over sub-channel n in slot t as determined
by the proposed dynamic control algorithm

p̂k,n(t) the allocated power to sensor k over sub-channel n in slot t determined
by a channel-only policy

pk,n(t) the transmit power of sensor k over sub-channel n in slot t
p̃k,n(t) the allocated power to sensor k over sub-channel n in slot t determined

by the suboptimal solution
ṗk,n(t) a sub-optimal allocated power to sensor k over sub-channel n in slot t
Ptr

j,i the probability of having at least one transmission by the other sensors
between two consecutive back-off counter states i and i−1 at j–th
attempt

Ptr the probability of having at least one transmission by the other sensors
between two consecutive back-off counters

PS the probability of having a successful transmission in each attempt
Q̂i a positive real value representing a specific area under the sawtooth AoI

process
Q a positive real value representing a specific area under the sawtooth AoI

process
Qc,i a positive real value representing a specific area under the sawtooth AoI

process in a multi-source queueing model
Qc a positive real value representing a specific area under the sawtooth AoI

process in a multi-source queueing model
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Qk(t) the virtual queue associated with an AoI constraint of sensor k
Q(t) a vector containing all the virtual queues associated with an AoI con-

straint in Chapter 4
Q̄ a matrix with real elements
Q̄k(t) the virtual queue of sensor k in slot t as determined by the proposed

dynamic control algorithm
Q̄(t) a vector containing all virtual queues Q̄k(t),∀k
q(t) the continuous-time finite-state Markov chain that describes the occu-

pancy of the system in the SHS technique
rk,n(t) the achievable rate for sensor k over sub-channel n in slot t
Rk(t) the achievable rate for sensor k in slot t
R the set of real numbers
RB

1,i a random variable representing the residual system time to complete
serving packet 1, i− 1 under the event EB

1,i in an FCFS multi-source
queueing model

Sc,i a random variable representing the service time of packet c, i, i.e., i–th
packet of source c

S a random variable representing the stationary service time of a packet
SB

1,i a random variable representing the sum of service times of source
2 packets that arrived during X1,i under the event EB

1,i in an FCFS
multi-source queueing model

SL
1,i a random variable representing the sum of service times of source 2

packets that must be served before packet 1, i under the event EL
1,i in an

FCFS multi-source queueing model
Sm a random variable representing the service time conditioned on the event

that the number of attempts is m in a CSMA/CA-based system
s a variable of the MGF function
s̄ a variable of the MGF function
Sk(·, ·) a real tuple representing the coordinates of sensor k placed in a two-

dimensional plane
ti the time instant at which the i–th packet was generated
t ′i the time instant at which the i–th packet arrives at the destination
tc,i the time instant at which the i–th packet of source c was generated
t ′c,i the time instant at which the i–th packet of source c arrives at the

destination
Tc,i a random variable representing the system time of packet c, i, i.e., the

time interval the packet spends in the system
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T a random variable representing the stationary system time of a packet in
Chapter 2 / the observation interval in Chapter 4

T̄j,i a random variable representing the time interval between two consecutive
back-off counter states i and i−1 at the j–th attempt

T̄ a random variable representing the time interval between two consecutive
back-off counter states

TF a parameter of the CSMA/CA technique
TDIFS a parameter of the CSMA/CA technique
TP the required time to transmit a status update packet in a CSMA/CA-based

system
Ū an integer number
U(t) the time stamp of the most recently received packet
Uc(t) the time stamp of the most recently received packet of source c
U an integer random variable
V a parameter used to adjust the emphasis on the objective function in the

drift-plus-penalty minimization method
vq(t) the correlation vector between the discrete state q(t) and the continuous

state x(t)
v̄q the value of correlation vector vq(t) when t→ ∞

vs
q(t) the correlation vector between the discrete state q(t) and the exponential

function esx(t), s ∈R

v̄s
q the value of correlation vector vs

q(t) when t→ ∞

w a realization of the generated number in the contention interval in a
CSMA/CA-based system

W̄ a random variable representing the generated number in the contention
interval in a CSMA/CA-based system

W bandwidth of a sub-channel in a WSN
Wc,i a random variable representing the waiting time of packet c, i
W a random variable representing the stationary waiting time of a packet
Xi a random variable representing the i–th interarrival time, i.e., the time

elapsed between the generation of i−1–th packet and i–th packet
Xc,i a random variable representing the i–th interarrival time of source c,

i.e., the time elapsed between the generation of i−1–th packet and i–th
packet from source c

x(t) a continuous process that describes the evolution of age-related processes
at the sink in the SHS technique

x′ the updated value of x under a transition
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ẋ(t) the partial derivative of x(t) with respect to t, i.e., ẋ(t) =
∂x(t)

∂ t
xi(t) the i–th element of x(t)

Greek alphabet notations:

λc the packet generation rate of source c
λ the overall packet generation rate in a queueing system
ρc the load of source c
ρ the overall load in a queueing system
µ the service rate for each packet in the system
Ψ(µ,ρ1,λ2) a function of µ, ρ1, and λ2

κ1, κ2 parameters of the gamma distribution
ν1, ν2 parameters of the log-normal distribution
ω1, ω2 parameters of the Pareto distribution
γk a parameter of the hyper-exponential distribution
πq(t) the probability of being in state q of a Markov chain in the SHS technique
πππ(t) the state probability vector in the SHS technique
π̄ππ the stationary state probability vector in the SHS technique
λ (l) the rate of transition l in the SHS technique
ηi a function of ρ2

η̃i a function of ρ2

η̂i a function of ρ2

η̇i a function of ρ2

ξ̇i a function of ρ2

ξ̂i a function of ρ2

γi, j a function of ρ2

ξ̃i a function of ρ2

v̄i j a function of ρ2

γ̇i a function of ρ2 and s̄
γ̄i a function of ρ2 and s̄
αi, j a function of ρ2 and s̄
v̄s

i j a function of ρ2 and s̄
σ the standard deviation of the AoI
ρk,n(t) the sub-channel assignment at time slot t as ρk,n(t) ∈ {0,1}
γk,n(t) the signal-to-noise ratio with respect to sensor k over sub-channel n in

slot t
η the size of each status update packet (in bits)
δk(t) the AoI of sensor k at the beginning of slot t in a WSN
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δ̂k(t) the value of the AoI of sensor k in slot t determined by a channel-only
policy

∆(t) the AoI at the destination at time instant t
∆τ the time average AoI at the destination over the time interval (0,τ)
∆ the average AoI
∆c(t) the AoI of source c at the destination at time instant t
∆τ,c the time average AoI of the source c at the destination over the time

interval (0,τ)
∆c the average AoI of source c in a multi-source queueing model
∆

appi
1 the i–th approximate expression for the average AoI of source 1 in an

FCFS multi-source queueing model
∆
(m)
c the m–th moment of the AoI of source c

∆max
k the maximum acceptable average AoI of sensor k

ε a positive real value
ν a positive real value
α(·) the conditional Lyapunov drift
δ ∗k (t) the value of the AoI of sensor k in slot t determined by a channel-only

policy
δ max the maximum value of the AoI of each sensor in each slot
ᾱ(·) the conditional Lyapunov drift determined by the proposed dynamic

control algorithm
ρ̃k,n(t) sub-channel assignment at time slot t determined by the sub-optimal

solution
ρ̇k,n(t) a sub-optimal sub-channel assignment at time slot t
∆max the maximum acceptable average AoI of each sensor in a WSN
ξ the path loss exponent
ξm a random variable representing the elapsed time of a successful trans-

mission of a sensor at the m–th attempt
ζ j a random variable representing the elapsed time of an unsuccessful

transmission of a sensor at the j–th attempt
ξ j,w a random variable representing the elapsed time of a successful trans-

mission of a sensor at the j–th attempt conditioned on the event that the
generated number in the back-off rule is W̄ = w in a CSMA/CA-based
system

ζ j,w a random variable representing the elapsed time of an unsuccessful
transmission of a sensor at the j–th attempt conditioned on the event that
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the generated number in the back-off rule is W̄ = w in a CSMA/CA-based
system

ξ̄1 the expectation of the elapsed time of a successful transmission of a
sensor at an attempt in a CSMA/CA-based system

ξ̄2 the second moment of the elapsed time of a successful transmission of a
sensor at an attempt in a CSMA/CA-based system

ξ̄3 the Laplace transform of the elapsed time of a successful transmission of
a sensor at an attempt in a CSMA/CA-based system

ᾱ a positive real value
Θ1 a notation representing interarrival time distribution in Kendall notation
Θ2 a notation representing service time distribution in Kendall notation
Θ3 a positive integer number representing the number of servers in a

queueing system in Kendall notation
Θ4 a positive integer number representing total capacity of a queueing

system in Kendall notation

Calligraphy letter notations:

C a set of independent sources in a multi-source queueing model
M B

2,i the set of indices of queued packets of source 2 that must be served
before packet 1, i under the event EB

1,i
M̂ L

2,i the set of indices of queued packets of source 2 that must be served
before packet 1, i under the event EL

1,i
Q the state space of the Markov chain in the SHS technique
L a set of transitions in the SHS technique
L ′

q the set of incoming transitions for state q
Lq the set of outgoing transitions for state q
N a set of sub-channels
K a set of sensors
S (t) the network state at slot t
B the set of all possible values of binary vector b(t)
B̃ a set of values of binary vector b(t)
N ′ a set of sub-channels
K ′ a set of sensors
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1 Introduction

1.1 Motivation

The freshness of status information of various physical processes e.g., temperature
of a specific environment (room, greenhouse, etc.) [1] or a vehicular status (position,
acceleration, etc.) [2] is a key performance enabler in many time-critical applications of
wireless sensor networks (WSNs), e.g., surveillance in smart home systems, remote
surgery, intelligent transportation systems, and drone control. In these networks, low
power sensors may be assigned to send status updates about a random process to
intended destinations [1–7].

The traditional metrics, such as throughput and delay, can not fully characterize
the information freshness [5–9]. The age of information (AoI) was first introduced
in the seminal work [10] as a destination-centric metric to measure the information
freshness in status update systems. A status update packet contains the measured
value of a monitored process and a time stamp representing the time at which the
sample was generated. Due to wireless channel access, channel errors, and fading etc.,
communicating a status update packet through the network experiences a random delay.
If at a time instant t, the most recently received status update packet contains the time
stamp U(t), AoI is defined as the random process ∆(t) = t−U(t). Thus, for each sensor,
the AoI measures the time elapsed since the last received status update packet was
generated at the sensor.

Besides the requirement of high information freshness, low energy consumption is
vital for maintaining a status update WSN operational. Namely, the wireless sensors are
typically battery limited and thus, it may not be feasible to recharge or replace batteries
during the operation. The main contributors to the sensors’ energy resources are the
wireless access [11], and also, the sensing/sampling part [12]. Consequently, it is crucial
to minimize the amount of information (e.g., the number of data packets) that must
be communicated from each sensor to the sink to meet the application requirements.
This engenders the need for joint optimization of the information freshness, sensors’
sampling policies, and radio resource allocation (transmit power, bandwidth etc.) for
designing energy-efficient status update WSNs.
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1.2 Scope and objectives of the thesis

Objectives: The aim of the thesis is to analyze the information freshness and propose
some novel methods to improve it in the upcoming WSNs. The AoI metric is used
to measure the information freshness. The main activities regarding the thesis can
be summarized into two categories: i) analyzing the AoI when we cannot control the
sampling process in the system and ii) optimizing the AoI when we can control the
sampling process in the system. In the first category, the AoI for various queueing
models are analyzed and some novel packet management policies are introduced to
improve the information freshness. Moreover, an application of the derived results is
studied. In the second category, the problem of optimizing the sampling action and radio
resources to improve the system energy efficiency subject to AoI constraints is studied.
The main research questions are as follows:

Q1: How can the average AoI be characterized in multi-source queueing models
with a general service time distribution?

Q2: How can the information freshness be improved by applying appropriate packet
management policies in multi-source status update systems?

Q3: Can fairness among sources be improved by applying appropriate packet
management policies in multi-source status update systems?

Q4: How do the radio resources need to be allocated to maximize the performance
of a status update system subject to freshness constraints?

Q5: How do the sampling actions of each sensor need to be designed to maximize
the performance of a status update system subject to freshness constraints?

Q6: What is the applicability of the derived results for various queueing models?
Methodology: Mathematical modeling and analysis using well-established tools,

namely, i) queueing theory, ii) stochastic hybrid systems (SHS) technique, iii) stochastic
optimization, and iv) convex optimization techniques. Queueing theory and the SHS
technique are used for mathematical modeling and performance analysis of the status
update systems. Stochastic optimization is used for performance optimization in
the status update systems, and convex optimization is used for algorithm derivation.
Validation of the derived theoretical results and performance evaluation of the devised
methods and algorithms are performed via MATLAB simulations.

Significance: The research work is expected to influence the development and
implementation of ultra-reliable low-latency communication services in WSNs where
freshness of sensor information at destinations is important. Information freshness and
energy efficiency are key enablers for these services. This thesis analyzes information
freshness in various scenarios and proposes various solutions to improve the information

26



freshness and system energy efficiency. The derived theoretical results have particular
significance in establishing performance limits for practical methods and can, thus, be
used for benchmarking. Moreover, the proposed schemes, novel ideas, and possible
extensions are expected to influence the development of new and more sophisticated
strategies in related research fields.

1.3 Outline of the thesis

Chapter 2 of this thesis, the results of which have been presented in [13–15], studies
the average AoI of single-server multi-source queueing models under a first-come
first-served (FCFS) serving policy. In the considered model, each source independently
generates status update packets according to a Poisson process and the packets are
served according to a service time with general distribution. An exact expression for the
average AoI for a multi-source M/M/1 queueing model is derived and three approximate
expressions for the average AoI in a multi-source M/G/1 queueing model are derived.

Chapter 3, the results of which have been presented in [16–20], studies the AoI
under three novel source-aware packet management policies in a status update system
consisting of two independent sources and one server. The packets of each source are
generated according to a Poisson process and the packets are served according to an
exponentially distributed service time. The average AoI and the moment generating
function (MGF) of the AoI under the introduced policies are derived.

Chapter 4, the results of which have been presented in [21, 22], considers a WSN
where multiple sensors communicate timely information about various random processes
to a sink. The sensors share orthogonal sub-channels to transmit such information in
the form of status update packets. The problem of jointly optimizing the sampling
action of each sensor, the transmit power allocation, and the sub-channel assignment to
minimize the average total transmit power of all sensors subject to a maximum average
AoI constraint for each sensor is studied. To solve the proposed problem, the Lyapunov
drift-plus-penalty method is used.

Chapter 5, the results of which have been presented in [23, 24], considers a WSN
where sensors communicate status updates to a sink by contending for the channel
access based on a carrier sense multiple access with collision avoidance (CSMA/CA)
method. The worst case average AoI and average peak AoI are analyzed.

Chapter 6 concludes the thesis where the main results are summarized and some
open problems for future research are presented.
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1.4 Basics of the AoI analysis

In this section, the basics and formal definitions related to the AoI are presented.
Consider a simple status update system consisting of a source that generates status
updates of a random process, a queue, a server, and a sink, as depicted in Fig. 1. The
generated updates are stored in the queue as status update packets. Due to wireless
channel access, channel errors, and fading etc., the server delivers each packet to the
sink with a random delay. Awareness of the source’s state at the sink needs to be as
timely as possible. Next, we introduce the AoI and the most commonly used metrics for
evaluating this timeliness, i.e., the average AoI and average peak AoI.

Let ti denote the time instant at which the ith status update packet was generated,
and t ′i denote the time instant at which this packet arrives at the destination. At a time
instant τ , the index of the most recently received packet is given by

N̄(τ) = max{i′|t ′i′ ≤ τ}, (1)

and the time stamp of the most recently received packet is U(τ) = tN̄(τ). The AoI at the
destination is defined as the random process ∆(t) = t−U(t).

An example of the AoI evolution is shown in Fig. 2. As can be seen, ∆(t) increases
linearly with time, until the reception of a new status update, when the AoI is reset to the
age of the newly received status update, i.e., the difference of the current time instant
and the time stamp of the newly received update. Thus, two parameters that influence
AoI are packet delay and inter-delivery time.
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The most commonly used metrics for evaluating the AoI of a source at the destination
are the average AoI and average peak AoI [5, 7–9, 25–27], which are used in this thesis.
Next, these metrics are introduced.

Average AoI

Let (0,τ) denote an observation interval. Accordingly, the time average AoI at the
destination, denoted as ∆τ , is defined as

∆τ =
1
τ

∫
τ

0
∆(t)dt. (2)

The integral in (2) is equal to the area under ∆(t) which can be expressed as a sum of
disjoint areas determined by a polygon Q̂1, N̄(τ)−1 trapezoids Q̂i, i = 2, . . . , N̄(τ), and
a triangle Q, as illustrated in Fig. 2. Following the definition of N̄(τ) in (1), ∆τ can be
calculated as

∆τ =
1
τ

(
Q̂1 +

N̄(τ)

∑
i=2

Q̂i +Q
)

(3)

=
Q̂1 +Q

τ
+

N̄(τ)−1
τ

1
N̄(τ)−1

N̄(τ)

∑
i=2

Q̂i.
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The average AoI, denoted by ∆, is defined as

∆ = lim
τ→∞

∆τ .

The term
Q̂1 +Q

τ
in (3) goes to zero as τ → ∞. The rate of generating the status update

packets is defined by λ = limτ→∞

N̄(τ)

τ
, and thus the term

N̄(τ)−1
τ

in (3) converges to

λ as τ → ∞, i.e.,

lim
τ→∞

N̄(τ)−1
τ

= lim
τ→∞

N̄(τ)

τ
= λ .

Moreover, as τ → ∞, the number of transmitted packets grows to infinity, i.e., N̄(τ)→ ∞.
Thus, assuming that the random process {Q̂i}i>1 is (mean) ergodic [7–9], the sam-

ple average term
1

N̄(τ)−1
∑

N̄(τ)
i=2 Q̂i in (3) converges to the stochastic average E[Q̂i].

Consequently, ∆ is given by
∆ = λE[Q̂i].

As shown in Fig. 2, Q̂i can be calculated by subtracting the area of the isosceles
triangle with sides (t ′i − ti) from the area of the isosceles triangle with sides (t ′i − ti−1).
Let the random variable

Xi = ti− ti−1 (4)

represent the ith interarrival time, i.e., the time elapsed between the generation of i−1th
packet and ith packet. Moreover, let the random variable

Ti = t ′i − ti (5)

represent the system time of packet i, i.e., the time interval the packet spends in the
system which consists of the sum of the waiting time and the service time. By using (4)
and (5), Q̂i can be calculated by subtracting the area of the isosceles triangle with sides
Xi from the area of the isosceles triangle with sides Xi +Ti (see Fig. 2), and thus, the
average AoI is given as [28]

∆ = λE[Q̂i] = λ

(
1
2
E[(Xi +Ti)

2]− 1
2
E[T 2

i ]

)
(6)

= λ

(
E[X2

i ]

2
+E[XiTi]

)
.
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In general, in any system, the most challenging part of calculating the average AoI (6) is
the correlation term E[XiTi]. This is because the interarrival time Xi and the system time
Ti are statistically dependent (i.e., they are usually negatively correlated).

Average peak AoI

The peak AoI provides a more tractable metric than the average AoI for the analysis of
freshness. This metric can be used in applications where we need a threshold restriction
on the AoI. Moreover, it can be exploited when we are interested in the worst case
AoI [26, 27].

The peak AoI at the destination is defined as the value of the AoI immediately
before receiving an update packet. Accordingly, the peak AoI with respect to the ith
successfully received packet, denoted by Ai (see Fig. 2), is given by

Ai = Xi +Ti. (7)

For the observation interval (0,τ), the time average peak AoI, denoted by Aτ , is defined
as

Aτ =
1

N̄(τ)

N̄(τ)

∑
i=1

Ai.

The average peak AoI, denoted by A, is given by

A = lim
τ→∞

Aτ .

Consequently, considering the ergodicity assumption, the average peak AoI is given
by [26, 27]

A = E[Ai] = E[Xi]+E[Ti]. (8)

1.4.1 Kendall notation in queueing models

Kendall notation is a system used to describe and classify different queueing models [29].
Using Kendall notation, a general queueing model is denoted by Θ1/Θ2/Θ3, where Θ1

refers to the distribution of interarrival time, Θ2 refers to the distribution of service time,
and Θ3 is a positive integer number that refers to the number of servers in the queueing
system. In Table 1, some symbols used for Θ1 and Θ2 in Kendall notation are presented.
Note that Kendall notation has been extended to Θ1/Θ2/Θ3/Θ4, where Θ4 is a positive
integer number that refers to the total capacity of a queueing system, i.e., the number of
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packets in both the waiting queue and the server. For example, Θ4 =1 indicates that
there can be one packet under service whereas the queue holds zero packets. Note that
by convention, when Θ4 is missing, it is assumed that the waiting queue has infinite
capacity.

Table 1. Symbols used in Kendall notation.

Symbol used for Θ1 and Θ2 Distribution Example
M Exponential distribution M/M/1 queueing model
D Deterministic M/D/1 queueing model
G General distribution M/G/1 queueing model

PH Phase-type distribution [30] PH/PH/1 queueing model
Ek Erlang distribution M/Ek/1 queueing model

1.5 Literature review

In this section, the earlier and parallel works to the thesis research are presented; the
author’s contributions are not included herein. The related works are categorized into
three groups, namely, i) AoI analysis in various queueing models, ii) AoI analysis using
the SHS technique, and iii) optimization and control in relation to AoI.

1.5.1 AoI analysis in various queueing models

Single-source queueing models

The first queueing theoretic work on AoI is [8] where the authors derived the average AoI
for M/M/1, D/M/1, and M/D/1 FCFS queueing models. In [26], the authors proposed
peak AoI as an alternative metric to evaluate information freshness. In [31], the authors
derived the average peak AoI expression in an M/M/1 queueing system for both FCFS
and LCFS policies with packet delivery errors.

It has been shown that, with an appropriate packet management policy, we can
improve the information freshness in status update systems [27, 32]. The average AoI
for an M/M/1 last-come first-served (LCFS) queueing model with preemption was
analyzed in [32]. The average AoI and average peak AoI for three packet management
policies named M/M/1/1, M/M/1/2, and M/M/1/2∗ were derived in [27]. Under the
M/M/1/1 model, when the server is busy, new arrivals are blocked and cleared. Under
the M/M/1/2 model, there is a waiting queue of size one in the system and when the
waiting queue is occupied, new arrivals are blocked and cleared. Under the M/M/1/2∗

model, there is a waiting queue of size one in the system and if at arrival instant of a
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new packet the waiting queue is occupied, the fresh packet preempts the packet in the
waiting queue. The work in [33] derived the average AoI expression in an M/M/1/2
queueing model considering a deadline for packets in the system. The authors of [34]
derived the average AoI for the M/M/2 queueing model and provided upper and lower
bounds for the average AoI for the M/M/∞ queueing model.

Besides exponentially distributed service time and Poisson process arrivals, AoI has
also been studied under various arrival processes and service time distributions. The
work in [30] derived the distribution of the AoI and peak AoI for the PH/PH/1/1 and
M/PH/1/2 queueing models. The authors of [35] analyzed the AoI in a D/G/1 FCFS
queueing model. The authors of [36] derived a closed-form expression for the average
AoI of an M/G/1/1 preemptive queueing model with hybrid automatic repeat request
(HARQ). In [37], the authors derived a general formula for the stationary distribution of
the AoI. They showed that the stationary distribution of the AoI is given in terms of the
stationary distributions of the delay and peak AoI. The stationary distributions of the
AoI and peak AoI of M/G/1/1 and G/M/1/1 queueing models were derived in [38]. The
work in [39] considered an LCFS queueing model where the packets arrive according to
a Poisson process and the service time follows a gamma distribution. They derived the
average AoI and average peak AoI for two packet management policies, LCFS with and
without preemption. The work in [33,40] derived the average AoI expression for an
G/G/1/1 queueing model under two packet management policies. In the first policy, if a
new update arrives when the service is busy, it is blocked and cleared; in the second
policy, a new update preempts the current update under service. The authors of [41]
considered a status update system consisting of one source node that sends multiple
update streams to multiple receiver nodes and derived the average AoI of each stream.

Multi-source queueing models

The work in [28] was the first to investigate the AoI in a multi-source setup in which
the authors derived an approximate expression for the average AoI in a multi-source
M/M/1 FCFS queueing model. The authors of [42] considered an M/G/1 queueing
system and optimized the arrival rates of each source to minimize the peak AoI. The
closed-form expressions for the average AoI and average peak AoI in an M/G/1/1
preemptive queueing model were derived in [43]. In [44], the authors derived the average
AoI for a queueing system with two classes of Poisson arrivals with different priorities
and a service time with general distribution. They assumed that the system can contain
at most one packet and a new arriving packet replaces the possible currently-in-service
packet with a same or lower priority.
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1.5.2 AoI analysis using the SHS technique

The seminal work [9] introduced a powerful technique, called stochastic hybrid systems
(SHS), to calculate the average AoI. In [45], the authors extended the SHS analysis to
calculate the MGF of the AoI. In this section, the works in which the SHS technique has
been used to analyze the AoI are presented.

In [46], the authors derived the average AoI for a single-source status update system
in which the updates follow a route through a series of network nodes where each node
has an LCFS queue that supports preemption in service. The work in [47] derived the
average AoI in a single-source queueing model with multiple servers with preemption in
service.

The work in [9] considered a multi-source queueing model in which the packets of
different sources are generated according to the Poisson process and served according
to an exponentially distributed service time. The authors derived the average AoI for
two packet management policies: 1) LCFS with preemption under service (LCFS-S),
and 2) LCFS with preemption only in waiting (LCFS-W). Under the LCFS-S policy, a
new arriving packet preempts any packet that is currently under service (regardless
of the source index). Under the LCFS-W policy, a new arriving packet replaces any
older packet waiting in the queue (regardless of the source index); however, the new
packet has to wait for any packet under service to finish. The results showed that if
arrival rates of the sources can be controlled, the LCFS-S policy minimizes the sum
AoI. The authors of [48] considered a multi-source queueing model in which sources
have different priorities and derived the average AoI for two priority based packet
management policies. In [49], the authors derived the average AoI in a multi-source
LCFS queueing model with multiple servers that employ preemption in service. The
work in [50] derived the average AoI in a multi-source system with preemption in
service and packet delivery errors.

As mentioned in Section 1.5.1, an approximate expression for the average AoI in a
multi-source M/M/1 FCFS queueing model was derived in [28]. However, the authors
revisited this problem recently in [51], which is the parallel work to the author’s original
article [13], and provided an exact expression for the average AoI by using the SHS
technique.

The work in [52] considered a WSN with an unslotted, uncoordinated, unreliable
multiple access collision channel. They assumed that the sensors generate status updates
as a Poisson process and each update has an independent exponentially distributed
transmission time. They analyzed the AoI by using the SHS technique. The authors
of [53] analyzed the AoI in a CSMA/CA-based system using the SHS technique. To
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make the analysis tractable, they assumed that there are no collisions in the system by
considering that the channel sensing delay is zero and the back-off time is continuous.
They considered a system without queueing time where the total capacity of the queueing
system is one packet under service. They optimized the average AoI by calibrating the
back-off time of each link.

1.5.3 Optimization and control in relation to AoI

Resource management to improve the information freshness has been studied in various
works. In [54], the authors considered a status update system in which the updates of
different sensors are generated at a fixed rate and proposed a power control algorithm to
minimize the average AoI. The work in [55] considered a single-user fading channel
system and studied the problem of long-term average throughput maximization subject
to average AoI and power constraints. In [56], the authors studied the problem of
minimizing the average AoI for status updates sent by an energy harvesting source with
a finite-capacity battery. The authors of [57] considered an energy harvesting sensor
with a Poisson energy arrival process and minimized the average AoI by determining
the sequence of update epochs subject to an energy constraint. In [58, 59], the authors
studied the problem of minimizing total transmit power subject to probabilistic AoI
constraints. They solved the optimization problem using the Lyapunov optimization
method. In [60], the authors considered a wireless power transfer powered sensor
network and studied the performance of the system in terms of the average AoI. The
authors of [61, 62] studied the problem of average AoI and peak AoI minimization in a
status update system, consisting of a set of source-destination links, subject to general
interference constraints. In [63], the authors studied the performance of a massive
machine type communications in status update systems. They derived a closed-form
expression for the average AoI and studied the problem of average AoI minimization.
The work in [64] considered a status update system consisting of multiple sources and
multiple sensors and investigated sensor scheduling to minimize average AoI. The
work in [65] considered a two-hop status update system consisting of one source, one
relay, and one sink and studied the problem of average AoI minimization subject to a
constraint on the average number of forwarding operations at the relay. The authors
of [66] studied the average AoI minimization problem in multi-channel status update
systems.

Optimizing the sampling action of each sensor plays a critical role in the performance
of status update systems. The work in [67] proposed the mutual information between
the real-time source value and the delivered samples at the receiver as a new metric to
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quantify the information freshness. They considered a sampling problem, where samples
of a Markov source are taken and sent through a queue to the sink. The authors proved
that the optimal sampling policy is a threshold policy and found the optimal threshold.
In [68], the authors studied the problem of how to take samples in a status update system
to optimize information freshness under various non-linear functions of AoI. The work
in [69] considered an energy harvesting sensor and derived the optimal threshold, in
terms of remaining energy, to trigger a new sample to minimize the average AoI. The
authors of [70,71] considered a multi-source status update system in which different
sources send their updates through a shared channel with random delay. They studied the
joint sampling and transmission scheduling problem in order to optimize the information
freshness. The authors of [72] considered two source nodes generating heterogeneous
traffic with different power supplies and studied the peak-age-optimal status update
scheduling. In [73], the authors considered a status update system consisting of an
energy harvesting source with a noisy channel and investigated the optimal status
updating policy to minimize the average AoI. The work in [74] considered a status
update system with multiple users, multiple energy harvesting sensors, and a wireless
edge node. Users send requests to the edge node where a cache contains the most
recently received measurements from each sensor. The authors optimized the action
of the edge node to minimize the average AoI [74], or a weighted combination of the
average AoI and energy consumption [75], by determining whether the edge node
commands the sensor to send a status update or retrieves the aged measurement from the
cache. In [76–78], the authors studied the transmission scheduling of status updates
over an error-prone communication channel to minimize the average AoI subject to
the constraint of the average number of transmissions. The authors of [79, 80] studied
the transmission scheduling of status updates for energy harvesting sensors with finite
batteries.

AoI has been widely studied for status update systems in which multiple sensors
share wireless channels. In the seminal work on the AoI [10], the authors investigated
the AoI in a CSMA/CA-based vehicular network using simulation. The work in [81]
studied AoI and throughput in a shared access network that consists of one primary
and several secondary transmitter and receiver pairs. They investigated the AoI of the
primary pair. In [82], the authors investigated the ALOHA and scheduled-based access
techniques in WSNs and minimized the average AoI by optimizing the probability
of transmission in each node. The work in [83] investigated various decentralized
age-efficient transmission policies for random access channels. In [84], the authors
considered a slotted time system and derived the average AoI with and without packet
management for various access methods. The work in [85] considered a WSN in
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which sensors share one unreliable sub-channel in each slot. They minimized the
expected weighted sum average AoI of the network by determining the transmission
scheduling policy. The authors of [86] considered a wireless broadcast network with a
base station sending time-sensitive information to a number of clients over an unreliable
channel. They studied the problem of optimizing scheduling decisions to minimize
the weighted sum AoI of the clients in the network. In [87], the authors considered a
broadcast network where many clients are interested in different pieces of information
that should be delivered by a base station. They studied the problem of average AoI
minimization subject to the constraint that only one user can be served at a time. In [88],
the authors considered a system where a base station serves multiple traffic streams
arriving according to a Bernoulli process and the packets of different streams are
enqueued in separate queues. They minimized the expected weighted sum AoI of
the network by optimizing the transmission scheduling policy. The authors of [89]
considered a multi-user system in which users share one unreliable sub-channel in
each slot. They proposed an optimization problem to minimize the cost of sampling
and transmitting status updates in the system under an average AoI constraint for each
user in the system. They proposed a solution algorithm for the problem by using the
Lyapunov drift-plus-penalty method.

1.6 Contributions of the thesis

In this section, the main contributions of the thesis and the author’s contribution to the
publications are presented.

1.6.1 Key contributions

In Chapter 2, the average AoI of different sources in single-server multi-source queueing
models under an FCFS service policy with Poisson packet arrivals is analyzed. An exact
expression for the average AoI for a multi-source M/M/1 queueing model is derived.
The setup was earlier addressed in [9, 28], where the authors derived an approximate
expression for the average AoI by neglecting the statistical dependency between certain
random variables; this will be elaborated upon in Chapter 2. The difficulties in an
M/G/1 case are pointed out and three approximate expressions for the average AoI in a
multi-source M/G/1 queueing model are derived. The simulation results are presented to
1) validate the derived exact average AoI in a multi-source M/M/1 queueing model, 2)
show that the proposed approximations are relatively tight in the M/G/1 case where the
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service time follows different distributions, and 3) exemplify the AoI behavior under
different system parameters.

In Chapter 3, three different source-aware packet management policies are intro-
duced and the AoI is studied under the proposed policies in a status update system
consisting of two independent sources and one server. In all policies, when the system is
empty, any arriving packet immediately enters the server. However, the policies differ in
how they handle the arriving packets when the server is busy. In Policy 1, the waiting
queue can contain at most two waiting packets at the same time (in addition to the
packet under service), one packet of source 1 and one packet of source 2. When the
server is busy and a new packet arrives, the possible packet of the same source waiting
in the queue (not being served) is replaced by the fresh packet. In Policy 2, the system
(i.e., the waiting queue and the server) can contain at most two packets, one from each
source; when the server is busy and a new packet arrives, the possible packet of the
same source either waiting in the queue or being served is replaced by the fresh packet.
Policy 3 is similar to Policy 2 but it does not permit preemption in service, i.e., while a
packet is under service all new arrivals from the same source are blocked and cleared.
The SHS technique is used to derive the average AoI of each source under Policy 1,
Policy 2, and Policy 3 and the MGF of the AoI under Policy 2 and Policy 3. Numerical
results are provided to assess the fairness between sources, the sum average AoI, and the
importance of higher moments of AoI of the proposed policies.

In Chapter 4, a WSN consisting of a set of sensors and a sink that is interested in
time-sensitive information from the sensors is considered. The problem of optimizing
the sensors sampling action and radio resources allocation to minimize the average total
transmit power of all sensors subject to an AoI constraint for each sensor is studied.
To solve the proposed problem, a dynamic control algorithm using the Lyapunov
drift-plus-penalty method is developed. In addition, optimality analysis of the proposed
dynamic control algorithm is provided. According to the Lyapunov drift-plus-penalty
method, to solve the main problem, we need to solve an optimization problem in each
time slot which is a mixed integer non-convex optimization problem. A low-complexity
sub-optimal solution for this per-slot optimization problem is proposed that provides
near-optimal performance and the computational complexity of the solution is evaluated.
Numerical results show the performance of the proposed dynamic control algorithm in
terms of transmit power consumption and AoI of the sensors versus different system
parameters. In addition, they show that the sub-optimal solution for the per-slot
optimization problems is near-optimal.

In Chapter 5, the worst case average AoI and average peak AoI of a sensor in
a simplified CSMA/CA-based WSN under the FCFS policy and infinite queue size
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are derived. The worst case analysis is carried out by considering that when a sensor
contends for the channel to transmit its status update packet, all the other sensors have a
packet to transmit and thus, the probability of collisions has the highest value.

1.6.2 Author’s contribution to the publications

This thesis is written as a monograph based on the following thirteen original pub-
lications: four published journal articles [13, 16, 17, 23], one under revision journal
article [21], and seven published conference papers [14, 15, 18–20, 22, 24]. The author
has had the main responsibility in performing the analysis, developing the simulation
software, generating the numerical results, and writing all the papers. Other co-authors
provided valuable guidance for research directions, ideas on developed methods, and
comments during the preparation of the manuscripts to improve their quality.
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2 AoI in multi-source FCFS queueing models

In this chapter, the average AoI of different sources in single-server multi-source
queueing models under an FCFS service policy with Poisson packet arrivals is analyzed.
Analyzing the FCFS policy is important because we might have a system in which
packet management policies cannot be applied, or all the generated packets in the system
are useful and it is necessary to be delivered to the destination in the order in which they
were generated. In Chapter 3, various packet management policies are studied which
can improve the AoI.

In this chapter, first, an exact expression for the average AoI for a multi-source
M/M/1 queueing model is derived. Second, the difficulties in an M/G/1 case are pointed
out and three approximate expressions for the average AoI in a multi-source M/G/1
queueing model are derived. Finally, the simulation results are presented to validate the
results.

The remainder of this chapter is organized as follows. The system model, AoI
definition, and a summary of the main results are presented in Section 2.1. The main
steps required to derive the average AoI for a multi-source M/G/1 queueing model are
presented in Section 2.2. The exact expression for the average AoI in a multi-source
M/M/1 queueing model is derived in Section 2.3. Three approximate expressions for
the average AoI in a multi-source M/G/1 queueing model are derived in Section 2.4.
Numerical validation and results are presented in Section 2.6. Finally, concluding
remarks are expressed in Section 2.7.

2.1 System model and summary of results

Consider a system consisting of a set of independent sources denoted by C = {1, . . . ,C}
and one server, as depicted in Fig. 3. Each source observes a random process, represent-
ing, e.g., temperature, vehicular speed or location at random time instants. A sink is
interested in timely information about the status of these random processes. Status
updates are transmitted as packets, containing the measured value of the monitored
process and a time stamp representing the time when the sample was generated. The
packets of source c are assumed to be generated according to the Poisson process with
rate λc, c ∈ C .

For each source, the AoI at the sink is defined as the time elapsed since the last
successfully received packet was generated. Formal definition of the AoI is given next.
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Fig. 3. The considered status update system modeled as a multi-source M/G/1 queueing
model (Reprinted by permission [13] c© 2020, IEEE).

2.1.1 Average AoI in a multi-source queueing model

Let tc,i denote the time instant at which the ith status update packet of source c was
generated, and t ′c,i denote the time instant at which this packet arrives at the destination.
At a time instant τ , the index of the most recently received packet of source c is given by

N̄c(τ) = max{i′|t ′c,i′ ≤ τ}, (9)

and the time stamp of the most recently received packet of source c is Uc(τ) = tc,N̄c(τ).

The AoI of source c at the destination is defined as the random process ∆c(t) = t−Uc(t).
The sawtooth AoI process of source c at the sink in a multi-source queueing model

is illustrated in Fig. 4. Following the same steps presented in Section 1.4, the average
AoI of source c, ∆c, is given by

∆c = λcE[Qc,i].

As shown in Fig. 4, Qc,i can be calculated by subtracting the area of the isosceles triangle
with sides (t ′c,i− tc,i) from the area of the isosceles triangle with sides (t ′c,i− tc,i−1). Let
the random variable

Xc,i = tc,i− tc,i−1 (10)

represent the ith interarrival time of source c, i.e., the time elapsed between the generation
of i−1th packet and ith packet from source c. From here onwards, the ith packet from
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Fig. 4. Age of information of source c as a function of time (Reprinted by permission [13] c©
2020, IEEE).

source c is simply referred as packet c, i. Moreover, let the random variable

Tc,i = t ′c,i− tc,i (11)

represent the system time of packet c, i, i.e., the time interval the packet spends in the
system which consists of the sum of the waiting time and the service time. By using (10)
and (11), Qc,i can be calculated by subtracting the area of the isosceles triangle with
sides Xc,i from the area of the isosceles triangle with sides Xc,i +Tc,i (see Fig. 4), and
thus, the average AoI of source c is given as [28]

∆c = λcE[Qc,i] = λc

(
1
2
E[(Xc,i +Tc,i)

2]− 1
2
E[T 2

c,i]

)
(12)

= λc

(E[X2
c,i]

2
+E[Xc,iTc,i]

)
.

Let Wc,i be the random variable representing the waiting time of packet c, i, and
Sc,i the random variable representing the service time of packet c, i. Consequently, the
system time Tc,i is given as the sum Tc,i =Wc,i +Sc,i, and the average AoI in (12) can be
written as

∆c = λc

(E[X2
c,i]

2
+E[Xc,i(Wc,i +Sc,i)]

)
. (13)

43



2.1.2 Summary of the main results

Here, the main results of this chapter are briefly summarized. To evaluate the AoI of
one source in a queueing model with multiple sources of Poisson arrivals, two sources
without loss of generality can be considered. Thus, the AoI of source 1 is evaluated
by aggregating the other C−1 sources into source 2 having the Poisson arrival rate
λ2 = ∑c′∈C \{1}λc′ . The mean service time for each packet in the system is equal, given
as E[S1,i] = E[S2,i] = 1/µ , ∀i. Let ρ1 = λ1/µ and ρ2 = λ2/µ be the load of source
1 and 2, respectively. Since packets of each source are generated according to the
Poisson process and the sources are independent, the packet generation in the system
follows the Poisson process with rate λ = λ1 +λ2, and the overall load in the system is
ρ = ρ1 +ρ2 = λ/µ . Since there is no assumption on the probability density function
(PDF) of the service time, the considered model is referred to a multi-source M/G/1
queueing model.

The main contributions of this chapter are twofold: 1) an exact expression for
the average AoI for a multi-source M/M/1 queueing model is derived and 2) three
approximate expressions for the average AoI in a multi-source M/G/1 queueing model
are proposed. The derived results are summarized as follows.

Theorem 1. The exact expression for the average AoI of source 1 for a multi-source
M/M/1 queueing model is given in (50) and has the following form:

∆1=λ
2
1 (1−ρ)Ψ(µ,ρ1,λ2)+

1
µ

(
1
ρ1

+
ρ

1−ρ
+
(2ρ2−1)(ρ−1)

(1−ρ2)2 +
2ρ1ρ2(ρ−1)
(1−ρ2)3

)
,

where Ψ(µ,ρ1,λ2) is a function that is characterized by transient behavior of an M/M/1
queue which is presented in (42).

Proof: The proof of Theorem 1 appears in parts in Sections 2.2 and 2.3.
The three approximate expressions for the average AoI of source 1 for a multi-source

M/G/1 queueing model, denoted by ∆
app1
1 ,∆

app2
1 , and ∆

app3
1 , are given in (56), (59), and

(62), and are of the following form:

∆
app1
1 ≈ E[W ]+

2
µ
+

2ρ2−1
λ1

+
2(1−ρ2)

λ1
LT (λ1)+(ρ2−1)L′T (λ1).

∆
app2
1 ≈ E[W ]+

2
µ
+

2ρ2−1
λ1

+

(
1
µ
+

2(1−ρ2)

λ1

)
LT (λ1)+

(
ρ2−1− λ1

µ

)
L′T (λ1).
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∆
app3
1 ≈ E[W ]+

2
µ
+

2ρ2−1
λ1

+

(
λ2E[S2]

2(1−ρ2)
+

2(1−ρ2)

λ1

)
LT (λ1)+(

2ρ2−1− λ1λ2E[S2]

2(1−ρ2)

)
L′T (λ1)−λ1ρ2L′′T (λ1),

where E[W ] is the average waiting time of each packet in the system (which is given in
(46)), LT (λ1) is the Laplace transform of the PDF of the system time (which is given
in (47)), and L′T (λ1) and L′′T (λ1) are the first and second derivative of LT (·) at λ1. The
calculations to derive the approximate expressions are presented in Sections 2.2 and 2.4.

For the completeness of presentation, we also address the average peak AoI of a
multi-source M/G/1 FCFS queueing model which was earlier derived in [42].

2.2 AoI in a multi-source M/G/1 queueing model

In this section, the main steps required to derive the average AoI in (12) for the
considered multi-source M/G/1 queueing model are presented and the main difficulties
regarding the average AoI calculation are pointed out. Then, in Section 2.3, the exact
expression for the M/M/1 case is derived and in Section 2.4, the approximate expressions
for the M/G/1 case with a general service time distribution are derived.

The first term in (13) is easy to compute. Namely, since the interarrival time of
source 1 follows the exponential distribution with parameter λ1, we have E[X2

1,i] = 2/λ 2
1 .

The second term in (13) can be written as

E[X1,i(W1,i +S1,i)]
(a)
= E[X1,iW1,i]+E[X1,i]E[S1,i] (14)

= E[X1,iW1,i]+
1

λ1µ
,

where equality (a) follows because the interarrival time and service time of the packet
1, i are independent. Since the random variables X1,i and W1,i are dependent, the most
challenging part in calculating (13) is E[X1,iW1,i] which is derived in the following.

In order to calculate E[X1,iW1,i], the approach of [28] is followed and the waiting
time W1,i is characterized by means of two events EB

1,i and EL
1,i as

EB
1,i =

{
T1,i−1 ≥ X1,i

}
, (15)

EL
1,i =

{
T1,i−1 < X1,i

}
.

Here, brief event EB
1,i is the event where the interarrival time of packet 1, i is brief, i.e.,

the interarrival time of packet 1, i is shorter than the system time of packet 1, i−1. On
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the contrary, long event EL
1,i refers to the complementary event where the interarrival

time of packet 1, i is long, i.e., the interarrival time of packet 1, i is longer than the
system time of packet 1, i−1.

Next, the waiting time for packet 1, i is characterized. Under the event EB
1,i, the

waiting time of packet 1, i (W1,i) contains two terms: 1) the residual system time to
complete serving packet 1, i−1, and 2) the sum of service times of the source 2 packets
that arrived during X1,i and must be served before packet 1, i according to the FCFS
policy (see Fig. 5(a)). Under the event EL

1,i, the waiting time of packet 1, i contains two
terms: 1) the possible residual service time of a source 2 packet that is under service at
the arrival instant of packet 1, i, and 2) the sum of service times of source 2 packets in
the queue that must be served before packet 1, i according to the FCFS policy (see Fig.
5(b)). For the event EB

1,i, let

RB
1,i = T1,i−1−X1,i (16)

represent the residual system time to complete serving packet 1, i−1 and let

SB
1,i = ∑

i′∈M B
2,i

S2,i′ (17)

represent the sum of service times of source 2 packets that arrived during X1,i and
must be served before packet 1, i, where M B

2,i is the set of indices of queued packets of
source 2 that must be served before packet 1, i under the event EB

1,i, where |M B
2,i|= MB

2,i.
Similarly for the event EL

1,i, let

SL
1,i = ∑

i′∈M L
2,i

S2,i′ (18)

represent the sum of service times of source 2 packets that must be served before packet
1, i where M L

2,i is the set of indices of packets of source 2 that are in the queue (but
not under service) at the arrival instant of packet 1, i conditioned on the event EL

1,i and
thus, must be served before packet 1, i, where |M L

2,i|= ML
2,i. Thus, by means of the two

events in (15) and definitions (16), (17), and (18), the waiting time for packet 1, i can be
expressed as

W1,i =

SB
1,i +RB

1,i, EB
1,i

SL
1,i +RL

2,i, EL
1,i,

(19)
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Fig. 5. Illustration of the key quantities in characterizing the waiting time in (19) under (a)
brief event EB

1,i and (b) long event EL
1,i (Reprinted by permission [13] c© 2020, IEEE).

where RL
2,i is a random variable that represents the possible residual service time of the

packet of source 2 that is under service at the arrival instant of packet 1, i conditioned on
the event EL

1,i.
Based on (19), E[X1,iW1,i] in (14) can be expressed as

E[X1,iW1,i] =

(
E[RB

1,iX1,i|EB
1,i]+E[SB

1,iX1,i|EB
1,i]

)
Pr(EB

1,i) (20)

+E[(SL
1,i +RL

2,i)X1,i|EL
1,i]Pr(EL

1,i),

where Pr(EB
1,i) and Pr(EL

1,i) denote the probabilities of the events EB
1,i and EL

1,i, respec-
tively.

Next, the expressions for Pr(EB
1,i) and Pr(EL

1,i) in (20) are derived. Then, by referring
to E[RB

1,iX1,i|EB
1,i], E[SB

1,iX1,i|EB
1,i], and E[(SL

1,i +RL
2,i)X1,i|EL

1,i] in (20) as the first, second,
and third conditional expectation terms of (20), the elaborate derivations of the first and
second terms are presented in Sections 2.2.1 and 2.2.2, respectively, and in Section
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2.2.3, the difficulties involved in computing the third term for a generic service time
distribution are pointed out.

The following lemma gives the expressions for Pr(EB
1,i) and Pr(EL

1,i) in (20).

Lemma 1. The probabilities of the events EB
1,i and EL

1,i in (15) are calculated as follows:

Pr(EB
1,i) =

LS(λ1)(λ +(ρ−1)λ1)−λ2

λLS(λ1)−λ2
, (21)

Pr(EL
1,i) =

(1−ρ)λ1LS(λ1)

λLS(λ1)−λ2
, (22)

where LS(λ1) is the Laplace transform of the PDF of the service time S at λ1; note that
the service times of all packets are stochastically identical as S1,i =

st S2,i =
st S, ∀i.

Proof. See Appendix 1.1.1.

2.2.1 The first conditional expectation in (20)

Let the focus now be on the first conditional expectation term E[RB
1,iX1,i|EB

1,i] in (20).
According to (16), this term is expressed as follows:

E[RB
1,iX1,i|EB

1,i] = E[T1,i−1X1,i|EB
1,i]−E[X2

1,i|EB
1,i] (23)

=
∫

∞

0

∫
∞

0
xt fX1,i,T1,i−1|EB

1,i
(x, t)dxdt−

∫
∞

0
x2 fX1,i|EB

1,i
(x)dx,

where fX1,i|EB
1,i
(x) is the conditional PDF of the interarrival time X1,i given the event

EB
1,i and fX1,i,T1,i−1|EB

1,i
(x, t) is the conditional joint PDF of the interarrival time X1,i and

system time T1,i−1 given the event EB
1,i. They are given by the following lemma and

corollary.

Lemma 2. The conditional PDF fX1,i,T1,i−1|EB
1,i
(x, t) is given by

fX1,i,T1,i−1|EB
1,i
(x, t) =


0 x > t
λ1e−λ1x fT1,i−1(t)

Pr(EB
1,i)

x≤ t.
(24)

Proof. See Appendix 1.1.2.
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The conditional PDF fX1,i|EB
1,i
(x) is determined by the following corollary, which is

an immediate consequence of Lemma 2.

Corollary 1. The conditional PDF fX1,i|EB
1,i
(x) is given by

fX1,i|EB
1,i
(x) =

λ1e−λ1x(1−FT1,i−1(x))

Pr(EB
1,i)

, (25)

where FT1,i−1(x) is the cumulative distribution function (CDF) of T1,i−1.

Now, having introduced the conditional PDFs in Lemma 2 and Corollary 1, the
conditional expectation E[RB

1,iX1,i|EB
1,i] in (23) can be computed. Using Lemma 2, the

first term in (23) is calculated as

E[T1,i−1X1,i|EB
1,i] =

∫
∞

0

∫
∞

0
xt fX1,i,T1,i−1|EB

1,i
(x, t)dxdt (26)

=
1

Pr(EB
1,i)

∫
∞

0

∫ t

0
txλ1e−λ1x fT1,i−1(t)dxdt

=
1

Pr(EB
1,i)

∫
∞

0

(
− t2e−λ1t − t

λ1
e−λ1t +

t
λ1

)
fT1,i−1(t)dt

=
1

Pr(EB
1,i)

(
−E[T 2e−λ1T ]− E[Te−λ1T ]

λ1
+

E[T ]
λ1

)
(a)
=

1
Pr(EB

1,i)

(
−L′′T (λ1)+

L′T (λ1)

λ1
+

E[W ]+1/µ

λ1

)
,

where in equality (a) the first and second derivative of the Laplace transform of the PDF
of the system time, L′T and L′′T at λ1, respectively, were obtained using the feature of the
Laplace transform that for any function f (y),y≥ 0, we have [90, Sect. 13.5]

Lyn f (y)(a) = (−1)n dn(L f (y)(a))
dan , (27)

and consequently,

E[T ne−aT ] = (−1)n dn(LT (a))
dan . (28)
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Using Corollary 1, the second term E[X2
1,i|EB

1,i] in (23) is calculated as

E[X2
1,i|EB

1,i] =
∫

∞

0
x2 fX1,i|EB

1,i
(x)dx (29)

=
1

Pr(EB
1,i)

∫
∞

0
x2

λ1e−λ1x(1−FT1,i−1(x)
)
dx

=
1

Pr(EB
1,i)

(∫
∞

0
x2

λ1e−λ1xdx−λ1

∫
∞

0
e−λ1x(x2FT1,i−1(x)

)
dx
)

=
1

Pr(EB
1,i)

(
2

λ 2
1
−λ1Lx2FT1 (x)

(λ1)

)
.

The Laplace transform Lx2FT1 (x)
(λ1) in (29) is given by the following lemma.

Lemma 3. Lx2FT1 (x)
(λ1) is given as follows:

Lx2FT1 (x)
(a)
∣∣∣∣
a=λ1

=
λ1L′′T (λ1)−2L′T (λ1)

λ 2
1

+
2LT (λ1)

λ 3
1

. (30)

Proof. See Appendix 1.1.3.

Thus, applying Lemma 3, the conditional expectation in (29) is given as

E[X2
1,i|EB

1,i] =
1

Pr(EB
1,i)

(
2

λ 2
1
−L′′T (λ1)+

2L′T (λ1)

λ1
− 2LT (λ1)

λ 2
1

)
. (31)

Finally, substituting (26) and (31) in (23), the first conditional expectation in (20) is
given by

E[RB
1,iX1,i|EB

1,i] =
1

Pr(EB
1,i)

(
E[W ]+1/µ

λ1
− L′T (λ1)

λ1
+

2LT (λ1)

λ 2
1
− 2

λ 2
1

)
. (32)

2.2.2 The second conditional expectation in (20)

Next, the second term E[SB
1,iX1,i|EB

1,i] in (20) is derived. First, let us elaborate the quantity
MB

2,i which is an integral part of calculating (20). Recall that MB
2,i is defined as the

number of queued packets of source 2 that must be served before packet 1, i according
to the FCFS policy under the event EB

1,i = {T1,i−1 ≥ X1,i}. Thus, MB
2,i is equal to the

number of arrived (and thus, queued) packets of source 2 during the (brief) interarrival
time X1,i. Consequently, we have a Markov chain T1,i−1↔ X1,i↔MB

2,i conditioned on
the event EB

1,i, i.e., MB
2,i is independent of T1,i−1 given X1,i under the event EB

1,i.
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Accordingly, the conditional expectation E[SB
1,iX1,i|EB

1,i] in (20) can be expressed as

E[SB
1,iX1,i|EB

1,i] =
∫

∞

0
xE
[

∑
i′∈M B

2,i

S2,i′ |EB
1,i,X1,i = x

]
fX1,i|EB

1,i
(x)dx (33)

(a)
=

1
µ

∫
∞

0
xE
[

MB
2,i|X1,i = x

]
fX1,i|EB

1,i
(x)dx

(b)
=

ρ2

Pr(EB
1,i)

∫
∞

0
x2

λ1e−λ1x(1−FT1,i−1(x))dx

=
ρ2

Pr(EB
1,i)

(∫
∞

0
x2

λ1e−λ1xdx−
∫

∞

0
x2

λ1e−λ1tFT1,i−1(x)dx
)

(c)
=

ρ2

Pr(EB
1,i)

(
2

λ 2
1
−L′′T (λ1)+

2L′T (λ1)

λ1
− 2LT (λ1)

λ 2
1

)
,

where equality (a) follows because (i) the service time S2,i′ is independent of all other ran-
dom variables in the system and (ii) by the Markov chain property T1,i−1↔ X1,i↔MB

2,i
conditioned on EB

1,i, MB
2,i is independent of T1,i−1 given X1,i = x under the event EB

1,i;
equality (b) comes from Corollary 1 and the fact that E[MB

2,i|X1,i = x] = λ2x; equality
(c) comes from Lemma 3.

2.2.3 The third conditional expectation in (20)

The third term E[(SL
1,i+RL

2,i)X1,i|EL
1,i] in (20) can be calculated as

E[(SL
1,i+RL

2,i)X1,i|EL
1,i]=∫

∞

0

∫
∞

0
xE

 ∑
i′∈M L

2,i

S2,i′ |X1,i=x,T1,i−1= t,EL
1,i

fX1,i,T1,i−1|EL
1,i
(x, t)dxdt

+
∫

∞

0

∫
∞

0
xE
[
RL

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]

fX1,i,T1,i−1|EL
1,i
(x, t)dxdt, (34)
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where the first term on the right hand side can be calculated as

∫
∞

0

∫
∞

0
xE

 ∑
i′∈M L

2,i

S2,i′ |X1,i=x,T1,i−1= t,EL
1,i

fX1,i,T1,i−1|EL
1,i
(x, t)dxdt

(a)
=

1
µ

∫
∞

0

∫
∞

0
xE
[
ML

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]

fX1,i,T1,i−1|EL
1,i
(x, t)dxdt (35)

=
1
µ

∫
∞

0

∫
∞

0
x

∞

∑
m=0

mPr[ML
2,i = m|X1,i = x,T1,i−1 = t,EL

1,i] fX1,i,T1,i−1|EL
1,i
(x, t)dxdt,

where equality (a) follows because (i) the service time S2,i′ is independent of all other
random variables in the system and (ii) the expectation of a sum of random number U
independent and identically distributed random variables Yu,u = 1, . . . ,U , is equal to the
expectation of the random number E[U ] times the expectation of a random variable
E[Yu] [91, Sect. 11.2], i.e.,

E

[
U

∑
u=1

Yu

]
= E[U ]E[Yu].

Remark 1. The second term on the right hand side of (34) and the final expression in
(35) reveal two critical issues in deriving the third conditional expectation term of (20).
The second term on the right hand side of (34) contains the possible residual service
time of the packet of source 2 that is under service at the arrival instant of packet 1, i,
RL

2,i, which cannot be further simplified. In the final expression of (35), we need to
calculate the time-dependent probability of the number of packets in an M/G/1 queue
with source 2 packet arrivals, i.e., Pr[ML

2,i = m|X1,i = x,T1,i−1 = t,EL
1,i]. Computing this

time-dependent probability in an M/G/1 queueing model is complicated and needs
the transient analysis of an M/G/1 queueing model. While characterizations of the
transient behavior of an M/G/1 queue are investigated in some works, such as [92], such
a time-dependent probability has not been derived before in closed form so that it could
be used in deriving the conditional expectation in (35).

Fortunately, these difficulties can be overcome when the service time is exponential,
i.e., in an M/M/1 queueing model. Thus, the next two sections are organized as follows.
An exact expression of the average AoI in a multi-source M/M/1 queueing model is
derived in Section 2.3. In Section 2.4, three approximations for (34) are proposed and
three approximate expressions for the average AoI in a multi-source M/G/1 queueing
model are derived.
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2.3 Exact expression for the average AoI in a multi-source M/M/1
queueing model

In this section, the exact expression of the average AoI in (13) for a multi-source M/M/1
queueing model that was stated in Theorem 1 in Section 2.1.2 is derived. Recall that in
Section 2.2, the general expressions (for an M/G/1 case) for the key terms needed to
describe the average AoI were derived, i.e., the three conditional expectation terms
of (20), which are given in (32), (33), and (34), respectively. Next, these three terms
are specified to the case with exponentially distributed service time. First, an exact
expression for the most challenging term, i.e., the third term (34) is derived, followed by
the calculation of (32) and (33).

Focus now on (34). Due to the memoryless property of the exponentially distributed
service time, the possible residual service time of the packet of source 2 that is under
service at the arrival instant of packet 1, i for event EL

1,i is also exponentially distributed;
thus, the waiting time is the sum of M̂L

2,i exponentially distributed random variables,
where M̂L

2,i is the total number of source 2 packets in the system (either in the queue or
under service) at the arrival instant of packet 1, i conditioned on the event EL

1,i [93, p. 168].
Therefore, the waiting time in (34) can be expressed as

W1,i = SL
1,i +RL

2,i = ∑
i′∈M̂ L

2,i

S2,i′ , (36)

where M̂ L
2,i is the set of indices of packets of source 2 that are in the system at the arrival

instant of packet 1, i for event EL
1,i, with |M̂ L

2,i|= M̂L
2,i.

By (36), E[W1,iX1,i|EL
1,i] (cf. (34)) can be calculated as

E[W1,iX1,i|EL
1,i] = (37)∫

∞

0

∫
∞

0
xE

 ∑
i′∈M̂ L

2,i

S2,i′ |X1,i = x,T1,i−1 = t,EL
1,i

 fX1,iT1,i−1|EL
1,i
(x, t)dxdt

=
1
µ

∫
∞

0

∫
∞

0
xE
[
M̂L

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]

fX1,iT1,i−1|EL
1,i
(x, t)dxdt (38)

=
1
µ

∫
∞

0

∫
∞

0
x

∞

∑
m=0

mPr[M̂L
2,i = m|X1,i = x,T1,i−1 = t,EL

1,i] fX1,iT1,i−1|EL
1,i
(x, t)dxdt.

Next, Pr[M̂L
2,i = m|X1,i = x,T1,i−1 = t,EL

1,i] in (37) is calculated by introducing an
auxiliary random variable JL

2,i that represents the number of source 2 packets in the
system at the departure instant of packet 1, i−1 for event EL

1,i (see Fig. 5(b)). Using the
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law of total expectation, Pr[M̂L
2,i = m|X1,i = x,T1,i−1 = t,EL

1,i] in (37) is written as

Pr[M̂L
2,i = m|X1,i = x,T1,i−1 = t,EL

1,i] = (39)
∞

∑
j=0

Pr[M̂L
2,i = m|JL

2,i = j,X1,i = x,T1,i−1 = t,EL
1,i]Pr[JL

2,i = j|X1,i = x,T1,i−1 = t,EL
1,i],

where

Pr[JL
2,i = j|X1,i = x,T1,i−1 = t,EL

1,i]
(a)
= Pr[JL

2,i = j|T1,i−1 = t,EL
1,i]

(b)
= e−λ2t (λ2t) j

j!
, (40)

where equality (a) follows because JL
2,i is conditionally independent of X1,i given T1,i−1

and EL
1,i; equality (b) follows because (i) under the long event EL

1,i, all JL
2,i source 2

packets that are in the system at the departure instant of packet 1, i−1 must have arrived
during the system time T1,i−1 (see Fig. 5(b)), and (ii) the probability of having j Poisson

arrivals of rate λ2 during the time interval T1,i−1 = t is e−λ2t (λ2t) j

j! [93, Eq. (2.119)].
Focus now on the term Pr[M̂L

2,i = m|JL
2,i = j,X1,i = x,T1,i−1 = t,EL

1,i] in (39). Note
that during the time interval between the departure of packet 1, i−1 and the arrival of
packet 1, i (i.e., (t ′1,i−1, t1,i) in Fig. 2), the queue receives packets only from source 2
and therefore, the system behaves as a single-source M/M/1 queue. Thus, Pr[M̂L

2,i =

m|JL
2,i = j,X1,i = x,T1,i−1 = t,EL

1,i] in (39) represents the probability that a single-source
M/M/1 queueing system with arrival rate λ2 and which initially holds j packets (either
in the queue or under service) ends up holding m packets after τ = x− t seconds. This
probability is compactly denoted by P̄m| j(τ) and it is given by the transient analysis of
an M/M/1 queueing system as [94, Eq. (6)], [93, Eq. (2.163)]

P̄m| j(τ) = e−(λ2+µ)τ
[
ρ
(m−1)/2
2 Im−1(2

√
µλ2τ)+ρ

(m− j−1)/2
2 Im+ j+1(2

√
µλ2τ)

]
(41)

+ρ
m
2 (1−ρ2)

(
1−Qm+ j+2(

√
2λ2τ,

√
2µτ)

)
.

where Ik(·) represents the modified Bessel function of the first kind of order k, and
Qk(a,b) is the generalized Q-function.
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Substituting (39), (40), and (41) into (37), we have

E[W1,iX1,i|EL
1,i]=

1
µ

∫
∞

0

∫
∞

0
x

∞

∑
m=0

∞

∑
j=0

mP̄m| j(x− t)e−λ2t (λ2t) j

j!
fX1,iT1,i−1|EL

1,i
(x, t)dxdt

(a)
=

λ1(1−ρ)

Pr(EL
1,i)

∫
∞

0

∫
∞

0
(t+τ)e−µ(t+ρ1τ)

(
∞

∑
m=0

∞

∑
j=0

mP̄m| j(τ)
(λ2t) j

j!

)
dτdt

,
λ1(1−ρ)

Pr(EL
1,i)

Ψ(µ,ρ1,λ2), (42)

where (a) follows from the substitution τ = x− t and Lemma 4 (below) which derives
the conditional PDF fX1,i,T1,i−1|EL

1,i
(x, t). Note that the double integral in Ψ(µ,ρ1,λ2)

needs to be in general numerically calculated.

Lemma 4. The conditional PDF fX1,i,T1,i−1|EL
1,i
(x, t) is given by

fX1,i,T1,i−1|EL
1,i
(x, t) =


0 x < t
λ1e−λ1x fT1,i−1(t)

Pr(EL
1,i)

x≥ t.
(43)

Proof. The proof of Lemma 4 follows from the similar steps as used for Lemma 2.

By substituting the probabilities Pr(EB
1,i) and Pr(EL

1,i) given by Lemma 1 and the
three derived conditional expectation terms (32), (33), and (42) into (20), E[X1,iW1,i]

can be expressed as

E[X1,iW1,i] =
E[W ]

λ1
+λ1(1−ρ)Ψ(µ,ρ1,λ2)+

2(ρ2−1)
λ 2

1
+

1
λ1µ

+
2(1−ρ2)

λ 2
1

LT (λ1)+
2ρ2−1

λ1
L′T (λ1)−ρ2L′′T (λ1). (44)

Finally, by substituting (44) and (14) into (13), the average AoI of source 1 for a
multi-source M/M/1 queueing model is expressed as:

∆1 =E[W ]+λ
2
1 (1−ρ)Ψ(µ,ρ1,λ2)+

2
µ

(
λ2

λ1
+1
)
−1/λ1 +

2(1−ρ2)

λ1
LT (λ1) (45)

+(2ρ2−1)L′T (λ1)−λ1ρ2L′′T (λ1),
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where the average waiting time of each packet in the system, E[W ], is given as [95,
Sect. 3]

E[W ] =
E[S2]λ

2(1−ρ)
, (46)

where E[S2] = 2/µ2 is the second moment of the service time, LT (λ1) is a function of
the Laplace transform of the PDF of the service time given by [96, Sect. 5.1.2]

LT (λ1) =

(
1−ρ

)
λ1LS(λ1)

λ1−λ
(
1−LS(λ1)

) , (47)

and L′T (λ1) and L′′T (λ1) are the first and second derivatives of LT (·) at λ1, respectively,
as

L′T (λ1) =
d(LT (a))

da

∣∣∣∣
a=λ1

= (1−ρ)
λL2

S(λ1)+
(
λ 2

1 −λ1λ
)
L′S(λ1)−λLS(λ1)(

λ1−λ
(
1−LS(λ1)

))2 , (48)

L′′T (λ1) =
d2(LT (a))

da2

∣∣∣∣
a=λ1

=

(1−ρ)

(
λL′′S(λ1)

(
λ 2

1 −λ1λ
)
+2L′S(λ1)

(
λ1−λ +λLS(λ1)

)(
λ1−λ

(
1−LS(λ1)

))2 −

2(λL2
S(λ1)+

(
λ 2

1 −λ1λ
)
L′S(λ1)−λLS(λ1))(1+λL′S(λ1))

(λ1−λ (1−LS(λ1)))
3

)
,

where L′S(λ1) and L′′S(λ1) for the exponential service time are computed according to
(27) as

LS(λ1) =
∫

∞

0
µe−(µ+λ1)sds =

µ

µ +λ1
, (49)

L′S(λ1) =−
∫

∞

0
sµe−(µ+λ1)sds =− µ

(µ +λ1)2 ,

L′′S(λ1) =
∫

∞

0
s2

µe−(µ+λ1)sds =
2µ

(µ +λ1)3 .

Finally, by substituting E[W ], LT (λ1), L′T (λ1), and L′′T (λ1) into (45) we get the result in
Theorem 1 in Section 2.1.2, i.e., the average AoI of source 1 for a multi-source M/M/1
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queueing model is given as

∆1=λ
2
1 (1−ρ)Ψ(µ,ρ1,λ2)+

1
µ

(
1
ρ1

+
ρ

1−ρ
+
(2ρ2−1)(ρ−1)

(1−ρ2)2 +
2ρ1ρ2(ρ−1)
(1−ρ2)3

)
.

(50)

Remark 2. It is worth noting that (50) does not coincide with the prior result [9,
Theorem 1] and [28, Eq. (16)]. The dissimilarity is explained in the following. The
authors of [9, 28] considered a similar two-source FCFS M/M/1 queueing model, with
the aim of deriving a closed-form expression for the average AoI of source 1 (∆1). Let
the focus be on [28, Eq. (33)] where the authors compute a conditional expectation
equivalent to our E[W1,iX1,i|EL

1,i] given by (42), which by (36) can be expressed as

E[W1,iX1,i|EL
1,i] = E

[
∑

i′∈M̂ L
2,i

S2,i′X1,i|EL
1,i

]
. (51)

The authors of [28] tacitly assumed conditional independency between ∑i′∈M̂ L
2,i

S2,i′ and

X1,i under the event EL
1,i = {T1,i−1 < X1,i}, and calculated (51) as a multiplication of two

expectations as

E[W1,iX1,i|EL
1,i] = E

[
∑

i′∈M̂ L
2,i

S2,i′ |T1,i−1 < X1,i

]
E
[
X1,i|T1,i−1 < X1,i

]
. (52)

The critical point is that even if X1,i is independent of T1,i−1, they become dependent
when conditioned on the event EL

1,i = {T1,i−1 < X1,i}, as in (51). This conditional
dependency is violated by the separation of the expectations in (52) because the quantity
M̂L

2,i in general depends on both T1,i−1 and X1,i, and thus, the multiplicative quantities
∑i′∈M̂ L

2,i
S2,i′ and X1,i are dependent under the event EL

1,i. Note that this conditional

dependency in calculating E[W1,iX1,i|EL
1,i] is incorporated by using the conditional joint

PDF fX1,i,T1,i−1|EL
1,i
(x, t).

2.4 Approximate expressions for the average AoI in a multi-source
M/G/1 queueing model

In this section, the three approximate expressions of the average AoI in (13) for a
multi-source M/G/1 queueing model that were presented in Section 2.1.2 are derived.
Recall that the exact expressions for the first and second conditional expectation terms of
(20) are given by (32) and (33), respectively. From (34) and (35), the third conditional
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expectation is given as

E[(SL
1,i+RL

2,i)X1,i|EL
1,i] =

1
µ

∫
∞

0

∫
∞

0
xE
[
ML

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]

fX1,i,T1,i−1|EL
1,i
(x, t)dxdt

+
∫

∞

0

∫
∞

0
xE
[
RL

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]

fX1,i,T1,i−1|EL
1,i
(x, t)dxdt. (53)

Next, three approximate calculations for the third conditional expectation term of
(20), given by (53), are proposed differing in the way that the following two terms are
approximated

E
[
ML

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]
,

E
[
RL

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]
.

Approximation 1: First, the possible residual service time of source 2 packet that is
under service at the arrival instant of packet 1, i is neglected. Second, it is assumed that
the average number of packets of source 2 that must be served before packet 1, i is equal
to the average number of packets of source 2 that are queued during the system time of
packet 1, i−1 (T1,i−1). Thus, it is assumed

E
[
ML

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]
= E

[
JL

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]
,

where, as defined previously, the random variable JL
2,i represents the number of source 2

packets in the system at the departure instant of packet 1, i−1 for the long event EL
1,i.

With the simplifications above, (53) can be approximated as

E[(SL
1,i+RL

2,i)X1,i|EL
1,i]

≈ 1
µ

∫
∞

0

∫
∞

0
xE
[
JL

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]

fX1,i,T1,i−1|EL
1,i
(x, t)dxdt

(a)
= ρ2

∫
∞

0

∫
∞

0
tx fX1,i,T1,i−1|EL

1,i
(x, t)dxdt (54)

(b)
=

ρ2

Pr(EL
1,i)

∫
∞

0

∫
∞

t
xtλ1e−λ1x fT1,i−1(t)dxdt

=
ρ2

Pr(EL
1,i)

∫
∞

0

(
t2e−λ1t fT1,i−1(t)+

te−λ1t

λ1
fT1,i−1(t)

)
dt

(c)
=

ρ2

Pr(EL
1,i)

(
L′′T (λ1)−

L′T (λ1)

λ1

)
,
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where (a) comes from the fact that E
[
JL

2,i|X1,i = x,T1,i−1 = t,EL
1,i

]
= λ2t, (b) follows

from Lemma 4, and (c) follows from (28).
By substituting the probabilities Pr(EB

1,i) and Pr(EL
1,i) given by Lemma 1 and the three

derived conditional expectation terms (32), (33), and (54) into (20), an approximation
for E[X1,iW1,i] can be expressed as

E[X1,iW1,i]≈
1
λ1

(
E[W ]+

1
µ
+

2(ρ2−1)
λ1

+
2(1−ρ2)

λ1
LT (λ1)+(ρ2−1)L′T (λ1)

)
.

(55)

By substituting (55) and (14) into (13), an approximation for the average AoI of source
1 in a multi-source M/G/1 queueing model is given as

∆
app1
1 ≈ E[W ]+

2
µ
+

2ρ2−1
λ1

+
2(1−ρ2)

λ1
LT (λ1)+(ρ2−1)L′T (λ1), (56)

where the quantities E[W ], LT (λ1), and L′T (λ1) are calculated by (46)–(49) for a specific
service time distribution.

Approximation 2: First, it is assumed that the average residual service time of the
source 2 packet that is under service at the arrival instant of packet 1, i is equal to the
average service time of one packet in the system. Thus, it is assumed that

E
[
RL

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]
=

1
µ
.

Second, for the term E
[
ML

2,i|X1,i = x,T1,i−1 = t,EL
1,i

]
, the same approximation as used

for Approximation 1 is considered, i.e.,

E
[
ML

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]
= E

[
JL

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]
.

Based on these simplifications, (53) can be approximated as

E[(SL
1,i+RL

2,i)X1,i|EL
1,i]≈

1
µ

∫
∞

0

∫
∞

0
xE
[
JL

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]

fX1,i,T1,i−1|EL
1,i
(x, t)dxdt

+
1
µ

∫
∞

0

∫
∞

0
x fX1,i,T1,i−1|EL

1,i
(x, t)dxdt (57)

=ρ2

∫
∞

0

∫
∞

0
tx fX1,i,T1,i−1|EL

1,i
(x, t)dxdt +

1
µ

∫
∞

0

∫
∞

0
x fX1,i,T1,i−1|EL

1,i
(x, t)dxdt

=
1

Pr(EL
1,i)

(
ρ2L′′T (λ1)−

(
ρ2

λ1
+

1
µ

)
L′T (λ1)+

LT (λ1)

µλ1

)
.
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Using (57) and following the steps used to derive (55), an approximation for E[X1,iW1,i]

under Approximation 2 is given as

E[X1,iW1,i]≈
1
λ1

(
E[W ]+

1
µ
+

2(ρ2−1)
λ1

+

(
1
µ
+

2(1−ρ2)

λ1

)
LT (λ1) (58)

+

(
ρ2−1− λ1

µ

)
L′T (λ1)

)
.

By substituting (58) and (14) into (13), an approximation for the average AoI of source
1 in a multi-source M/G/1 queueing model is given as

∆
app2
1 ≈ E[W ]+

2
µ
+

2ρ2−1
λ1

+

(
1
µ
+

2(1−ρ2)

λ1

)
LT (λ1)+

(
ρ2−1−λ1

µ

)
L′T (λ1). (59)

Approximation 3: It is assumed that the queue is in the stationary state. In other
words, first, it is assumed that the average residual service time of the source 2 packet
that is under service at the arrival instant of packet 1, i is equal to the average residual
service time of a stationary M/G/1 queue that has only source 2 packet arrivals. Thus, it
is assumed that [95, Eq. (3.52)]

E
[
RL

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]
=

λ2E[S2]

2
.

Second, it is assumed that the average number of source 2 packets that must be served
before packet 1, i is equal to the average number of packets in a stationary M/G/1 queue
with only source 2 packet arrivals. Thus, it is assumed [95, Eq. (3.43)]

E
[
ML

2,i|X1,i = x,T1,i−1 = t,EL
1,i
]
=

λ 2
2 E[S2]

2(1−ρ2)
.

Thus, the third conditional expectation in (53) is approximated as follows:

E[(SL
1,i+RL

2,i)X1,i|EL
1,i]≈

λ 2
2 E[S2]

2µ(1−ρ2)

∫
∞

0

∫
∞

0
x fX1,i,T1,i−1|EL

1,i
(x, t)dxdt

+
λ2E[S2]

2

∫
∞

0

∫
∞

0
x fX1,i,T1,i−1|EL

1,i
(x, t)dxdt (60)

=
λ2E[S2]

2(1−ρ2)Pr(EL
1,i)

(
LT (λ1)

λ1
−L′T (λ1)

)
.
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Using (60) and following the steps used to derive (55), an approximation for E[X1,iW1,i]

under Approximation 3 is given as

E[X1,iW1,i]≈
1
λ1

(
E[W ]+

1
µ
+

2(ρ2−1)
λ1

+

(
λ2E[S2]

2(1−ρ2)
+

2(1−ρ2)

λ1

)
LT (λ1) (61)

+

(
2ρ2−1− λ1λ2E[S2]

2(1−ρ2)

)
L′T (λ1)−λ1ρ2L′′T (λ1)

)
.

By substituting (61) and (14) into (13), an approximation for the average AoI of source
1 in a multi-source M/G/1 queueing model is given as

∆
app3
1 ≈ E[W ]+

2
µ
+

2ρ2−1
λ1

+

(
λ2E[S2]

2(1−ρ2)
+

2(1−ρ2)

λ1

)
LT (λ1) (62)

+

(
2ρ2−1− λ1λ2E[S2]

2(1−ρ2)

)
L′T (λ1)−λ1ρ2L′′T (λ1).

2.4.1 Single-source M/G/1 queueing model

For λ2→ 0, we have a single-source M/G/1 queueing model. In this case, it can be
shown that (56) and (62) provide the following expression for the average AoI:

∆ = E[W ]+
2
µ
+

2LT (λ1)

λ1
−L′T (λ1)−

1
λ1

. (63)

Using (46), (47), and (48), the quantities E[W ], LT (λ ), and L′T (λ ) are calculated as

E[W ] =
E[S2]λ

2(1−ρ)
, (64)

LT (λ ) = 1−ρ,

L′T (λ ) =
(1−ρ)(LS(λ )−1)

λLS(λ )
.

By substituting E[W ], LT (λ ), and L′T (λ ) into (63), we have

∆ =
1
µ
+

λE[S2]

2(1−ρ)
+

1−ρ

λLS(λ )
, (65)

which is an exact expression for the average AoI of the single-source M/G/1 queueing
case derived in [38, Eq. (22)].
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2.5 Average peak AoI expression for a multi-source M/G/1 queueing
model

For completeness of presentation, the average peak AoI of a multi-source M/G/1 FCFS
queueing model which was earlier derived in [42] is addressed.

Following the steps presented in Section 1.4, the average peak AoI of source 1 is
given by

A1 = E[X ]+E[S]+E[W ]. (66)

By substituting the average waiting time presented in (64) into the average peak AoI
expression in (66), the average peak AoI of source 1 is given by

A1 =
1
λ1

+
1
µ
+

E[S2]λ

2
(
1−ρ

) . (67)

2.6 Validation and simulation results

In this section, first, the average AoI in a multi-source M/M/1 queueing model is
evaluated and the exact expression in (50) is compared with the results in existing
work [28]. Then, the accuracy of the proposed three approximate expressions for the
M/G/1 queueing model in (56), (59), and (62) are evaluated under various service time
distributions.

2.6.1 Multi-source M/M/1 queueing model

Fig. 6 depicts the average AoI of source 1 (∆1) as a function of λ1 with λ2 = 0.6 and
µ = 1. As can be seen, the simulation result and the proposed solution in this chapter
overlap perfectly. The “integral2” command in MATLAB software is used to calculate
the double integral in (42). Due to the calculation errors in [28], the curve has a gap to
the correct average AoI value.

The effect of λ2 on the average AoI of source 1 is shown in Fig. 7. When λ2

increases, the increased overall load in the system results in longer waiting time for
packets of source 1 (and source 2), which increases ∆1. Note, however, that when λ2

increases, the optimal value of λ1 that minimizes ∆1 decreases. The figures illustrate
that generating the status update packets too frequently or too rarely does not minimize
the average AoI. Moreover, Fig. 7 depicts the gap between the exact and approximate
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Fig. 6. The average AoI of source 1 as a function of λ1 with λ2 = 0.6 and µ = 1 (Reprinted by
permission [13] c© 2020, IEEE).
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Fig. 7. The average AoI of source 1 as a function of λ1 for different values of λ2 with µ = 1
(Reprinted by permission [13] c© 2020, IEEE).

average AoI expressions. As can be seen, the proposed approximations are relatively
close to the exact one in the M/M/1 queueing model.

Fig. 8 depicts the average delay of source 1 as a function of λ1 for different values
of λ2 with µ = 1. The average delay is defined as the summation of the average waiting
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Fig. 8. The average delay of source 1 as a function of λ1 for different values of λ2 with µ = 1
(Reprinted by permission [13] c© 2020, IEEE).

time and average service time i.e., E[W ]+1/µ . As the number of arrivals of source 2
packets increases, the queue becomes more congested and the average delay of source 1
increases. By comparing Figs. 7 and 8, one can see that the delay does not fully capture
the information freshness, i.e., minimizing the average system delay does not necessarily
lead to good performance in terms of AoI and, reciprocally, minimizing the average AoI
does not minimize the average system delay.

2.6.2 Multi-source M/G/1 queueing model

In this section, the accuracy of the proposed three approximations using the following
service time distributions is examined: i) gamma distribution, ii) hyper-exponential
distribution, iii) log-normal distribution, and iv) Pareto distribution. In the following,
first, the distributions are defined and then the accuracy of the proposed approximations
is shown for each distribution.

Definition 1. (Gamma distribution). The PDF of a random variable S following a
gamma distribution is defined as

fS(s) = Γ(κ1,κ2) =
κ

κ1
2 sκ1−1 exp(−κ2s)

Γ(κ1)
, for s > 0, κ1 > 0, κ2 > 0,
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where Γ(κ1) is the gamma function at κ1. The mean and variance of this random variable

are E[S] = κ1/κ2 and Var[S] =
κ1

κ2
2

, respectively.

Definition 2. (Hyper-exponential distribution). The PDF of a random variable S
following a hyper-exponential distribution is defined as

fS(s) =
D

∑
k=1

fYk(s)pk,

where Yk is an exponentially distributed random variable with parameter γk, and pk is the
weight factor of random variable Yk such that ∑

D
k=1 pk = 1. The mean and variance of

this random variable are

E[S] =
D

∑
k=1

pk

γk
, Var[S] =

D

∑
k=1

2pk

γ2
k
−

(
D

∑
k=1

pk

γk

)2

.

Definition 3. (Log-normal distribution). The PDF of a random variable S following a
log-normal distribution is defined as

fS(s) =
1

sν1
√

2π
exp
(
− (ln(s)−ν2)

2

2ν2
1

)
, for s > 0, ν1 > 0, ν2 ∈ (−∞,+∞).

The mean and variance of this random variable are

E[S] = exp
(

ν2 +
ν2

1
2

)
, Var[S] = exp(2ν2 +ν

2
1 )
(
exp(ν2

1 )−1
)
.

Definition 4. (Pareto distribution). The PDF of a random variable S following a Pareto
distribution is defined as

fS(s) =
ω2ω1

ω2

sω2+1 , for s ∈ [ω1,∞], ω1 > 0, ω2 > 0.

The mean and variance of this random variable are

E[S] =

∞ ω2 ≤ 1
ω2ω1

ω2−1
ω2 > 1,

Var[S] =


∞ ω2 ≤ 2

ω2ω2
1

(ω2−1)2(ω2−2)
ω2 > 2.
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Fig. 9. The average AoI of source 1 as a function of λ1 for different values of λ2 with the
service time following a gamma distribution with parameters (a) κ1 = 2, κ2 = 2, and µ = 1, and
(b) κ1 = 1, κ2 = 3, and µ = 3 (Reprinted by permission [13] c© 2020, IEEE).
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Fig. 10. The average AoI of source 1 as a function of λ1 for different values of λ2 with the
service time following a Pareto distribution with parameters (a) ω1 = 0.5, ω2 = 4, and µ = 1.5,
and (b) ω1 = 0.25, ω2 = 3, and µ = 8/3 (Reprinted by permission [13] c© 2020, IEEE).
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Fig. 11. The average AoI of source 1 as a function of λ1 for different values of λ2 with the
service time following a log-normal distribution with parameters (a) ν2 = 1, ν1 = 1, and µ =
0.2231, and (b) ν2 = 0.1, ν1 = 0.2, and µ = 0.8869 (Reprinted by permission [13] c© 2020, IEEE).
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Fig. 12. The average AoI of source 1 as a function of λ1 for different values of λ2 with the
service time following a hyper-exponential distribution with parameters (a) D = 3, γ1 = 0.5,
γ2 = 1, γ3 = 1.5, pk = 1/D, ∀k ∈ {1,2,3}, and µ = 0.8182, and (b) D = 3, γ1 = 1.5, γ2 = 2.5, γ3 = 3.5,
pk = 1/D, ∀k ∈ {1,2,3}, and µ = 2.2183 (Reprinted by permission [13] c© 2020, IEEE).
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Figs. 9, 10, 11, and 12 depict the average AoI of source 1 as a function of λ1

for different service time distributions under both heavy (a larger value of λ2) and
light (a smaller value of λ2) traffic conditions of source 2. Fig. 9 illustrates the
average AoI of source 1 for different values of λ2 with the service time following
a gamma distribution with parameters κ1 = 2, κ2 = 2, and µ = 1 in Fig. 9(a) and
κ1 = 1, κ2 = 3, and µ = 3 in Fig. 9(b). Fig. 10 illustrates the average AoI of source
1 for different values of λ2 with the service time following a Pareto distribution with
parameters ω1 = 0.5, ω2 = 4, and µ = 1.5 in Fig. 10(a) and ω1 = 0.25, ω2 = 3, and
µ = 8/3 in Fig. 10(b). Fig. 11 illustrates the average AoI of source 1 for different
values of λ2 with the service time following a log-normal distribution with parameters
ν2 = 1, ν1 = 1, and µ = 0.2231 in Fig. 11(a) and ν2 = 0.1, ν1 = 0.2, and µ = 0.8869
in Fig. 11(b). Fig. 12 illustrates the average AoI of source 1 for different values of
λ2 with the service time following a hyper-exponential distribution with parameters
D = 3, γ1 = 0.5, γ2 = 1, γ3 = 1.5, pk = 1/D, ∀k ∈ {1,2,3}, and µ = 0.8182 in Fig.
12(a) and D = 3, γ1 = 1.5, γ2 = 2.5, γ3 = 3.5, pk = 1/D, ∀k ∈ {1,2,3}, and µ = 2.2183
in Fig. 12(b). As can be seen, Approximation 1 and Approximation 3 are relatively tight
for both the heavy and light traffic conditions under the gamma, Pareto, and log-normal
distributions. By comparing the curves of Approximation 1 and Approximation 2, we
can see the effect of approximating the residual service time of source 2 packet that is
under service at the arrival instant of packet 1, i by the average service time of one packet
in the system as compared to completely ignoring it. Finally, as expected, the average
AoI provided by Approximation 2 is always higher than that of Approximation 1.

2.7 Summary and discussion

In this chapter, a single-server multi-source FCFS queueing model with Poisson arrivals
was considered and the average AoI of each source was analyzed. An exact expression
for the average AoI for a multi-source M/M/1 queueing model was derived and three
approximate expressions for the average AoI for a multi-source M/G/1 queueing model
were also derived. The simulation results showed that the approximate expressions for
the average AoI are relatively accurate for different service time distributions.

The results showed that generating the status update packets too frequently or too
rarely does not minimize the average AoI. This is because generating the status update
packets too frequently causes congestion on the transmitter side which results in long
waiting time in the queue. On the other hand, generating the status update packets too
rarely causes infrequent updates on the sink side which results in stale information. In
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addition, the results pointed out the significance of the AoI as a metric in time-sensitive
control applications: minimizing merely the average delay does not minimize the AoI.

As discussed in Remark 1, deriving an exact expression for the average AoI in a
multi-source M/G/1 queueing model with FCFS serving policy is very complicated
and needs the transient analysis of an M/G/1 queueing model. While some accurate
approximations can be derived for the average AoI expression, deriving an exact
expression for the average AoI in a multi-source FCFS M/G/1 queueing model is an
open problem.

It is worth noting that the work in [51], which is the parallel work to the author’s
original article [13], derived an exact expression for the average AoI for a multi-source
M/M/1 FCFS queueing model by using the SHS technique.

In the next chapter, various packet management policies in multi-source status update
systems are studied. As it will be shown, by applying appropriate packet management
policies, the information freshness can be improved as compared to the FCFS serving
policy discussed in this chapter. However, in some situations there is no possibility of
applying packet management or all the generated packets are needed to be delivered to
the sink. Thus, it is necessary to study queueing models under the FCFS serving policy
as well.
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3 AoI in multi-source queueing models with
packet management

In Chapter 2, the average AoI in multi-source queueing models with an FCFS policy
was studied. In this chapter, the effectiveness of applying various packet management
policies on the AoI is studied. In this regard, a status update system is considered
in which two independent sources generate packets according to the Poisson process
and the packets are served according to an exponentially distributed service time.
Three different source-aware packet management policies are introduced and their AoI
performance is analyzed.

In all policies, when the system is empty, any arriving packet immediately enters the
server. However, the policies differ in how they handle the arriving packets when the
server is busy. In Policy 1, the waiting queue can contain at most two waiting packets
at the same time (in addition to the packet under service), one packet of source 1 and
one packet of source 2; when the server is busy and a new packet arrives, the possible
packet of the same source waiting in the queue (not being served) is replaced by the
fresh packet. In Policy 2, the system (i.e., the waiting queue and the server) can contain
at most two packets, one from each source; when the server is busy and a new packet
arrives, the possible packet of the same source either waiting in the queue or being
served is replaced by the fresh packet. Policy 3 is similar to Policy 2 but it does not
permit preemption in service, i.e., while a packet is under service all new arrivals from
the same source are blocked and cleared.

The average AoI expression under the proposed packet management policies is
derived and the MGF of the AoI under Policy 2 and Policy 3 is derived using the
SHS technique. By numerical experiments, the effectiveness of the proposed packet
management policies in terms of the sum average AoI and fairness between different
sources is investigated. The results show that the proposed policies provide better
fairness than that of the existing policies. In addition, Policy 2 outperforms the existing
policies in terms of the sum average AoI.

The remainder of this chapter is organized as follows. The system model and
summary of the main results are presented in Section 3.1. The average AoI analysis by
using the SHS technique is presented in Section 3.2. The MGF of the AoI analysis by
using the SHS technique is presented in Section 3.3. Numerical results are presented in
Section 3.4. Finally, concluding remarks are expressed in Section 3.5.
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3.1 System model and summary of the main results

Consider a status update system consisting of two independent sources1, one server, and
one sink, as depicted in Fig. 13. Each source observes a random process at random time
instants. The sink is interested in timely information about the status of these random
processes. Status updates are transmitted as packets, containing the measured value of
the monitored process and a time stamp representing the time when the sample was
generated. It is assumed that the packets of sources 1 and 2 are generated according
to the Poisson process with rates λ1 and λ2, respectively, and the packets are served
according to an exponentially distributed service time with mean 1/µ . Let ρ1 = λ1/µ

and ρ2 = λ2/µ be the load of sources 1 and 2, respectively. Since packets of the sources
are generated according to the Poisson process and the sources are independent, the
packet generation in the system follows the Poisson process with rate λ = λ1 +λ2. The
overall load in the system is ρ = ρ1 +ρ2 = λ/µ .

In the next subsections, first, each packet management policy is explained, and then,
a summary of the main results is presented.

Packet management policies

The structure of the queueing system for all considered policies is illustrated in Fig. 13.
In all policies, when the system is empty, any arriving packet immediately enters the
server. However, the policies differ in how they handle the arriving packets when the
server is busy.

In Policy 1 (see Fig. 13(a)), when the server is busy and a new packet arrives, the
possible packet of the same source waiting in the queue (not being served) is replaced
by the fresh packet.

In Policy 2 (see Fig. 13(b)), when the server is busy and a new packet arrives, the
possible packet of the same source either waiting in the queue or being served (called
self-preemption) is replaced by the fresh packet.

Policy 3 is similar to Policy 2 but it does not permit preemption in service (see
Fig. 13(b)). While a packet is under service, all new arrivals from the same source are
blocked and cleared. However, the packet waiting in the queue is replaced upon the
arrival of a newer one from the same source. It is also interesting to remark that this
policy is also similar to Policy 1 but it has a waiting queue one unit shorter.

1Two sources is considered for the sake of clarity of the presentation; the same methodology as used in this
chapter can be applied for more than two sources. However, the complexity of the calculations increases
exponentially with the number of sources.
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Source 1

Source 2

Server

λ1

λ2

Sink

(a) Policy 1: The queue can contain at most two waiting packets at the same time (in addition to the packet
under service), one packet of source 1 and one packet of source 2; when the server is busy and a new packet
arrives, the possible packet of the same source waiting in the queue (not being served) is replaced by the fresh
packet.

Source 1

Source 2

Server Sink

λ1

λ2

(b) Policies 2 and 3: The system (i.e., the waiting queue and the server) can contain at most two packets, one
from each source. In Policy 2, when the server is busy and a new packet arrives, the possible packet of the
same source either waiting in the queue or being served is replaced by the fresh packet. Policy 3 is similar to
Policy 2 but it does not permit preemption in service.

Fig. 13. The packet management policies (Reprinted by permission [16] c© 2021, IEEE).

Summary of the main results

In this chapter, the average AoI for each source under Policy 1, Policy 2, and Policy 3 is
derived. In addition, the MGF of the AoI for each source under Policy 2 and Policy 3 is
derived. The derived results are summarized by the following five theorems.

Theorem 2. The average AoI of source 1 under Policy 1 is given as

∆1 =
∑

7
k=0 ρk

1ηk

µρ1 (1+ρ1)
2

∑
4
j=0 ρ

j
1 ξ̂ j

,
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where

η0 = ρ
4
2 +2ρ

3
2 +3ρ

2
2 +2ρ2 +1,

η1 = 7ρ
4
2 +15ρ

3
2 +21ρ

2
2 +14ρ2 +6,

η2 = 17ρ
4
2 +46ρ

3
2 +64ρ

2
2 +42ρ2 +16,

η3 = 15ρ
4
2 +73ρ

3
2 +118ρ

2
2 +78ρ2 +26,

η4 = 5ρ
4
2 +52ρ

3
2 +124ρ

2
2 +102ρ2 +30,

η5 = 15ρ
3
2 +66ρ

2
2 +79ρ2 +24,

η6 = 15ρ
2
2 +31ρ2 +11,

η7 = 5ρ2 +2,

ξ̂0 = ρ
4
2 +2ρ

3
2 +3ρ

2
2 +2ρ2 +1,

ξ̂1 = 2ρ
4
2 +6ρ

3
2 +9ρ

2
2 +7ρ2 +3,

ξ̂2 = 6ρ
3
2 +12ρ

2
2 +10ρ2 +4,

ξ̂3 = 6ρ
2
2 +8ρ2 +3,

ξ̂4 = 2ρ2 +1.

Proof. The proof of Theorem 2 appears in Section 3.2.2.

Theorem 3. The average AoI of source 1 under Policy 2 is given as

∆1 =
(ρ2 +1)2 +∑

5
k=1 ρk

1 η̃k

µρ1 (1+ρ1)
2 (

ρ2
1 (2ρ2 +1)+(ρ2 +1)2(2ρ1 +1)

) ,
where

η̃1 = 6ρ
2
2 +11ρ2 +5,

η̃2 = 13ρ
2
2 +24ρ2 +10,

η̃3 = 10ρ
2
2 +27ρ2 +10,

η̃4 = 3ρ
2
2 +14ρ2 +5,

η̃5 = 3ρ2 +1.

Proof. The proof of Theorem 3 appears in Section 3.2.3.
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Theorem 4. The average AoI of source 1 under Policy 3 is given as

∆1 =
(ρ2 +1)3 +∑

4
k=1 ρk

1 η̂k

µρ1 (1+ρ1)(1+ρ2)
(
ρ2

1 (2ρ2 +1)+(ρ2 +1)2(2ρ1 +1)
) ,

where

η̂1 = 5ρ
3
2 +14ρ

2
2 +13ρ2 +4,

η̂2 = 10ρ
3
2 +28ρ

2
2 +25ρ2 +7,

η̂3 = 5ρ
3
2 +22ρ

2
2 +23ρ2 +6,

η̂4 = 5ρ
2
2 +8ρ2 +2.

Proof. The proof of Theorem 4 appears in Section 3.2.4.

Theorem 5. The MGF of the AoI of source 1 under Policy 2 is given as

M∆1(s) =
ρ1

2ρ1ρ2 +ρ +1

[
ρ2

2 (1− s̄)2 +2ρ2(1− s̄)3 +(1− s̄)4 +∑
4
k=1 ρk

1 γ̇k

(ρ1− s̄)(1− s̄)2(1+ρ1− s̄)2(1+ρ− s̄)2

]
, (68)

where s̄ =
s
µ

and

γ̇1=ρ
2
2 (4−6s̄+4s̄2− s̄3)+ρ2(8−20s̄+16s̄2−6s̄3 + s̄4)+(1−s̄)3(4−s̄),

γ̇2 = ρ
2
2 (5−6s̄+2s̄2)+ρ2(12−22s̄+14s̄2−3s̄3)+3(1− s̄)2(2− s̄),

γ̇3 = ρ
2
2 (2− s̄)+ρ2(8−10s̄+3s̄2)+3s̄2−7s̄+4,

γ̇4 = ρ2(2− s̄)+1− s̄.

Proof. The proof of Theorem 5 appears in Section 3.3.2.

Theorem 6. The MGF of the AoI of source 1 under Policy 3 is given as

M∆1(s) =
ρ1

2ρ1ρ2 +ρ +1

[
ρ3

2 (1−s̄)2+3ρ2
2 (1−s̄)3+3ρ2(1−s̄)4+(1−s̄)5+∑

3
k=1ρk

1 γ̄k

(ρ1− s̄)(1− s̄)3(1+ρ1− s̄)(1+ρ− s̄)

]
(69)
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where s̄ =
s
µ

and

γ̄1 = ρ
3
2 (3−3s̄+ s̄2)+ρ

2
2 (9−19s̄+11s̄2−2s̄3)+

ρ2(9−28s̄+29s̄2−11s̄3 + s̄4)+3(1− s̄)4,

γ̄2 = ρ
3
2 (2− s̄)+ρ

2
2 (8−10s̄+3s̄2)+ρ2(9−19s̄+11s̄2−2s̄3)+(1− s̄)3,

γ̄3 = ρ
2
2 (2− s̄)+ρ2(3−3s̄+ s̄2)+(1− s̄)2.

Proof. The proof of Theorem 6 appears in Section 3.3.2.

3.2 Average AoI

In this section, first, the main idea behind the SHS technique as the key tool to calculate
average AoI is briefly presented, then the average AoI of each source under the proposed
packet management policies is derived. The readers are referred to [9] for more details
of the SHS technique.

3.2.1 A brief introduction to the SHS technique for calculating
average AoI

The SHS technique models a queueing system through the states (q(t),x(t)), where
q(t) ∈Q = {0,1, . . . ,m} is a continuous-time finite-state Markov chain that describes
the occupancy of the system and x(t) = [x0(t) x1(t) · · ·xn(t)] ∈ R1×(n+1) is a continuous
process that describes the evolution of age-related processes at the sink. Following the
approach in [9], the source of interest is labeled as source 1 and the continuous process
x(t) is employed to track the age of source 1 status updates at the sink.

The Markov chain q(t) can be presented as a graph (Q,L ) where each discrete
state q(t) ∈Q is a node of the chain and a (directed) link l ∈L from node ql to node q′l
indicates a transition from state ql ∈Q to state q′l ∈Q.

A transition occurs when a packet arrives or departs in the system. Since the
time elapsed between departures and arrivals is exponentially distributed, transition
l ∈L from state ql to state q′l occurs with the exponential rate λ (l)δql ,q(t)

2, where the
Kronecker delta function δql ,q(t) ensures that the transition l occurs only when the
discrete state q(t) is equal to ql . When a transition l occurs, the discrete state ql changes
to state q′l , and the continuous state x is reset to x′ according to a binary transition

2In the considered system model, λ (l) can represent three quantities: arrival rate of source 1 (λ1), arrival rate
of source 2 (λ2), and the service rate (µ).
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reset map matrix Al ∈ B(n+1)×(n+1) as x′ = xAl . In addition, at each state q(t) = q ∈Q,
the continuous state x evolves as a piece-wise linear function through the differential

equation ẋ(t),
∂x(t)

∂ t
= 1, where 1 is the row vector [1 · · ·1] ∈ R1×(n+1)

Note that unlike in a typical continuous-time Markov chain, a transition from a state
to itself (i.e., a self-transition) is possible in q(t) ∈Q. In the case of a self-transition, a
reset of the continuous state x takes place, but the discrete state remains the same. In
addition, for a given pair of states q̄, q̂ ∈Q, there may be multiple transitions l and l′

such that the discrete state changes from q̄ to q̂ but the transition reset maps Al and Al′

are different (for more details, see [9, Sect. III]).
To calculate the average AoI using the SHS technique, the state probabilities

of the Markov chain and the correlation vector between the discrete state q(t) and
the continuous state x(t) need to be calculated. Let πq(t) denote the probability of
being in state q of the Markov chain and vq(t) = [vq0(t) · · ·vqn(t)] ∈ R1×(n+1) denote
the correlation vector between the discrete state q(t) and the continuous state x(t).
Accordingly, we have

πq(t) = Pr(q(t) = q) = E[δq,q(t)], ∀q ∈Q, (70)

vq(t) = [vq0(t) · · ·vqn(t)] = E[x(t)δq,q(t)], ∀q ∈Q. (71)

Let L ′
q denote the set of incoming transitions and Lq denote the set of outgoing

transitions for state q, defined as

L ′
q = {l ∈L : q′l = q}, ∀q ∈Q,

Lq = {l ∈L : ql = q}, ∀q ∈Q.

Following the ergodicity assumption of the Markov chain q(t) in the AoI analysis
[9, 45, 53], the state probability vector πππ(t) = [π0(t) · · ·πm(t)] converges uniquely to the
stationary vector π̄ππ = [π̄0 · · · π̄m] satisfying [9]

π̄q ∑
l∈Lq

λ
(l) = ∑

l∈L ′q
λ
(l)

π̄ql , ∀q ∈Q, (72)

∑
q∈Q

π̄q = 1. (73)

Further, it has been shown in [9, Theorem 4] that under the ergodicity assumption of the
Markov chain q(t) with stationary distribution π̄ππ � 0, the existence of a non-negative
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solution, v̄q = [v̄q0 · · · v̄qn],∀q ∈Q, for the following system of linear equations

v̄q ∑
l∈Lq

λ
(l) = 1π̄q + ∑

l∈L ′q
λ
(l)v̄ql Al , ∀q ∈Q, (74)

implies that the correlation vector vq(t) converges to v̄q = [v̄q0 · · · v̄qn],∀q ∈Q as t→ ∞.
Finally, the average AoI of source 1 is calculated by [9, Theorem 4]

∆1 = ∑
q∈Q

v̄q0. (75)

As (75) implies, the main challenge in calculating the average AoI of a source using
the SHS technique reduces to deriving the first elements of each correlation vector v̄q,
i.e., v̄q0, ∀q ∈Q. Note that these quantities are, in general, different for each particular
queueing model.

The SHS technique is used to calculate the average AoI of each source under the
considered packet management policies described in Section 3.1. Recall from (75) that
the characterization of the average AoI in each of our queueing setup is accomplished by
deriving the quantities v̄q0, ∀q ∈Q. The next three sections are devoted to elaborate
derivations of these quantities.

3.2.2 Average AoI under policy 1

In Policy 1, the state space of the Markov chain is Q = {0,1, . . . ,5}, with each state
presented in Table 2. For example, q = 0 indicates that the server is idle which is shown
by I; q = 1 indicates that a packet is under service, i.e., the queue is empty and the server
is busy which is shown by B; and q = 5 indicates that server is busy, the first packet in
the queue (i.e., the packet that is at the head of the queue as depicted in Fig. 13(a)) is a
source 2 packet, and the second packet in the queue is a source 1 packet.

The continuous process is x(t) = [x0(t) x1(t) x2(t) x3(t)], where x0(t) is the current
AoI of source 1 at time instant t, ∆1(t); x1(t) encodes what ∆1(t) would become if the
packet that is under service is delivered to the sink at time instant t; x2(t) encodes what
∆1(t) would become if the first packet in the queue is delivered to the sink at time instant
t; x3(t) encodes what ∆1(t) would become if the second packet in the queue is delivered
to the sink at time instant t.

Recall that our goal is to find v̄q0,∀q ∈Q, to calculate the average AoI of source 1
in (75). To this end, we need to solve the system of linear equations (74) with variables
v̄q,∀q ∈Q. To form the system of linear equations (74) for each state ∀q ∈Q, we
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Fig. 14. The SHS Markov chain for Policy 1 (Reprinted by permission [16] c© 2021, IEEE).

Table 2. SHS Markov chain states for Policy 1.

State
Source index of the second
packet in the queue

Source index of the first
packet in the queue

Server

0 - - I
1 - - B
2 - 1 B
3 - 2 B
4 2 1 B
5 1 2 B

need to determine bq, π̄q, and v̄ql Al for each incoming transition l ∈L ′
q. Next, these

quantities are derived for Policy 1.

Determining the value of v̄ql Al for incoming transitions for each state q ∈Q

The Markov chain for the discrete state q(t) with the incoming and outgoing transitions
for each state q ∈Q is shown in Fig. 14. The transitions between the discrete states
ql → q′l , ∀l ∈L , and their effects on the continuous state x(t) are summarized in Table
3. In the following, the transitions presented in Table 3 are explained:

– l=1: A source 1 packet arrives at an empty system. With this arrival/transition, the
AoI of source 1 does not change, i.e., x′0 = x0. This is because the arrival of source
1 packet does not yield an age reduction until it is delivered to the sink. Since the
arriving source 1 packet is fresh and its age is zero, we have x′1 = 0. Since with this
arrival the queue is still empty, x2 and x3 become irrelevant to the AoI of source 1,
and thus, x′2 = x2 and x′3 = x3. Note that if the system moves into a new state where
x j is irrelevant, we set x′j = x j, j ∈ {1,2,3}. An interpretation of this assignment is
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Table 3. Table of transitions for the Markov chain of Policy 1 in Fig. 14.

l ql → q′l λ (l) Al xAl v̄ql Al

1 0→ 1 λ1 [x0 0 x2 x3]

[
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

]
[v̄00 0 v̄02 v̄03]

2 0→ 1 λ2 [x0 x0 x2 x3]

[
1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

]
[v̄00 v̄00 v̄02 v̄03]

3 1→ 0 µ [x1 x1 x2 x3]

[
0 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

]
[v̄11 v̄11 v̄12 v̄13]

4 1→ 2 λ1 [x0 x1 0 x3]

[
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

]
[v̄10 v̄11 0 v̄13]

5 1→ 3 λ2 [x0 x1 x1 x3]

[
1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 1

]
[v̄10 v̄11 v̄11 v̄13]

6 2→ 1 µ [x1 x2 x2 x3]

[
0 0 0 0
1 0 0 0
0 1 1 0
0 0 0 1

]
[v̄21 v̄22 v̄22 v̄23]

7 3→ 1 µ [x1 x1 x2 x3]

[
0 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

]
[v̄31 v̄31 v̄32 v̄33]

8 2→ 2 λ1 [x0 x1 0 x3]

[
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

]
[v̄20 v̄21 0 v̄23]

9 2→ 4 λ2 [x0 x1 x2 x2]

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
[v̄20 v̄21 v̄22 v̄22]

10 3→ 5 λ1 [x0 x1 x1 0]

[
1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 0

]
[v̄30 v̄31 v̄31 0]

11 4→ 4 λ1 [x0 x1 0 0]

[
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
[v̄40 v̄41 0 0]

12 5→ 5 λ1 [x0 x1 x1 0]

[
1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 0

]
[v̄50 v̄51 v̄51 0]

13 4→ 3 µ [x1 x2 x2 x3]

[
0 0 0 0
1 0 0 0
0 1 1 0
0 0 0 1

]
[v̄41 v̄42 v̄42 v̄43]

14 5→ 2 µ [x1 x1 x3 x3]

[
0 0 0 0
1 1 0 0
0 0 0 0
0 0 1 1

]
[v̄51 v̄51 v̄53 v̄53]
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that x j has not changed in the transition to the new state. Finally, we have

x′ = [x0 x1 x2 x3]A1 = [x0 0 x2 x3]. (76)

According to (76), it can be shown that the binary matrix A1 is given by

A1 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 . (77)

Then, by using (77), v̄0A1 is calculated as

v̄0A1=[v̄00 v̄01 v̄02 v̄03]A1 =[v̄00 0 v̄02 v̄03] . (78)

It can be seen from (76)-(78) that when we have x′ for a transition l ∈L , it is easy
to calculate v̄ql Al . Thus, for the rest of the transitions, the calculation of x′ is just
explained and the final expressions of Al and v̄ql Al are presented.

– l=2: A source 2 packet arrives at an empty system. We have x′0 = x0, because this
arrival does not change the AoI at the sink. Since the arriving packet is a source
2 packet, its delivery does not change the AoI of source 1, thus we have x′1 = x0.
Moreover, since the queue is empty, x2 and x3 become irrelevant, and we have x′2 = x2

and x′3 = x3.
– l=3: A packet is under service and it completes service and is delivered to the sink.

With this transition, the AoI at the sink is reset to the age of the packet that just
completed service, and thus, x′0 = x1. Since the system enters state q = 0, we have
x′1 = x1, x′2 = x2, and x′3 = x3.

– l=4: A packet is under service and a source 1 packet arrives. In this transition, we
have x′0 = x0 because there is no departure. The delivery of the packet under service
reduces the AoI to x1 and thus, x′1 = x1. Since the arriving source 1 packet is fresh
and its age is zero, we have x′2 = 0. Since there is only one packet in the queue, x3

becomes irrelevant, and we have x′3 = x3.
– l=5: A packet is under service and a source 2 packet arrives. In this transition, we

have x′0 = x0 because there is no departure. The delivery of the packet under service
reduces the AoI to x1 and thus, x′1 = x1. Since the arriving source 2 packet, its delivery
does not change the AoI of source 1, and thus, we have x′2 = x1. Since there is only
one packet in the queue, x3 becomes irrelevant, and we have x′3 = x3.
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– l=6: A source 1 packet is in the queue, a packet is under service and it completes
service and is delivered to the sink. With this transition, the AoI at the sink is reset to
the age of the packet that just completed service, and thus, x′0 = x1. Since the source 1
packet in the queue goes to the server, we have x′1 = x2. In addition, since with this
departure the queue becomes empty, we have x′2 = x2 and x′3 = x3.

– l=7: A source 2 packet is in the queue, a packet is under service and it completes
service and is delivered to the sink. With this transition, the AoI at the sink is reset to
the age of the packet that just completed service, and thus, x′0 = x1. Since the source 2
packet in the queue goes to the server and its delivery does not change the AoI of
source 1, we have x′1 = x1. In addition, since with this departure the queue becomes
empty, we have x′2 = x2 and x′3 = x3.

– l=8: A packet is under service, a source 1 packet is in the queue, and a source 1
packet arrives. According to Policy 1, the source 1 packet in the queue is replaced
by the fresh source 1 packet. In this transition, we have x′0 = x0 because there is no
departure. The delivery of the packet under service reduces the AoI to x1, and thus,
x′1 = x1. Since the arriving source 1 packet is fresh and its age is zero, we have x2 = 0.
Since there is only one packet in the queue, we have x′3 = x3.

– l=9: A packet is under service, a source 1 packet is in the queue, and a source 2
packet arrives. In this transition, x′0 = x0 because there is no departure. The delivery
of the packet under service reduces the AoI to x1, and thus, x′1 = x1. The delivery
of the first packet in the queue reduces the AoI to x2, and thus, x′2 = x2. Since the
second packet in the queue is a source 2 packet, its delivery does not change the AoI
of source 1, and thus, we have x′3 = x2.

– l=10: A packet is under service, a source 2 packet is in the queue, and a source 1
packet arrives. In this transition, x′0 = x0 because there is no departure. The delivery
of the packet under service reduces the AoI to x1, and thus, x′1 = x1. Since the first
packet in the queue is a source 2 packet, its delivery does not change the AoI of
source 1, and thus we have x′1 = x1. Since the arriving source 1 packet is fresh and its
age is zero, we have x3 = 0.

– l=11: A packet is under service, the first packet in the queue is a source 1 packet,
the second packet in the queue is a source 2 packet, and a source 1 packet arrives.
According to Policy 1, the source 1 packet in the queue is replaced by the fresh
source 1 packet. In this transition, we have x′0 = x0 because there is no departure.
The delivery of the packet under service reduces the AoI to x1, thus, x′1 = x1. Since
the arriving source 1 packet is fresh and its age is zero, we have x′2 = 0. Since the
second packet in the queue is a source 2 packet, its delivery does not change the AoI

84



of source 1, and thus, we have x′3 = 0. The reset maps of transition l = 12 can be
derived similarly.

– l=13: The first packet in the queue is a source 1 packet, the second packet in the
queue is a source 2 packet, and the packet under service completes service and is
delivered to the sink. With this transition, the AoI at the sink is reset to the age of the
source 1 packet that just completed service, and thus, x′0 = x1. Since the first packet in
the queue goes to the server, we have x′1 = x2. In addition, since with this departure
the queue holds the source 2 packet and its delivery does not change the AoI of source
1, we have x′2 = x2 and x′3 = x3. The reset maps of transition l = 14 can be derived
similarly.

Having defined the sets of incoming and outgoing transitions, and the value of v̄ql Al

for each incoming transition for each state q ∈Q, the remaining task is to derive the
stationary probability vector π̄ππ . This is carried out next.

Calculation of π̄q for each state q ∈Q

To calculate the stationary probability vector π̄ππ , (72) and (73) are used. Using (72)
and the transitions between the different states presented in Table 3, it can be shown
that the stationary probability vector π̄ππ satisfies π̄ππD̄ = π̄ππQ̄ where the diagonal matrix
D̄ ∈ R(n+1)×(n+1) and matrix Q̄ ∈ R(n+1)×(n+1) are given as

D̄ = diag[λ ,λ +µ,λ +µ,λ1 +µ,λ1 +µ,λ1 +µ],

Q̄ =



µ λ 0 0 0 0
0 0 λ1 λ2 λ2 0
0 µ λ1 0 0 0
0 µ 0 0 0 λ1

0 0 0 µ λ1 0
0 0 µ 0 0 λ1


,

where diag[a1,a2, . . . ,an] denotes a diagonal matrix with elements a1,a2, . . . ,an on its
main diagonal. Using the above π̄ππD̄ = π̄ππQ̄ and ∑q∈Q π̄q = 1 in (73), the stationary
probabilities are given as

π̄ππ =
1

ρ2 +ρ(2ρ1ρ2 +1)+1
[1 ρ ρ1ρ ρ2ρ ρ1ρ2ρ ρ1ρ2ρ] . (79)
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Average AoI calculation

By substituting (79) into (74) and solving the corresponding system of linear equations,
the values of v̄q0, ∀q ∈ Q, are calculated as presented in Appendix 1.2. Finally,
substituting the values of v̄q0, ∀q ∈Q, into (75) results in the average AoI of source 1
under Policy 1, given in Theorem 2. Note that the expression is exact; it characterizes
the average AoI in the considered queueing model in closed form.

3.2.3 Average AoI under policy 2

Recall from Section 3.1 that the main difference of Policy 2 compared to Policy 1 treated
above is that the system can contain only two packets, one packet of source 1 and one
packet of source 2. Accordingly for Policy 2, the state space of the Markov chain is
Q = {0,1,2,3,4}, where q = 0 indicates that the server is idle, i.e., the system is empty;
q = 1 indicates that a source 1 packet is under service and the queue is empty; q = 2
indicates that a source 2 packet is under service and the queue is empty; q = 3 indicates
that a source 1 packet is under service, and a source 2 packet is in the queue; and q = 4
indicates that a source 2 packet is under service, and a source 1 packet is in the queue.

The continuous process is x(t) = [x0(t) x1(t) x2(t)], where x0(t) is the current AoI
of source 1 at time instant t, ∆1(t); x1(t) encodes what ∆1(t) would become if the packet
that is under service is delivered to the sink at time instant t; x2(t) encodes what ∆1(t)
would become if the packet in the queue is delivered to the sink at time instant t. Next,
the required quantities to form the system of linear equations in (74) under Policy 2 are
determined.

Determining the value of v̄ql Al for incoming transitions for each state q ∈Q

The Markov chain for the discrete state q(t) is shown in Fig. 15. The transitions
between the discrete states ql → q′l , ∀l ∈L , and their effects on the continuous state
x(t) are summarized in Table 4. In the following, the transitions presented in Table 4 are
explained:

– l=1: A source 1 packet arrives at an empty system. With this transition we have
x′0 = x0 because there is no departure. Since with this arrival the queue is still empty,
x2 becomes irrelevant to the AoI of source 1, and thus, x′2 = x2.

– l=2: A source 2 packet arrives at an empty system. We have x′0 = x0, because this
arrival does not change the AoI at the sink. Since the arriving packet is a source 2
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Fig. 15. The SHS Markov chain for Policy 2 (Reprinted by permission [16] c© 2021, IEEE).

Table 4. Table of transitions for the Markov chain of Policy 2 in Fig. 15 to calculate the
average AoI.

l ql → q′l λ (l) xAl Al v̄ql Al

1 0→ 1 λ1 [x0 0 x2]

[
1 0 0
0 0 0
0 0 1

]
[v̄00 0 v̄02]

2 0→ 2 λ2 [x0 x0 x2]

[
1 1 0
0 0 0
0 0 1

]
[v̄00 v̄00 v̄02]

3 1→ 1 λ1 [x0 0 x2]

[
1 0 0
0 0 0
0 0 1

]
[v̄10 0 v̄12]

4 1→ 3 λ2 [x0 x1 x1]

[
1 0 0
0 1 1
0 0 0

]
[v̄10 v̄11 v̄11]

5 2→ 4 λ1 [x0 x0 0]
[

1 1 0
0 0 0
0 0 0

]
[v̄20 v̄20 0]

6 3→ 3 λ1 [x0 0 0]
[

1 0 0
0 0 0
0 0 0

]
[v̄30 0 0]

7 4→ 4 λ1 [x0 x0 0]
[

1 1 0
0 0 0
0 0 0

]
[v̄40 v̄40 0]

8 1→ 0 µ [x1 x1 x2]

[
0 0 0
1 1 0
0 0 1

]
[v̄11 v̄11 v̄12]

9 2→ 0 µ [x0 x1 x2]

[
1 0 0
0 1 0
0 0 1

]
[v̄20 v̄21 v̄22]

10 3→ 2 µ [x1 x1 x2]

[
0 0 0
1 1 0
0 0 1

]
[v̄31 v̄31 v̄32]

11 4→ 1 µ [x0 x2 x2]

[
1 0 0
0 0 0
0 1 1

]
[v̄40 v̄42 v̄42]
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packet, its delivery does not change the AoI of source 1, and thus we have x′1 = x0.
Moreover, since the queue is empty, x2 becomes irrelevant, and thus, we have x′2 = x2.

– l=3: A source 1 packet is under service and a source 1 packet arrives. According to
the self-preemptive service of Policy 2, the source 1 packet that is under service is
preempted by the arriving source 1 packet. In this transition, we have x′0 = x0 because
there is no departure. Since the arrived source 1 packet that entered the server through
the preemption is fresh and its age is zero, we have x′1 = 0. Since the queue is empty,
x2 becomes irrelevant, and thus, we have x′2 = x2.

– l=4: A source 1 packet is under service and a source 2 packet arrives. In this transition,
we have x′0 = x0 because there is no departure. The delivery of the packet under
service reduces the AoI to x1, and thus, we have x′1 = x1. Since the packet in the
queue is a source 2 packet, its delivery does not change the AoI of source 1, and thus
we have x′2 = x1. The reset map of transition l = 6 can be derived similarly.

– l=5: A source 2 packet is under service and a source 1 packet arrives. In this transition,
we have x′0 = x0 because there is no departure. Since the packet under service is a
source 2 packet, its delivery does not change the AoI of source 1, and thus we have
x′1 = x0. Since the arriving source 1 packet is fresh and its age is zero, we have x2 = 0.

– l=6: A source 1 packet is under service, the packet in the queue is a source 2 packet,
and a source 1 packet arrives. According to the self-preemptive policy, the source
1 packet that is under service is preempted by the arriving source 1 packet. In this
transition, we have x′0 = x0 because there is no departure. Since the arrived source 1
packet that entered the server through the preemption is fresh and its age is zero, we
have x′1 = 0. Since the packet in the queue is a source 2 packet, its delivery does not
change the AoI of source 1, and thus we have x′2 = 0. The reset maps of transition
l = 7 can be derived similarly.

– l=8: A source 1 packet is under service and it completes service and is delivered to
the sink. With this transition, the AoI at the sink is reset to the age of the source 1
packet that just completed service, and thus, x′0 = x1. Since the system enters state
q = 0, we have x′1 = x1, and x′2 = x2. The reset map of transition l = 9 can be derived
similarly.

– l=10: The packet in the queue is a source 2 packet and the source 1 packet in the
server completes service and is delivered to the sink. With this transition, the AoI at
the sink is reset to the age of the source 1 packet that just completed service, i.e.,
x′0 = x1. Since the packet that goes to the server is a source 2 packet, its delivery does
not change the AoI of source 1, and thus we have x′1 = x1. In addition, since with this
transition the queue becomes empty, we have x′2 = x2. The reset map of transition
l = 11 can be derived similarly.
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Calculation of π̄q for each state q ∈Q

Using (72) and the transition rates among the different states presented in Table 4, it can
be shown that the stationary probability vector π̄ππ satisfies π̄ππD̄ = π̄ππQ̄ with

D̄ = diag[λ ,λ +µ,λ1 +µ,λ1 +µ,λ1 +µ],

Q̄ =


0 λ1 λ2 0 0
µ λ1 0 λ2 0
µ 0 0 0 λ1

0 0 µ λ1 0
0 µ 0 0 λ1

.

Using the above π̄ππD̄ = π̄ππQ̄ and ∑q∈Q π̄q = 1 in (73), the stationary probabilities are
given as

π̄ππ =
1

2ρ1ρ2 +ρ +1
[1 ρ1 ρ2 ρ1ρ2 ρ1ρ2] . (80)

Average AoI calculation

By substituting (80) into (74) and solving the corresponding system of linear equations,
the values of v̄q0, ∀q ∈Q, are calculated as

v̄00 =
ρ2

1 (2ρ +5)+(4ρ1 +1)(ρ2 +1)
µρ1(1+ρ1)2(1+ρ)(1+ρ +2ρ1ρ2)

, (81)

v̄10 =
(1+ρ2)(ρ

3
1 +4ρ2

1 +1)+ρ1(5ρ2 +4)
µ(1+ρ2)(1+ρ1)2(1+ρ +2ρ1ρ2)

,

v̄20 =
ρ2
(
ρ2

1 (2ρ +6)+(4ρ1 +1)(ρ2 +1)
)

µρ1(1+ρ1)2(1+ρ)(1+ρ +2ρ1ρ2)
,

v̄30 =
ρ2
(
(1+ρ2)(2ρ3

1 +6ρ2
1 +1)+ρ1(6ρ2 +5)

)
µ(1+ρ2)(1+ρ1)2(1+ρ +2ρ1ρ2)

,

v̄40 =
ρ2
(
ρ2

1 (ρ
2
1 +5ρ1 +ρ1ρ2 +4ρ2 +9)+(5ρ1 +1)(1+ρ2)

)
µ(1+ρ1)2(1+ρ)(1+ρ +2ρ1ρ2)

.

Finally, substituting the values of v̄q0, ∀q ∈Q, in (81) into (75) results in the average
AoI of source 1 under Policy 2, given in Theorem 3.
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Table 5. Table of transitions for the Markov chain of Policy 3 to calculate the average AoI.

l ql → q′l λ (l) xAl Al v̄ql Al

1 0→ 1 λ1 [x0 0 x2]

[
1 0 0
0 0 0
0 0 1

]
[v̄00 0 v̄02]

2 0→ 2 λ2 [x0 x0 x2]

[
1 1 0
0 0 0
0 0 1

]
[v̄00 v̄00 v̄02]

3 1→ 1 λ1 [x0 x1 x2]

[
1 0 0
0 1 0
0 0 1

]
[v̄10 v̄11 v̄12]

4 1→ 3 λ2 [x0 x1 x1]

[
1 0 0
0 1 1
0 0 0

]
[v̄10 v̄11 v̄11]

5 2→ 4 λ1 [x0 x0 0]
[

1 1 0
0 0 0
0 0 0

]
[v̄20 v̄20 0]

6 3→ 3 λ1 [x0 x1 x1]

[
1 0 0
0 1 1
0 0 0

]
[v̄30 v̄31 v̄31]

7 4→ 4 λ1 [x0 x0 0]
[

1 1 0
0 0 0
0 0 0

]
[v̄40 v̄40 0]

8 1→ 0 µ [x1 x1 x2]

[
0 0 0
1 1 0
0 0 1

]
[v̄11 v̄11 v̄12]

9 2→ 0 µ [x0 x1 x2]

[
1 0 0
0 1 0
0 0 1

]
[v̄20 v̄21 v̄22]

10 3→ 2 µ [x1 x1 x2]

[
0 0 0
1 1 0
0 0 1

]
[v̄31 v̄31 v̄32]

11 4→ 1 µ [x0 x2 x2]

[
1 0 0
0 0 0
0 1 1

]
[v̄40 v̄42 v̄42]

3.2.4 Average AoI under policy 3

The main difference of Policy 3 compared to Policy 2 is that it does not permit preemption
in service. The Markov chain and the continuous process of Policy 3 are the same as
those for Policy 2. Thus, the stationary probability vector π̄ππ of Policy 3 is given in
(80). The transitions between the discrete states ql → q′l , ∀l ∈L , and their effects on
the continuous state x(t) are summarized in Table 5. The reset maps of transitions
l ∈ {1,2,4,5,7,8,9,10,11} are the same as those for Policy 2. Thus, transitions l = 3
and l = 6 are only explained (see Table 5).

– l=3: A source 1 packet is under service and a source 1 packet arrives. According
to Policy 3, the arrived source 1 packet is blocked and cleared. In this transition,
we have x′0 = x0 because there is no departure. The delivery of the packet under
service reduces the AoI to x1, and thus, we have x′1 = x1. Since the queue is empty, x2

becomes irrelevant, and thus, we have x′2 = x2.
– l=6: A source 1 packet is under service, the packet in the queue is a source 2 packet,

and a source 1 packet arrives. The arrived source 1 packet is blocked and cleared.
In this transition, we have x′0 = x0 because there is no departure. The delivery of
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the packet under service reduces the AoI to x1, and thus, we have x′1 = x1. Since the
packet in the queue is a source 2 packet, its delivery does not change the AoI of
source 1, and thus we have x′2 = x1.

Having the stationary probability vector π̄ππ (given in (80)) and the table of transitions
(Table 5), the system of linear equations (74) can be formed. By solving the system of
linear equations, the values of v̄q0, ∀q ∈Q, are calculated as

v̄00 =
ρ3

1 +ρ2
1 ((ρ2 +2)2−1)+(ρ2 +1)2(3ρ1 +1)

µρ1(1+ρ1)(1+ρ2)(1+ρ)(1+ρ +2ρ1ρ2)
, (82)

v̄10 =
(1+ρ2)(2ρ2

1 +1)+ρ1(4ρ2 +3)
µ(1+ρ2)(1+ρ1)(1+ρ +2ρ1ρ2)

,

v̄20 =
ρ2
(
ρ3

1 (ρ2 +2)+ρ2
1 (ρ

2
2 +5ρ2 +4)+(3ρ1 +1)(ρ2 +1)2

)
µρ1(1+ρ1)(1+ρ2)(1+ρ)(1+ρ +2ρ1ρ2)

,

v̄30 =
ρ2
(
(ρ2 +1)(3ρ2

1 +1)+ρ1(5ρ2 +4)
)

µ(1+ρ1)(1+ρ2)(1+ρ +2ρ1ρ2)
,

v̄40 =
ρ2
(
ρ3

1 (2ρ2 +3)+2ρ2
1 ((ρ2 +2)2−1)+(4ρ1 +1)(ρ2 +1)2

)
µ(1+ρ1)(1+ρ2)(1+ρ)(1+ρ +2ρ1ρ2)

.

Finally, substituting the values of v̄q0, ∀q ∈Q, in (82) into (75) results in the average
AoI of source 1 under Policy 3, given in Theorem 4.

3.3 MGF of the AoI

In this section, first, it is briefly explained how to extend the SHS technique presented in
Section 3.2.1 for the MGF analysis in Section 3.3.2. Then, the MGF of the AoI under
Policy 2 and Policy 3 is derived.

3.3.1 The SHS technique to calculate MGF

To calculate the MGF of the AoI using the SHS technique in addition to the state
probabilities of the Markov chain and the correlation vector between the discrete
state q(t) and the continuous state x(t), the correlation vector between the discrete
state q(t) and the exponential function esx(t), s ∈ R, needs to be defined. Let vs

q(t) =
[vs

q0(t) · · ·vs
qn(t)] ∈R1×(n+1) denote the correlation vector between the discrete state q(t)

and the exponential function esx(t). Accordingly, we have

vs
q(t) = [vs

q0(t) · · ·vs
qn(t)] = E[esx(t)

δq,q(t)], ∀q ∈Q. (83)
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Following the ergodicity assumption of the Markov chain q(t) in the AoI analysis
[9, 45], it has been shown in [45, Theorem 1] that if we can find a non-negative limit,
v̄q = [v̄q0 · · · v̄qn],∀q ∈Q, for the correlation vector vq(t) satisfying

v̄q ∑
l∈Lq

λ
(l) = π̄q1+ ∑

l∈L ′q
λ
(l)v̄ql Al , ∀q ∈Q, (84)

there exists s0 > 0 such that for all s < s0, vs
q(t),∀q ∈Q, converges to v̄s

q that satisfies

v̄s
q ∑

l∈Lq

λ
(l)=sv̄s

q+ ∑
l∈L ′q

λ
(l)[v̄s

ql
Al+π̄ql 1Âl ], ∀q ∈Q, (85)

where Âl ∈ B(n+1)×(n+1) is a binary matrix whose k, jth element, Âl(k, j), is given as

Âl(k, j)=

1, k= j, and jth column of Al is a zero vector,

0, otherwise.

Finally, the MGF of the continuous state x(t), which is calculated by E[esx(t)], converges
to the stationary vector [45, Theorem 1]

E[esx] = ∑
q∈Q

v̄s
q. (86)

As (86) implies, if the first element of continuous state x(t) represents the AoI of source
1 at the sink, the MGF of the AoI of source 1 at the sink converges to

M∆1(s) = ∑
q∈Q

v̄s
q0. (87)

From (87), the main challenge in calculating the MGF of the AoI of source 1 using
the SHS technique reduces to deriving the first elements of correlation vectors v̄s

q,

∀q ∈Q.

3.3.2 The MGF of the AoI under policy 2 and policy 3

In this section, the SHS technique is used to calculate the MGF of the AoI of source 1 in
(87) under Policy 2 and Policy 3. The discrete state space Q and the continuous process
x(t) for Policy 2 and Policy 3 are described in Sections 3.2.3 and 3.2.4, respectively.

Recall that to calculate the MGF of the AoI of source 1 in (87) we need to find
v̄s

q0,∀q ∈Q, which are the solutions of the system of linear equations (85) with variables
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Table 6. Table of transitions for Policy 2 to calculate the MGF of the AoI.

l ql → q′l λ (l) xAl Al Âl

1 0→ 1 λ1 [x0 0 x2]

[
1 0 0
0 0 0
0 0 1

] [
0 0 0
0 1 0
0 0 0

]
2 0→ 2 λ2 [x0 x0 x2]

[
1 1 0
0 0 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]
3 1→ 1 λ1 [x0 0 x2]

[
1 0 0
0 0 0
0 0 1

] [
0 0 0
0 1 0
0 0 0

]
4 1→ 3 λ2 [x0 x1 x1]

[
1 0 0
0 1 1
0 0 0

] [
0 0 0
0 0 0
0 0 0

]
5 2→ 4 λ1 [x0 x0 0]

[
1 1 0
0 0 0
0 0 0

] [
0 0 0
0 0 0
0 0 1

]
6 3→ 3 λ1 [x0 0 0]

[
1 0 0
0 0 0
0 0 0

] [
0 0 0
0 1 0
0 0 1

]
7 4→ 4 λ1 [x0 x0 0]

[
1 1 0
0 0 0
0 0 0

] [
0 0 0
0 0 0
0 0 1

]
8 1→ 0 µ [x1 x1 x2]

[
0 0 0
1 1 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]
9 2→ 0 µ [x0 x1 x2]

[
1 0 0
0 1 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]
10 3→ 2 µ [x1 x1 x2]

[
0 0 0
1 1 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]
11 4→ 1 µ [x0 x2 x2]

[
1 0 0
0 0 0
0 1 1

] [
0 0 0
0 0 0
0 0 0

]

v̄s
q,∀q ∈Q. To form the system of linear equations (85), we need to determine π̄q, Al ,

and Âl for each state ∀q ∈Q, and transition l ∈L ′
q. Next, these are derived under

Policy 2 and Policy 3.

MGF of the AoI under policy 2

The transitions between the discrete states ql → q′l , ∀l ∈L , and their effects on the
continuous state x(t) are summarized in Table 6. The explanations of the transitions can
be found in Section 3.3.2.

As it has been shown in Section 3.3.2, the stationary probabilities are given as

π̄ππ =
1

2ρ1ρ2 +ρ +1
[1 ρ1 ρ2 ρ1ρ2 ρ1ρ2] . (88)

Recall from Section 3.3.1 that to calculate the MGF of the AoI, first, we need to
make sure whether we can find non-negative vectors v̄q = [v̄q0 · · · v̄qn],∀q ∈Q, satisfying
(84). As it is shown in (81), the system of linear equations in (84) has a non-negative
solution. Thus, the MGF of the AoI can be calculated by solving the system of linear
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Table 7. Table of transitions for Policy 3 to calculate the MGF of the AoI.

l ql → q′l λ (l) xAl Al Âl

3 1→ 1 λ1 [x0 x1 x2]

[
1 0 0
0 1 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]
6 3→ 3 λ1 [x0 x1 x1]

[
1 0 0
0 1 1
0 0 0

] [
0 0 0
0 0 0
0 0 0

]

equations in (85). The system of linear equations (85) is formed by substituting the
values of Al and Âl presented in Table 6 and the vector π̄ππ in (88). By solving the formed
system of linear equations, the values of v̄s

q0, ∀q ∈Q, under Policy 2 are calculated as
presented in Appendix 1.3.

Finally, substituting the values of v̄s
q0, ∀q ∈Q, into (87), the MGF of the AoI of

source 1 under Policy 2 is obtained, as given in Theorem 5.

MGF of the AoI under policy 3

The Markov chain of Policy 3 is the same as that for the Policy 2. Thus, the stationary
probability vector π̄ππ of Policy 3 is given in (88). The transitions between the discrete
states ql → q′l , and their effects on the continuous state x(t) for l ∈ {1,2,4,5,7,8,9,10,
11} are same as those fo the Policy 2. The transitions l ∈ {3,6} and their effects on the
continuous state x(t) are summarized in Table 7. The explanations of the transitions can
be found in Section 3.2.4.

As it is shown in (82), the system of linear equations in (84) has a non-negative
solution. Thus, the MGF of the AoI can be calculated by solving the system of linear
equations in (85). The system of linear equations (85) is formed by substituting the
values of Al and Âl presented in Tables 6 and 7 and the vector π̄ππ in (88). By solving
the formed system of linear equations, the values of v̄s

q0, ∀q ∈Q, under Policy 3 are
calculated as presented in Appendix 1.4.

Finally, substituting the values of v̄s
q0, ∀q ∈Q, into (87) results in the MGF of the

AoI of source 1 under Policy 3, given in Theorem 6.
The following remark presents how different moments of the AoI can be derived by

using the MGF.

Remark 3. The mth moment of the AoI of source 1, ∆
(m)
1 , is calculated as

∆
(m)
1 =

dm(M∆1(s))
dsm

∣∣∣
s=0

. (89)
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3.3.3 Deriving the first and second moments of the AoI using the MGF

Having derived the MGF of the AoI presented in Theorems 5 and 6, Remark 3 is applied
to derive the first and second moments of the AoI of source 1.

The first moment of the AoI of source 1 under Policy 2 is given as

∆1=
(ρ2 +1)2 +∑

5
k=1 ρk

1 η̃k

µρ1 (1+ρ1)
2 (

ρ2
1 (2ρ2+1)+(ρ2+1)2(2ρ1+1)

) , (90)

where

η̃1 = 6ρ
2
2 +11ρ2 +5, (91)

η̃2 = 13ρ
2
2 +24ρ2 +10,

η̃3 = 10ρ
2
2 +27ρ2 +10,

η̃4 = 3ρ
2
2 +14ρ2 +5,

η̃5 = 3ρ2 +1.

The first moment of the AoI of source 1 under Policy 3 is given as

∆1 =
(ρ2 +1)3 +∑

4
k=1 ρk

1 η̂k

µρ1 (1+ρ1)(1+ρ2)
(
ρ2

1 (2ρ2 +1)+(ρ2 +1)2(2ρ1 +1)
) , (92)

where

η̂1 = 5ρ
3
2 +14ρ

2
2 +13ρ2 +4, (93)

η̂2 = 10ρ
3
2 +28ρ

2
2 +25ρ2 +7,

η̂3 = 5ρ
3
2 +22ρ

2
2 +23ρ2 +6,

η̂4 = 5ρ
2
2 +8ρ2 +2.

It is worth noting that (90) and (92) coincide with the results in Theorems 3 and 4, as
expected.

The second moment of the AoI of source 1 under Policy 2 is given as

∆
(2)
1 =

2(ρ2 +1)3 +2∑
8
k=1 ρk

1 ξ̃k

µρ2
1 (1+ρ1)

3 (1+ρ)2(2ρ1ρ2 +ρ +1)
, (94)
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where

ξ̃1 = 7ρ
3
2 +21ρ

2
2 +21ρ2 +7, (95)

ξ̃2 = 22ρ
3
2 +68ρ

2
2 +68ρ2 +22,

ξ̃3 = 40ρ
3
2 +113ρ

2
2 +134ρ2 +41,

ξ̃4 = 36ρ
3
2 +161ρ

2
2 +180ρ2 +50,

ξ̃5 = 18ρ
3
2 +113ρ

2
2 +160ρ2 +41,

ξ̃6 = 4ρ
3
2 +45ρ

2
2 +88ρ2 +22,

ξ̃7 = 8ρ
2
2 +28ρ2 +7,

ξ̃8 = 4ρ2 +1.

The second moment of the AoI of source 1 under Policy 3 is

∆
(2)
1 =

2(ρ2 +1)5 +2∑
7
k=1 ρk

1 η̇k

µρ2
1 (1+ρ1)

2 (1+ρ2)
2 (1+ρ)2(2ρ1ρ2+ρ +1)

, (96)

where

η̇1 = 6ρ
5
2 +30ρ

4
2 +60ρ

3
2 +60ρ

2
2 +30ρ2 +6,

η̇2 = 18ρ
5
2 +91ρ

4
2 +182ρ

3
2 +180ρ

2
2 +88ρ2 +17,

η̇3 = 34ρ
5
2 +178ρ

4
2 +361ρ

3
2 +355ρ

2
2 +169ρ2 +31,

η̇4 = 29ρ
5
2 +190ρ

4
2 +439ρ

3
2 +463ρ

2
2 +224ρ2 +39,

η̇5 = 9ρ
5
2 +97ρ

4
2 +293ρ

3
2 +365ρ

2
2 +192ρ2 +32,

η̇6 = 18ρ
4
2 +92ρ

3
2 +151ρ

2
2 +93ρ2 +15,

η̇7 = 9ρ
3
2 +24ρ

2
2 +19ρ2 +3.

3.4 Numerical results

In this section, the effectiveness of the proposed packet management policies in terms of
the sum average AoI and fairness between the different sources in the system are shown.
In addition, the importance of higher moments of AoI is investigated. The proposed
policies are compared against the following existing policies: the source-agnostic packet
management policies LCFS-S and LCFS-W proposed in [9], and the priority based
packet management policies proposed in [48], which are termed PP-NW and PP-WW.
Under the LCFS-S policy, a new arriving packet preempts any packet that is currently
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under service (regardless of the source index). Under the LCFS-W policy, a new arriving
packet replaces any older packet waiting in the queue (regardless of the source index);
however, the new packet has to wait for any packet under service to finish. Under the
PP-NW policy, there is no waiting room and an update under service is preempted
on arrival of an equal or higher priority update. Under the PP-WW policy, there is a
waiting room for at most one update and preemption is allowed in waiting but not in
service. Without loss of generality, for the PP-NW and PP-WW policies, it is assumed
that source 2 has higher priority than source 1; for the opposite case, the results are
symmetric.

3.4.1 Average AoI

Fig. 16 depicts the contours of achievable average AoI pairs (∆1,∆2) under the introduced
packet management policies and the FCFS policy for µ = 1 with ρ = ρ1 +ρ2 = 0.9. As
can be seen, by applying an appropriate packet management policy the average AoI can
be significantly improved.

Fig. 17 depicts the contours of achievable average AoI pairs (∆1,∆2) for fixed values
of system load ρ = ρ1 +ρ2 under different packet management policies with normalized
service rate µ = 1; in Fig. 17(a), ρ = 1 and in Fig. 17(b), ρ = 6. This figure shows that
under an appropriate packet management policy in the system (either in the queue or
server), by increasing the load of the system the average AoI decreases. Besides that, it
shows that Policy 2 provides the lowest average AoI as compared to the other policies.

3.4.2 Sum average AoI

Fig. 18 depicts sum average AoI as a function of ρ1 under different packet management
policies with µ = 1; in Fig. 18(a), ρ = ρ1 +ρ2 = 1 and in Fig. 18(b), ρ = ρ1 +ρ2 = 6.
This figure shows that Policy 2 provides the lowest average AoI for all values of ρ1 as
compared to the other policies. In addition, it can be observed that among Policy 1,
Policy 3, PP-NW, PP-WW, LCFS-S, and LCFS-W policies, the policy that achieves the
lowest value of the sum average AoI depends on the system parameters. Moreover, it
can be observed that under the PP-NW and PP-WW policies the minimum value of sum
average AoI is achieved for a high value of ρ1. This is because when priority is with
source 2, a high value of ρ1 is needed to compensate for the priority. In addition, it can
be seen that for a high value of total load, i.e., ρ = 6, the range of values of ρ1 for which
PP-NW and PP-WW policies operate well becomes narrow.
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Fig. 16. The average AoI of sources 1 and 2 under the introduced packet management poli-
cies and the FCFS policy for µ = 1 with ρ = ρ1 +ρ2 = 0.9.

3.4.3 Fairness

For some applications, besides the sum average AoI, the individual average AoI of each
source is critical. In this case, fairness between different sources becomes important
to be taken into account. To compare the fairness between different sources under
the different packet management policies, the Jain’s fairness index [97] is used. For
the average AoI of sources 1 and 2, the Jain’s fairness index J(∆1,∆2) is defined
as [97, Definition 1] [98, Sect. 3]

J(∆1,∆2) =
(∆1 +∆2)

2

2(∆2
1 +∆2

2)
. (97)

The Jain’s index J(∆1,∆2) is continuous and lies in [0.5,1], where J(∆1,∆2) = 1 indicates
the fairest situation in the system.

Fig. 19 depicts the Jain’s fairness index for the average AoI of sources 1 and 2 as a
function of ρ1 under different packet management policies with µ = 1; in Fig. 19(a),
ρ = ρ1 +ρ2 = 1 and in Fig. 19(b), ρ = ρ1 +ρ2 = 6. As can be seen, among Policy 1,
Policy 2, Policy 3, LCFS-S, and LCFS-W policies, the LCFS-S policy provides the
lowest fairness in the system. This is because the packets of a source with a lower packet
arrival rate are most of the time preempted by the packets of the other source having a
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Fig. 17. The average AoI of sources 1 and 2 under different packet management policies for
µ = 1 with (a) ρ = ρ1 +ρ2 = 1, and (b) ρ = ρ1 +ρ2 = 6 (Reprinted by permission [16] c© 2021,
IEEE).
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Fig. 19. The Jain’s fairness index for the average AoI of sources 1 and 2 as a function of
ρ1 under different packet management policies for µ = 1 with (a) ρ = ρ1 + ρ2 = 1, and (b)
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higher packet arrival rate. In addition, it is observed that the proposed source-aware
policies (i.e., Policy 1, Policy 2, and Policy 3) in general provide better fairness than that
of the other policies and Policy 3 provides the fairest situation in the system. This is
because under these policies, a packet in the queue or server can be preempted only by a
packet with the same source index. Similarly as in Fig. 18(b), for the high load case, the
range of values of ρ1 for which PP-NW and PP-WW policies provide a good fairness
becomes narrow.

3.4.4 Standard deviation of the AoI

Fig. 20 depicts the average AoI of source 1 and its standard deviation (σ ) as a
function of ρ1 under Policy 2 and Policy 3 for µ = 1 with (a) ρ = ρ1 +ρ2 = 1, and (b)
ρ = ρ1 +ρ2 = 6. This figure shows that in a status update system, the standard deviation
of the AoI might have a large value. Thus, to have a reliable system, in addition to
optimizing the average AoI, we need to take the higher moments of the AoI into account.

3.5 Summary and discussion

A status update system consisting of two independent sources, one server, and one
sink was considered. Three source-aware packet management policies where a packet
in the system can be preempted only by a packet with the same source index were
introduced and analyzed. The average AoI for each source under the proposed packet
management policies was derived using the SHS technique. The numerical results
showed that Policy 2 results in a lower sum average AoI in the system compared to
the existing policies. In addition, the experiments showed that in general the proposed
source-aware policies result in higher fairness in the system than that of the existing
policies and, in particular, Policy 3 provides the fairest situation in the system.

Since Policy 2 provides the lowest sum average AoI and Policy 3 provides the fairest
situation in the system, the results under these two policies were generalized by deriving
the MGF of the AoI for each source in the system. By using the MGF in the numerical
results section, it was shown that to have a reliable system, in addition to optimizing the
average AoI, we need to take the higher moments of the AoI into account.

As numerically shown in this chapter, by applying an appropriate packet manage-
ment policy the information freshness and fairness between different sources can be
significantly improved.
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Fig. 20. The average AoI of source 1 and its standard deviation as a function of ρ1 under
Policy 2 and Policy 3 for µ = 1 with (a) ρ = ρ1 +ρ2 = 1, and (b) ρ = ρ1 +ρ2 = 6.
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4 Power minimization for AoI constrained
dynamic control in wireless sensor
networks

In Chapters 2 and 3, the AoI was analyzed in systems where we cannot control the
sampling process on the transmitter side, i.e., packet arrivals follow a Poisson process
and there was a queueing system on the transmitter side. In this chapter, it is assumed
that the sampling process in a WSN can be controlled and the radio resources need to be
efficiently assigned to meet an information freshness constraint for each sensor. A WSN
consisting of a set of sensors and a sink that is interested in time-sensitive information
from the sensors is considered. The problem of optimizing the sensors’ sampling action
and radio resource allocation to minimize the average total transmit power of all sensors
subject to an AoI constraint for each sensor is studied.

To solve the proposed problem, a dynamic control algorithm using the Lyapunov
drift-plus-penalty method is developed. In addition, optimality analysis of the proposed
dynamic control algorithm is provided. According to the Lyapunov drift-plus-penalty
method, to solve the main problem, we need to solve an optimization problem in each
time slot which is a mixed integer non-convex optimization problem. A low-complexity
sub-optimal solution for this per-slot optimization problem that provides near-optimal
performance is proposed and the computational complexity of the solution is evaluated.
Numerical results show the performance of the proposed dynamic control algorithm in
terms of transmit power consumption and AoI of the sensors versus different system
parameters. In addition, they show that the sub-optimal solution for the per-slot
optimization problems is near-optimal.

The rest of this chapter is organized as follows. The system model and problem
formulation are presented in Section 4.1. The Lyapunov drift-plus-penalty method to
solve the proposed problem is presented in Section 4.2. The optimality analysis of the
proposed dynamic control algorithm to solve the main problem is provided in Section
4.3. The proposed sub-optimal solution for the mixed integer non-convex optimization
problem in each slot is presented in Section 4.4. Numerical results are presented in
Section 4.5. Finally, concluding remarks are made in Section 4.6.
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Fig. 21. A WSN consisting of K sensors and one sink that is interested in time-sensitive
information from the sensors (Reprinted by permission [22] c© 2019, IEEE).

4.1 System model and problem formulation

4.1.1 System model

Consider a WSN consisting of a set K of K sensors and one sink, as depicted in Fig. 21.
The sink is interested in time-sensitive information from the sensors which measure
physical phenomena. A slotted communication with normalized slots t ∈ {0,1, . . .}, is
assumed where in each slot, the sensors share a set N of N orthogonal sub-channels
with bandwidth W Hz per sub-channel. It is assumed that a central controller controls
the sampling process of sensors in such a way that it decides whether each sensor takes
a sample or not at the beginning of each slot t.

It is assumed that the perfect channel state information of all sub-channels is
available at the central controller at the beginning of each slot. Let hk,n(t) denote the
channel coefficient from sensor k to the sink over sub-channel n in slot t. It is assumed
that hk,n(t) is a stationary process and is independent and identically distributed (i.i.d)
over slots.

Let ρk,n(t) denote the sub-channel assignment at time slot t as ρk,n(t) ∈ {0,1},
∀k ∈K ,n ∈N , where ρk,n(t) = 1 indicates that sub-channel n is assigned to sensor k
at time slot t, and ρk,n(t) = 0 otherwise. To ensure that at any given time slot t, each
sub-channel can be assigned to at most one sensor, the following constraint is used

∑
k∈K

ρk,n(t)≤ 1,∀n ∈N , t. (98)

Let pk,n(t) denote the transmit power of sensor k over sub-channel n in slot t. Then,
the signal-to-noise ratio (SNR) with respect to sensor k over sub-channel n in slot t is
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given by

γk,n(t) =
pk,n(t)|hk,n(t)|2

WN0
, (99)

where N0 is the noise power spectral density. The achievable rate for sensor k over
sub-channel n in slot t is given by

rk,n(t) =W log2
(
1+ γk,n(t)

)
. (100)

The achievable data rate of sensor k in slot t is the sum of the achievable data rates over
all the assigned sub-channels at slot t, expressed as

Rk(t) = ∑
n∈N

ρk,n(t)rk,n(t).

Let bk(t) denote the sampling action of sensor k at time slot t as bk(t) ∈ {0,1},
∀k ∈K , where bk(t) = 1 indicates that sensor k takes a sample at the beginning of time
slot t, and bk(t) = 0 otherwise. It is assumed that sampling time (i.e., the time needed to
acquire a sample) is negligible. It is considered that the central controller decides that
sensor k takes a sample at the beginning of slot t only if there are enough resources to
guarantee that the sample is successfully transmitted during the same slot t. Thus, if
sensor k takes a sample at the beginning of slot t (i.e., bk(t) = 1), the sample will be
transmitted during the same slot t successfully. To this end, the following constraint is
used

Rk(t) = ηbk(t),∀k ∈K , t, (101)

where η is the size of each status update packet (in bits). This constraint ensures that
when sensor k takes a sample at the beginning of slot t (i.e., bk(t) = 1), the achievable
rate for sensor k in slot t is Rk(t) = η , guaranteeing that the sample is transmitted during
the slot.

Let δk(t) denote the AoI of sensor k at the beginning of slot t. If sensor k takes
a sample at the beginning of slot t (i.e., bk(t) = 1), the AoI at the beginning of slot
t +1 drops to one, and otherwise (i.e., bk(t) = 0), the AoI increases by one. Thus, the
evolution of δk(t) is characterized as

δk(t +1) =

1, if bk(t) = 1;

δk(t)+1, otherwise.
(102)
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Fig. 22. The evolution of the AoI of sensor k. Without status updates, the AoI increases by
one unit during each slot; a status update received during slot t +2 caused the AoI to drop
to one at the beginning of slot t +3.

The evolution of the AoI of sensor k is illustrated in Fig. 22.
Following a commonly used approach [6, 85, 88, 99], the average AoI of sensor k is

defined as the time average of the expected value of the AoI given as

∆k = lim
T→∞

1
T

T−1

∑
t=0

E[δk(t)], (103)

where the expectation is with respect to the random wireless channel states and control
actions made in reaction to the channel states3. Without loss of generality, it is considered
that the initial value of the AoI of all sensors is δk(0) = 0, ∀k ∈K .

4.1.2 Problem formulation

The objective is to minimize the average total transmit power of sensors by jointly
optimizing the sampling action, the transmit power allocation, and the sub-channel
assignment in each slot subject to the maximum average AoI constraint for each sensor.

3In this work, all expectations are taken with respect to the randomness of the wireless channel states and
control actions made in reaction to the channel states.
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Thus, the problem is formulated as follows

minimize lim
T→∞

1
T

T−1

∑
t=0

∑
k∈K

∑
n∈N

E[pk,n(t)] (104a)

subject to lim
T→∞

1
T

T−1

∑
t=0

E[δk(t)]≤ ∆
max
k , ∀k ∈K (104b)

∑
n∈N

ρk,n(t)W log2

(
1+

pk,n(t)|hk,n(t)|2

WN0

)
= ηbk(t), ∀k ∈K , t (104c)

∑
k∈K

ρk,n(t)≤ 1, ∀n ∈N , t (104d)

pk,n(t)≥ 0, ∀k ∈K ,n ∈N , t (104e)

ρk,n(t) ∈ {0,1}, ∀k ∈K ,n ∈N , t (104f)

bk(t) ∈ {0,1}, ∀k ∈K , t, (104g)

with variables {pk,n(t),ρk,n(t)}k∈K ,n∈N and {bk(t)}k∈K for all t ∈ {0,1, . . .}, where
∆max

k is the maximum acceptable average AoI of sensor k. The constraints of problem
(104) are as follows. The inequality (104b) is the maximum acceptable average AoI
constraint for each sensor; the equality (104c) ensures that each sample is transmitted
during one slot; the inequality (104d) constrains that each sub-channel can be assigned
to at most one sensor in each slot; (104e), (104f), and (104g) represent the feasible
values for the transmit power, sub-channel assignment, and sampling policy variables,
respectively.

Problem (104) is a mixed integer non-convex problem where the constraints and the
objective function both contain averages over the optimization variables. In the next
section, a dynamic control algorithm is proposed to solve problem (104).

Prior to that, the definitions of feasibility of problem (104), channel-only policies,
and the Slater’s condition for problem (104) are introduced. These definitions are needed
in the optimality analysis in Section 4.3.

Definition 5. Problem (104) is feasible if there exists a policy that satisfies constraints
(104b)–(104g) [100, Sect. 4.3].

Definition 6. The channel-only policies are a class of policies that make decisions
for sampling action, power allocation and sub-channel assignment of each sensor
independently at every slot t based only on the observed channel state [100, Sect. 3.1].

Note that since a channel-only policy does not consider any other information about
the system, such as the AoI of the sensors, it might be difficult to devise a feasible
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channel-only policy. We would like to emphasize that our proposed solution (presented
in Section 4.2) is not a channel-only policy and we use the channel-only policies only to
prove the optimality of the proposed dynamic algorithm.

Assumption 1. It is assumed that problem (104) satisfies Slater’s condition [100,
Sect. 4.3], i.e., there are values ε > 0, Ĝ(ε)≥ 0, and a channel-only policy that satisfy
in each slot

∑
k∈K

∑
n∈N

E
[
p̂k,n(t)

]
= Ĝ(ε), (105)

E[δ̂k(t)]+ ε ≤ ∆
max
k , ∀k ∈K , (106)

where p̂k,n(t) and δ̂k(t) denote the allocated power to sensor k over sub-channel n in slot
t and the value of the AoI of sensor k in slot t determined by the channel-only policy,
respectively.

4.2 Dynamic control algorithm

In this section, a dynamic control algorithm is developed to solve problem (104). To
this end, the Lyapunov drift-plus-penalty method [100], [101] is used. According
to the drift-plus-penalty method, the average AoI constraints (104b) are enforced by
transforming them into queue stability constraints. For each inequality constraint (104b),
a virtual queue is associated in such a way that the stability of these virtual queues
implies the feasibility of the average AoI constraint (104b).

Let {Qk(t)}k∈K denote the virtual queues associated with AoI constraint (104b).
The virtual queues are updated in each time slot as

Qk(t +1) = max [Qk(t)−∆
max
k +δk(t +1),0] , ∀k ∈K . (107)

Here, the notion of strong stability is used; the virtual queues are strongly stable
if [100, Ch. 2]

lim
T→∞

1
T

T−1

∑
t=0

E[Qk(t)]< ∞, ∀k ∈K . (108)

According to (108), a queue is strongly stable if its average mean backlog is finite.
Note that the strong stability of the virtual queues in (107) implies that the average AoI
constraint (104b) is satisfied. Next, the Lyapunov function and its drift which are needed
to define the queue stability problem are introduced.
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Let S (t) = {Qk(t),δk(t)}k∈K denote the network state at slot t, and Q(t) denote a
vector containing all the virtual queues, i.e., Q(t) = [Q1(t),Q2(t), . . . ,QK(t)] ∈ R1×K .
Then, a quadratic Lyapunov function L(Q(t)) is defined by [100, Ch. 3]

L(Q(t)) =
1
2 ∑

k∈K
Q2

k(t). (109)

The Lyapunov function measures the network congestion: if the Lyapunov function is
small, then all the queues are small, and if the Lyapunov function is large, then at least
one queue is large. Therefore, by minimizing the expected change of the Lyapunov
function from one slot to the next slot, queues {Qk(t)}k∈K can be stabilized [100, Ch.
4].

Definition 7. The conditional Lyapunov drift α(S (t)) is defined as the expected change
in the Lyapunov function over one slot given that the current network state in slot t is
S (t). Thus, α(S (t)) is given by

α(S (t)) = E [L(Q(t +1))−L(Q(t)) |S (t)] . (110)

According to the drift-plus-penalty minimization method, a control policy that
minimizes the objective function of problem (104) with constraints (104b)–(104g) is
obtained by solving the following problem [100, Ch. 3]

minimize α(S (t))+V ∑
k∈K

∑
n∈N

E[pk,n(t) |S (t)] (111a)

subject to (104c)− (104g) (111b)

with variables {pk,n(t),ρk,n(t)}k∈K ,n∈N and {bk(t)}k∈K , where a parameter V ≥ 0
is used to adjust the emphasis on the objective function (i.e., power minimization).
Therefore, by varying V , a desired trade-off between the sizes of the queue backlogs and
the objective function value can be obtained.

Because of the presence of the max[·] function in the virtual queue evolution in
(107), working with the conditional Lyapunov drift α(S (t)) is difficult. Therefore,
following the standard procedure of the drift-plus-penalty method, we provide an upper
bound for the drift part that can be readily used in the optimization procedure [100, Ch.
4]; note that the penalty part (i.e., the original objective function) will remain unchanged.
We would like to point out that when the conditional Lyapunov drift is replaced with
the upper bound we have that: i) by minimizing the upper-bound of the conditional
Lyapunov drift, the same logic for stabilizing the virtual queues mentioned above holds
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true, and ii) the asymptotic optimality (as V → ∞) of the proposed dynamic control
algorithm is preserved, as shown in the optimality analysis in Section 4.3. To find the
upper bound of the conditional Lyapunov drift α(S (t)), the following inequality is
used in which, for any Â≥ 0, Ã≥ 0, and Ā≥ 0, we have [100, Ch. 3](

max
[
Â− Ã+ Ā,0

])2 ≤ Â2 + Ã2 + Ā2 +2Â(Ā− Ã). (112)

By applying (112) to (107), an upper bound for Q2
k(t +1) is given as

Q2
k(t +1)≤ Q2

k(t)+(∆max
k )2 +δ

2
k (t +1)+2Qk(t)(δk(t +1)−∆

max
k ) , ∀k ∈K .

(113)

By applying (113) to the conditional Lyapunov drift α(S (t)), an upper bound to
(110) is obtained as

α(S (t))≤ 1
2
E
[

∑
k∈K

(
(∆max

k )2 +δ
2
k (t +1)+2Qk(t)

(
δk(t +1)−∆

max
k
))∣∣∣∣S (t)

]
=

1
2 ∑

k∈K

(
(∆max

k )2 +E[δ 2
k (t +1) |S (t)]+2Qk(t)

(
E[δk(t +1) |S (t)]−∆

max
k
))

. (114)

To characterize the upper bound in (114), we need to determine E[δk(t +1) |S (t)]
and E[δ 2

k (t +1) |S (t)] in (114). To this end, by using the evolution of the AoI in (102),
δk(t +1) and δ 2

k (t +1) are calculated as

δk(t +1) = bk(t)+(1−bk(t))(δk(t)+1), ∀k ∈K

δ 2
k (t +1) = bk(t)+(1−bk(t))(δk(t)+1)2, ∀k ∈K .

(115)

By using the expressions in (115), E[δk(t +1) |S (t)] and E[δ 2
k (t +1) |S (t)] in (114)

are given as

E[δk(t +1) |S (t)] = E[bk(t) |S (t)]+(1−E[bk(t) |S (t)])(δk(t)+1), ∀k ∈K

E[δ 2
k (t +1) |S (t)] = E[bk(t) |S (t)]+(1−E[bk(t) |S (t)])(δk(t)+1)2, ∀k ∈K .

(116)
By substituting (116) into the right hand side of (114), and adding the term

V ∑
k∈K

∑
n∈N

E[pk,n(t) |S (t)]
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to both sides of (114), the upper bound for (111a) is given as

α(S (t))+V ∑
k∈K

∑
n∈N

E[pk,n(t) |S (t)]≤ (117)

E

[
V ∑

k∈K
∑

n∈N
pk,n(t)+

1
2 ∑

k∈K
bk(t)

(
1− (δk(t)+1)2−2Qk(t)δk(t)

)∣∣∣∣S (t)

]

+
1
2 ∑

k∈K

(
(∆max

k )2 +(δk(t)+1)2 +2Qk(t)(δk(t)+1)−2Qk(t)∆max
k

)
.

Having defined the upper bound (117), instead of minimizing (111a), (117) is mini-
mized subject to the constraints (104c)–(104g) with variables {pk,n(t),ρk,n(t)}k∈K ,n∈N
and {bk(t)}k∈K . Given that we observe the channel states {hk,n(t)}k∈K ,n∈N at the
beginning of each slot, the approach of opportunistically minimizing an expectation4 is
used to solve the optimization problem. According to this approach, (117) is minimized
by ignoring the expectations in each slot. Note that the approach of opportunistically
minimizing an expectation provides the optimal control policy [100, Sect. 1.8].

The main steps of the proposed dynamic control algorithm are summarized in
Algorithm 1. The controller observes the channel states {hk,n(t)}k∈K ,n∈N and network
state S (t) at the beginning of each time slot t. Then following the approach of
opportunistically minimizing an expectation, it takes a control action to minimize (118)
subject to the constraints (104c)–(104g) in Step 2. Note that the objective function
of (118) follows from (117) because i) the variables of the optimization problem
are {pk,n(t),ρk,n(t)}k∈K ,n∈N and {bk(t)}k∈K and thus, the second term of the upper
bound (117) is neglected as it does not depend on the optimization variables and ii) the
opportunistically minimizing an expectation approach minimizes (117) by ignoring the
expectations in each slot. In Step 3, according to the solution of (118), the virtual queue
and AoI of each sensor are updated by using (107) and (115), respectively.

4To make the concept of opportunistically minimizing an expectation clear, consider the following. A system
sees a random variable w with some (possibly unknown) probability distribution and we need to choose a control
action a from an action set Aw to minimize the expectation of a general cost function C(a,w), i.e., E[C(a,w)],
where the expectation is taken with respect to the distribution of w and the distribution of our action a that
possibly depends on w. Assume for simplicity that, for any given outcome w, there is at least one action amin

w
that minimizes the function C(a,w) over all a∈Aw. According to the approach of opportunistically minimizing
an expectation, the policy that minimizes E[C(a,w)] is the one that observes w and selects action amin

w [100,
Page 13]. In the considered system model, the channel coefficients {hk,n(t)}k∈K ,n∈N play the role of random
variable w; the sampling action, power allocation, and sub-channel assignment variables {bk(t)}k∈K , {pk,n(t),
ρk,n(t)}k∈K ,n∈N play the role of control action a; and the objective function of the per-slot optimization

problem, i.e., E
[
V ∑k∈K ∑n∈N pk,n(t)+

1
2

∑k∈K bk(t)
(
1− (δk(t)+1)2−2Qk(t)δk(t)

)∣∣∣∣S (t)
]

, plays the

role of cost function E[C(a,w)].
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Algorithm 1 Proposed dynamic control algorithm for problem (104)
Step 1. Initialization: set t = 0, set V , and initialize {Qk(0) = 0,δk(0) = 0}k∈K
for each time slot t do
Step 2. Sampling action, transmit power, and sub-channel assignment: obtain
{pk,n(t),ρk,n(t)}k∈K ,n∈N and {bk(t)}k∈K by solving the following optimization prob-
lem

minimize V ∑k∈K ∑n∈N pk,n(t)+
1
2

∑k∈K bk(t)
[
1− (δk(t)+1)2−2Qk(t)δk(t)

]
subject to (104c)− (104g),

(118)
with variables {pk,n(t),ρk,n(t)}k∈K ,n∈N and {bk(t)}k∈K

Step 3. Queue update: update {Qk(t +1),δk(t +1)}k∈K using (107) and (115)
Set t = t +1, and go to Step 2
end for

It is worth noting that the optimization problem (118) is a mixed integer non-convex
optimization problem containing both integer (i.e., sub-channel assignment and sampling
action) and continuous (i.e., power allocation) variables. One way to find the optimal
solution of problem (118) is to use an exhaustive search method. However, it suffers
from high computational complexity which increases exponentially with the number
of variables in the system. Therefore, in Section 4.4, a sub-optimal solution for the
optimization problem (118) is proposed. Before that, the optimality of the proposed
dynamic algorithm is analyzed which is carried out in the next section.

4.3 Optimality analysis of the solution

In this section, the performance of the proposed Lyapunov drift-plus-penalty method
(i.e., Algorithm 1) used to solve problem (104) is studied. In particular, the main result
of our analysis will be stated in Theorem 7 which characterizes the trade-off between the
optimality of the objective function (i.e., the average total transmit power) and average
backlogs of the virtual queues in (107).

First, an important property of the AoI evolution under the proposed dynamic
control algorithm is noted: the Lyapunov drift-plus-penalty Algorithm 1 ensures
that the AoI of sensors are bounded, i.e., there is a constant δ max < ∞ such that
δk(t) ≤ δ max,∀k ∈K , t. Recall that the main goal of Algorithm 1 is to minimize
the objective function of (118) in each slot. The objective function of (118) can
be written as a form ∑

K
k=1 f (bk(t),δk(t)), where f (bk(t),δk(t)) = V ∑n∈N pk,n(t)−

1/2bk(t)
[
−1+(δk(t)+1)2 +2Qk(t)δk(t)

]
. The maximum value of f (bk(t),δk(t)) for

each sensor k is zero and it is achieved when the sensor does not take a sample in slot t,
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i.e., bk(t) = 0. However, if sensor k does not take a sample, its AoI increases by one
after each slot, and thus, after some slots the term 1/2

[
−1+(δk(t)+1)2 +2Qk(t)δk(t)

]
of f (bk(t),δk(t)) becomes greater than the first term V ∑n∈N pk,n(t); in this case, it is
optimal for sensor k to take a sample since it makes f (bk(t),δk(t)) negative. Thus, it
can be concluded that each sensor takes a sample in a finite number of time slots, and
this implies that there is a constant δ max < ∞ such that δk(t)≤ δ max,∀k ∈K , t.

Next, Lemma 5 is presented which shows that if problem (104) is feasible, we can
get arbitrarily close to the optimal solution by channel-only policies. This lemma is used
to prove Theorem 7.

Lemma 5. Under the assumption that each channel is a stationary process and i.i.d over
slots, if problem (104) is feasible, then for any ν > 0, there is a channel-only policy that
satisfies in each slot

∑
k∈K

∑
n∈N

E
[
p∗k,n(t)

]
≤ Gopt +ν , (119)

E[δ ∗k (t)]−ν ≤ ∆
max
k , ∀k ∈K , (120)

where Gopt denotes the optimal value of the average total transmit power (i.e., the
optimal value of the objective function of problem (104)), and p∗k,n(t) and δ ∗k (t) denote
the allocated power to sensor k over sub-channel n and the value of the AoI of sensor k
determined by the channel-only policy, respectively.

Proof. See proof of Theorem 4.5 in [100, Appendix 4.A].

Next, Theorem 7 is presented which characterizes a trade-off between the optimality
of the objective function of problem (104) and the average backlogs of the virtual queues
in the system.

Theorem 7. Suppose that problem (104) is feasible and L(Q(0))< ∞. Then, for any
values of parameter V > 0, Algorithm 1 satisfies the average AoI constraints in (104b).
Further, let p̄k,n(t) denote the allocated power to sensor k over sub-channel n in slot t as
determined by Algorithm 1, and Q̄k(t) denote the virtual queue of sensor k in slot t as
determined by Algorithm 1. Then, we have the following upper bounds for the average
total transmit power and the average backlogs of the virtual queues in the system:

lim
T→∞

1
T

T−1

∑
t=0

∑
k∈K

∑
n∈N

E[p̄k,n(t)]≤
B
V
+Gopt, (121)
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lim
T→∞

1
T

T−1

∑
t=0

∑
k∈K

E[Q̄k(t)]≤
B+V Ĝ(ε)

ε
, (122)

where Ĝ(ε) with ε > 0 is specified by Assumption 1 (i.e., (105) and (106)), and constant
B is determined as follows

B =
1
2 ∑

k∈K

(
(∆max

k )2 +(δ max)2
)
. (123)

Before proving Theorem 7, the following remark is presented.

Remark 4. Inequality (122) implies the strong stability of the virtual queues {Qk(t)}k∈K
which, in turn, implies that the average AoI constraints in (104b) are satisfied. In addi-
tion, from inequality (122), we can see that the upper bound of the average backlogs of
the virtual queues is an increasing linear function of parameter V . Moreover, inequality

(121) shows that the value of V can be chosen so that
B
V

is arbitrarily small, and thus,
the average total transmit power achieved by Algorithm 1 becomes arbitrarily close to
the optimal value Gopt. Consequently, parameter V provides a trade-off between the
optimality of the objective function (i.e., the average total transmit power) and average
backlogs of the virtual queues in the system.

Next, Theorem 7 is proved.

Proof. Let δ̄k(t + 1) and ᾱ(S (t)) denote the value of the AoI of sensor k and the
conditional Lyapunov drift as determined by Algorithm 1 in slot t, respectively. Then,
by using the bound in (114) and Lemma 5, we have

ᾱ(S (t))+V ∑
k∈K

∑
n∈N

E[p̄k,n(t) |S (t)]
(a)
≤ V ∑

k∈K
∑

n∈N
E[p̄k,n(t) |S (t)]+ (124)

1
2 ∑

k∈K

(
(∆max

k )2 +E[(δ̄k(t +1))2 |S (t)]+2Qk(t)
(
E[δ̄k(t +1) |S (t)]−∆

max
k
))

(b)
≤ VE ∑

k∈K
∑

n∈N

[
p∗k,n(t)

∣∣S (t)
]
+

1
2 ∑

k∈K

(
(∆max

k )2 +E[(δ ∗k (t +1))2 |S (t)]+

2Q̄k(t)
(
E[δ ∗k (t +1) |S (t)]−∆

max
k
)) (c)
≤ V (Gopt +ν)+

1
2 ∑

k∈K

(
(∆max

k )2 +(δ max)2

+2Q̄k(t)ν
)
,

where, as defined earlier, p∗k,n(t) and δ ∗k (t +1) denote the allocated power to sensor k
over sub-channel n and the value of the AoI of sensor k determined by the channel-
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only policy that yields (119) and (120) for a fixed ν > 0. Inequality (a) comes from
the upper bound in (114). Inequality (b) follows because i) Algorithm 1 minimizes
the left-hand side of inequality (b) over all possible policies (not only channel-only
policies) by using the opportunistically minimizing an expectation method [100,
Sect. 1.8] and ii) the considered channel-only policy that yields (119) and (120) is a
particular policy among all the policies. Inequality (c) follows because i) we have
E[(δ ∗k (t +1))2 |S (t)]≤ (δ max)2, and ii) the considered channel-only policy that yields
(119) and (120) is independent of the network state S (t). Thus, we have

∑
k∈K

∑
n∈N

E
[
p∗k,n(t)

∣∣S (t)
]
= ∑

k∈K
∑

n∈N
E
[
p∗k,n(t)

]
≤ Gopt +ν , (125)

E[δ ∗k (t +1) |S (t)]−∆
max
k = E[δ ∗k (t +1)]−ν ≤ ∆

max
k , ∀k ∈K . (126)

By taking ν → 0, (124) results in the following inequality

ᾱ(S (t))+V ∑
k∈K

∑
n∈N

E[p̄k,n(t) |S (t)]≤ B+V Gopt, (127)

where B is the constant defined in (123), i.e., B = 1/2∑k∈K
(
(∆max

k )2 +(δ max)2
)
.

Taking expectations over randomness of the network state on both sides of (127) and
using the law of iterated expectations, we have

E
[
L
(
Q̄(t +1)

)
]−E[L

(
Q̄(t)

)]
+V ∑

k∈K
∑

n∈N
E[p̄k,n(t)]≤ B+V Gopt, (128)

where Q̄(t) denotes a vector containing all the virtual queues in slot t under Algorithm 1.
By summing over t ∈ {0, . . . ,T −1} and using the law of telescoping sums, we have

E
[
L
(
Q̄(T )

)]
−E

[
L
(
Q̄(0)

)]
+V

T−1

∑
t=0

∑
k∈K

∑
n∈N

E[p̄k,n(t)]≤ T B+TV Gopt. (129)

Now we are ready to prove the bound of the average total transmit power in (121).
In this regard, (129) is rewritten as follows

V
T−1

∑
t=0

∑
k∈K

∑
n∈N

E[p̄k,n(t)]≤−E
[
L
(
Q̄(T )

)]
+E

[
L
(
Q̄(0)

)]
+T B+TV Gopt

(a)
≤ (130)

T B+TV Gopt +E
[
L
(
Q̄(0)

)]
,
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where inequality (a) follows because the negative term on the right-hand side of the first
inequality was neglected. Dividing (130) by TV , we have

1
T

T−1

∑
t=0

∑
k∈K

∑
n∈N

E[p̄k,n(t)]≤
B
V
+Gopt +

E
[
L
(
Q̄(0)

)]
TV

. (131)

Since E
[
L
(
Q̄(0)

)]
has a finite value, taking the limit T → ∞ in (131) proves the bound

of the average total transmit power in (121).
To prove the bound of the average backlogs of the virtual queues in (122), it is

assumed that the Slater’s condition presented in Assumption 1 holds. In other words, it
is assumed that there is a channel-only policy so that the virtual queues are strongly
stable. Thus, by using the bound in (114), we have (cf. (124))

ᾱ(S (t))+V ∑
k∈K

∑
n∈N

E[p̄k,n(t) |S (t)]
(a)
≤ V ∑

k∈K
∑

n∈N
E[p̄k,n(t) |S (t)]+ (132)

1
2 ∑

k∈K

(
(∆max

k )2 +E[(δ̄k(t +1))2 |S (t)]+2Q̄k(t)
(
E[δ̄k(t +1) |S (t)]−∆

max
k
))

(b)
≤ V ∑

k∈K
∑

n∈N
E
[
p̂k,n(t)

∣∣S (t)
]
+

1
2 ∑

k∈K

(
(∆max

k )2 +E[(δ̂k(t +1))2 |S (t)]+

2Q̄k(t)
(
E[δ̂k(t +1) |S (t)]−∆

max
k
)) (c)
≤ V Ĝ(ε)+B− ε ∑

k∈K
Q̄k(t),

where, as defined earlier, p̂k,n(t) and δ̂k(t +1) denote the allocated power to sensor k
over sub-channel n and the value of the AoI of sensor k determined by the channel-only
policy that yields (105) and (106) in the Slater’s condition, respectively. Inequality (a)
comes from the upper bound in (114). Inequality (b) follows because i) Algorithm 1
minimizes the left-hand side of inequality (b) over all possible policies (not only
channel-only policies) by using the opportunistically minimizing an expectation method
and ii) the considered channel-only policy that yields (105) and (106) in the Slater’s
condition is a particular policy among all the policies. Inequality (c) follows because
i) we have E[(δ̂k(t +1))2 |S (t)]≤ (δ max)2, ii) constant B is given by (123), and iii)
the channel-only policy that yields (105) and (106) is independent of the network state
S (t). Thus, we have

∑
k∈K

∑
n∈N

E
[
p̂k,n(t) |S (t)

]
= ∑

k∈K
∑

n∈N
E
[
p̂k,n(t)

]
= Ĝ(ε), (133)

E[δ̂k(t +1) |S (t)]+ ε = E[δ̂k(t +1)]+ ε ≤ ∆
max
k , ∀k ∈K . (134)

118



Taking expectations over randomness of the network state on both sides of the
resulting inequality in (132) and using the law of iterated expectations, we have

E
[
L
(
Q̄(t +1)

)
]−E[L

(
Q̄(t)

)]
+V ∑

k∈K
∑

n∈N
E[p̄k,n(t)]≤ (135)

B− ε ∑
k∈K

E[Q̄k(t)]+V Ĝ(ε).

By summing over t ∈ {0, . . . ,T −1} and using the law of telescoping sums, we have

E
[
L
(
Q̄(T )

)]
−E

[
L
(
Q̄(0)

)]
+V

T−1

∑
t=0

∑
k∈K

∑
n∈N

E[p̄k,n(t)]≤ (136)

T B− ε

T−1

∑
t=0

∑
k∈K

E[Q̄k(t)]+TV Ĝ(ε).

To prove the bound in (122), the inequality (136) is rewritten as follows

ε

T−1

∑
t=0

∑
k∈K

E[Q̄k(t)]≤−E
[
L
(
Q̄(T )

)]
+E

[
L
(
Q̄(0)

)]
− (137)

V
T−1

∑
t=0

∑
k∈K

∑
n∈N

E[p̄k,n(t)]+T B+TV Ĝ(ε)
(a)
≤ T B+TV Ĝ(ε)+E

[
L
(
Q̄(0)

)]
,

where inequality (a) follows because the negative terms on the right-hand side of the
first inequality was neglected. By dividing (137) by T ε , we have

1
T

T−1

∑
t=0

∑
k∈K

E[Q̄k(t)]≤
B+V Ĝ(ε)

ε
+

E
[
L
(
Q̄(0)

)]
T ε

. (138)

Since E
[
L
(
Q̄(0)

)]
has a finite value, taking the limit T → ∞ in (138) proves the bound

of the average backlogs of the virtual queues in (122).

4.4 A sub-optimal solution for the per-slot problem (118)

As discussed in Section 4.2, we need to solve an instance of the optimization problem
(118) in each slot (see Algorithm 1). Problem (118) is a mixed integer non-convex
optimization problem containing both integer (i.e., sub-channel assignment and sampling
action) and continuous (i.e., power allocation) variables. Thus, finding its optimal
solution is not trivial and conventional methods for solving convex optimization problems
cannot directly be used. The optimal solution of problem (118) can be found by an
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exhaustive search method that requires searching over all possible combinations of the
binary variables, i.e., the sub-channel assignment and sampling action variables, and
solving a (simple) power allocation problem for each such combination. However, the
computational complexity of this method increases exponentially with the number of
sampling action and sub-channel assignment variables in the system (i.e., KN). Thus,
finding an appropriate sub-optimal solution with low computational complexity is
necessary for the optimization problem (118). Next, in Section 4.4.1, the proposed
sub-optimal solution is presented. Then, in Section 4.4.2, complexity analysis of the
sub-optimal solution is presented.

4.4.1 Solution algorithm

The main idea behind the proposed sub-optimal solution is to reduce the computational
complexity from that of the full exhaustive search method described above. To this
end, we search only over all possible combinations of sampling action variables bk(t),
∀k ∈K ; for each such combination, a low-complexity two-stage optimization strategy
is proposed to find a sub-optimal solution to the joint power allocation and sub-channel
assignment problem. Then, among all the solutions, the best one is selected as the
sub-optimal solution to problem (118). Note that if the number of sub-channels N
is less than the number of sensors K (i.e., N < K) we do not search over all possible
combinations of sampling action variables because the maximum number of sensors that
can take a sample in each slot is N.

Let b(t) = [b1(t), . . . ,bK(t)] denote a vector containing all binary sampling action
variables in slot t. Further, let B denote the set of all possible values of binary vector b(t)
with cardinality |B|= 2K . In addition, let B̃ ⊆B denote the set of all possible values of
such binary vectors b(t) for which the number of sensors that have a sample to transmit
is less than or equal to the number of sub-channels N, i.e., B̃ = {b(t) | b(t) ∈B,

‖b(t)‖0 ≤ N}, where ‖ · ‖0 counts the number of non-zero elements in a vector. Note
that for K ≤ N, the set B̃ is equal to set B, i.e., B̃ = B.

The steps of the proposed sub-optimal solution are summarized in Algorithm 2.
Step 2 performs exhaustive search over feasible sampling actions b(t) ∈ B̃: for each
such b(t) a sub-optimal power allocation and sub-channel assignment is obtained by
finding an approximate solution for the mixed integer non-convex problem (118) with
variables {ρk,n(t), pk,n(t)}k∈K ,n∈N (i.e., problem (139)) which is presented in the next
subsections. Step 3 returns a sub-optimal solution to problem (118).

The power allocation and sub-channel assignment problem (139) is a mixed integer
non-convex optimization problem. Thus, a two-stage sequential optimization method is
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Algorithm 2 Proposed sub-optimal solution algorithm to problem (118)

Step 1. Initialization: set O = 0, {b̃k(t) = 0}k∈K , {p̃k,n(t) = 0}k∈K ,n∈N , and
{ρ̃k,n(t) = 0}k∈K ,n∈N
Step 2. For each b(t) ∈ B̃ do

A. Find a sub-optimal solution for the following joint power allocation and
sub-channel assignment problem

minimize V ∑k∈K ∑n∈N pk,n(t)+
1
2

∑k∈K bk(t)
[
1− (δk(t)+1)2−2Qk(t)δk(t)

]
subject to (104c)− (104f),

(139)
with variables {ρk,n(t), pk,n(t)}k∈K ,n∈N

B. Denote the obtained solution by { ṗk,n(t)}k∈K ,n∈N , {ρ̇k,n(t)}k∈K ,n∈N , and
{ḃk(t)}k∈K

C. If V ∑k∈K ∑n∈N ṗk,n(t)+
1
2

∑k∈K ḃk(t)
[
1− (δk(t)+1)2−2Qk(t)δk(t)

]
≤ O:

I. Set { p̃k,n(t) = ṗk,n(t)}k∈K ,n∈N , {ρ̃k,n(t) = ρ̇k,n(t)}k∈K ,n∈N , {b̃k(t) = ḃk(t)}k∈K

II. Set O =V ∑k∈K ∑n∈N p̃k,n(t)+
1
2

∑k∈K b̃k(t)
[
1− (δk(t)+1)2−2Qk(t)δk(t)

]
Step 3. Return {ρ̃k,n(t)}k∈K ,n∈N , {ρ̃k,n(t)}k∈K ,n∈N , and {b̃k(t)}k∈K as a sub-optimal
solution to problem (118)

proposed to find a sub-optimal solution to (139). The method performs first a greedy
sub-channel assignment, which is followed by power allocation.

Sub-channel assignment

The proposed greedy algorithm to assign the sub-channels is presented in Algorithm 3.
The main idea is to find the strongest sub-channel among all the sensors that have a
sample to transmit, and assign this sub-channel greedily to that sensor (Step 1). This
assigned sub-channel is then removed from the set of available sub-channels because
each sub-channel can be assigned to at most one sensor (Step 2). For fairness, the sensor
that was just assigned the sub-channel is removed from the set of competing sensors
guaranteeing that this sensor cannot get more sub-channels until the other sensors get
the same number of sub-channels (Step 3). This procedure is repeated until all the
sub-channels are assigned to the sensors.

Power allocation

Given that the sub-channels have been assigned, power allocation for each sensor that
has a sample to transmit can be determined separately. Let Nk ⊆N denote the set of

121



Algorithm 3 Sub-Channel Assignment
Initialization: a) initialize sets K ′= {k | k∈K ,bk(t) = 1}, and N ′=N , b) initialize
{ρk,n(t) = 0}k∈K ,n∈N , and c) set i = 1
While i≤ N do
Step 1. Set ρk,n(t) = 1 where (k,n) = argmaxk∈K ′,n∈N ′ |hk,n(t)|2
Step 2. N ′ = N ′ \{n}
Step 3. If K ′ \{k}= /0, set K ′ = K ; otherwise, set K ′ = K ′ \{k}
Step 4. i = i+1
End while

sub-channels assigned to sensor k. Thus, for each sensor k that has a sample to transmit
(i.e., bk(t) = 1), the following optimization problem needs to be solved

minimize ∑n∈Nk
pk,n(t)

subject to ∑n∈Nk
ρk,n(t)W log2

(
1+

pk,n(t)|hk,n(t)|2

WN0

)
= η

pk,n(t)≥ 0, ∀n ∈Nk,

(140)

with variables {pk,n(t)}n∈Nk . The optimization problem (140) can be solved by the
water-filling approach [102, Proposition 2.1].

4.4.2 Complexity of the sub-optimal solution

In this section, the complexity of the sub-optimal solution for problem (118) is in-
vestigated and it is compared with that of the full exhaustive search method. The
proposed sub-optimal solution presented in Algorithm 2 has three main steps, namely,
i) determining the sampling actions which is solved by searching over all feasible
sampling action combinations, ii) sub-channel assignment which is solved by the
proposed greedy algorithm presented in Algorithm 3, and iii) power allocation which
is solved by the water-filling approach. The computational complexity of the search
over feasible sampling actions is equal to the cardinality of B̃, i.e., |B̃| which is less
than or equal to 2K (recall that since B̃ ⊆B, we have |B̃| ≤ |B| = 2K). Since the
proposed greedy algorithm to solve the sub-channel assignment (i.e., Algorithm 3)
has N iterations, its computational complexity is N. Since the water-filling approach
needs at most N iterations, its worst-case computational complexity is N [102]. Thus,
since for each possible sampling action combination, a sub-channel assignment and a
power allocation problem with complexity 2N is solved, the computational complexity
of the proposed sub-optimal solution presented in Algorithm 2 is 2N|B̃|. Next, the
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computational complexity of the exhaustive search method to solve problem (118) is
investigated.

The exhaustive search method searches over all feasible binary sampling action and
sub-channel assignment variables. For each such combination, a convex power allocation
problem is solved. Since the computational complexity of the search over sampling
actions is |B̃| and there are NK binary sub-channel assignment variables, computational
complexity of the binary search is |B̃|2KN . Assuming that the water-filling approach
presented in [102, Proposition 2.1] is used to solve the power allocation problem,
the worst-case computational complexity of the power allocation is N. Thus, the
computational complexity of the exhaustive search method to solve problem (118) is
N|B̃|2KN .

Considering the discussion above, it can be seen that as compared to the full
exhaustive search method, the computational complexity of the proposed sub-optimal
solution reduces by a factor that is exponential in KN.

4.5 Numerical and simulation results

In this section, the performance of the proposed dynamic control algorithm presented
in Algorithm 1 is evaluated in terms of transmit power consumption and AoI of the
sensors. In addition, the optimality gap of the sub-optimal solution applied to solve
problem (118) presented in Algorithm 2 is evaluated.

4.5.1 Simulation setup

Consider a WSN depicted in Fig. 23, where the sink is located in the center and
K = 10 sensors are randomly placed in a two-dimensional plane. Sensors are indexed
according to their distance to the sink in such a way that sensor 1 is the nearest sensor
to the sink and sensor 10 is the farthest. The channel coefficient from sensor k to
the sink over sub-channel n in slot t is modeled as hk,n(t) = (dk/d0)

ξ ck,n(t), where
dk is the distance from sensor k to the sink, d0 is the far field reference distance, ξ

is the path loss exponent, and ck,n(t) is a Rayleigh distributed random coefficient.
Accordingly, (dk/d0)

ξ represents large-scale fading and the term ck,n(t) represents
small-scale Rayleigh fading. The path loss exponent and the far field reference distance
are set as ξ =−3 and d0 = 1, respectively, and the parameter of Rayleigh distribution is
set as 0.5. The bandwidth of each sub-channel is W = 180 kHz. The size of each packet
is η = 600 Bytes. The same maximum acceptable average AoI is considered for all the
sensors, i.e., ∆max

k = ∆max,∀k.
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Fig. 23. The considered WSN where the sink is located in the center and K = 10 sensors are
randomly placed. The coordinates of sensor k is shown by Sk(xk,yk).

4.5.2 Performance of the dynamic control algorithm

In this section, the performance of the dynamic control algorithm (i.e., Algorithm 1) is
evaluated in terms of transmit power consumption and average AoI of the sensors. To
solve the optimization problem (118), Algorithm 2 is used.

Fig. 24 illustrates the evolution of the average total transmit power for different
values of parameter V with maximum acceptable average AoI of sensors ∆max = 4 and
N = 10 sub-channels. The figure shows that when V increases, the average total transmit
power decreases. This is because when V increases, more emphasis is on minimizing
the total transmit power in the objective function of optimization problem (118).

In addition, for the benchmarking, a baseline policy that has a fixed sampling rate
is considered. The sampling rate is set as 1/7, so that resulting average AoI of each
sensor is equal to the maximum acceptable average AoI ∆k = ∆max = 4,∀k ∈K . The
sampling schedule of the considered baseline method is presented in Table 8. For
this baseline policy, the sub-channel assignment and transmit power allocation are
determined by the proposed methods in Section 4.4.1. As can be seen in Fig. 24, the
proposed dynamic control algorithm achieves more than 60 % saving in the average
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Table 8. Sampling schedule of the considered fixed rate sampling policy of rate 1/7.

Time slot t 1 2 3 4 5 6 7 8 9 10 11
Sensor k with bk(t) = 1 1 2 3 4 5, 6 7, 8 9, 10 1 2 3 · · ·
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Fig. 24. Evolution of the average total transmit power of the sensors for different values of
V with ∆max = 4 and N = 10. For comparison, a control policy with a fixed sampling rate is
included as a baseline method.

total transmit power compared to the baseline policy. This shows the advantage of the
proposed dynamic control algorithm in optimizing the sampling process in contrast to
relying on a pre-defined sampling schedule which enforces a sensor to transmit a status
update even under a bad channel situation.

Fig. 25 illustrates the trade-off between the average total transmit power and average
backlogs of the virtual queues as a function of V for ∆max = 4 and N = 10 sub-channels.
As can be seen, by increasing V the average backlogs of the virtual queues increase and
the average total transmit power decreases. This shows the inherent trade-off provided
by the drift-plus-penalty method which was shown in Theorem 7. Moreover, the figure
demonstrates that when V is sufficiently large, increasing it further does not significantly
reduce the power. This is visible in Fig. 24 as well.

Fig. 26 illustrates the evolution of the average total transmit power for different
numbers of sub-channels N with ∆max = 4 and V = 8000. The figure shows that when
N increases, the average total transmit power decreases, as expected. This is because
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Fig. 25. Trade-off between the average total transmit power of the sensors and average
backlogs of the virtual queues as a function of V .

when N increases, more sub-channels can be assigned to each sensor, and thus, one
packet can be transmitted with less power. In addition, we can see that the effect of
increasing the number of sub-channels from N = 6 to N = 8, and further to N = 10, is
more profound. This is because when there are fewer sub-channels than sensors, due to
the orthogonality of the sub-channel assignment, all the sensors cannot be served in
every slot and some sensors can get a sub-channel only after a few slots. Note that in
order to meet the AoI constraint, the sensors may be enforced to transmit their sample
even if the power consumption is excessive. On the other hand, increasing the number
of sub-channels from N = 10 to N = 12 yields only negligible gain. This is because the
greedy sub-channel assignment policy guarantees that each sensor will be assigned at
least one sub-channel.

Fig. 27 illustrates the evolution of the average total transmit power for different
values of maximum AoI ∆max with N = 10 sub-channels and V = 8000. The figure
shows that when ∆max decreases, the average total transmit power increases. This is
because when ∆max decreases, each sensor needs to take samples more frequently to
satisfy constraint (104b).

Fig. 28 depicts the average AoI for individual sensors as a function of V for ∆max = 4
and N = 10 sub-channels. According to this figure, when V increases, the average AoI
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Fig. 26. Evolution of the average total transmit power of the sensors for different numbers
of sub-channels N with ∆max = 4 and V = 8000.

of each sensor increases as well. This is because when V increases, the backlogs of
the virtual queues associated with the average AoI constraint (104b) increase. We can
also observe that the average AoI of each sensor is always smaller than the maximum
acceptable average AoI ∆max. This validates that the drift-plus-penalty method is able to
meet the average constraint through enforcing the virtual queue stability. Moreover, we
can see that a sensor that has a longer distance to the sink has higher average AoI. This
is because a sensor far away from the sink must compensate for the large-scale fading by
using more power, and thus, it rarely samples.

4.5.3 Performance of the sub-optimal solution

To evaluate the optimality gap of the sub-optimal solution for (118) presented in
Algorithm 2, the results obtained by the sub-optimal solution are compared to those of
the optimal solution calculated by the full exhaustive search method. In this regard, a
small setup with K = 5 sensors {S1, . . . ,S5} (see Fig. 23) and N = 5 sub-channels is
considered. The maximum acceptable average AoI of sensors is ∆max = 4.
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Fig. 27. Evolution of the average total transmit power of the sensors for different values of
∆max with N = 10 and V = 8000.

Fig. 29 illustrates the evolution of the average total transmit power for different
values of V . Fig. 30 illustrates the trade-off between the average total transmit power
of the sensors and average backlogs of the virtual queues as a function of V . Fig. 31
depicts the average AoI of different sensors as a function of V . Fig. 32 depicts the
evolution of the average AoI of different sensors for V = 8000. From these figures, it
can be seen that the proposed sub-optimal solution provides a near-optimal solution for
the optimization problem (118).

4.6 Summary and discussion

A status update system consisting of a set of sensors and one sink was considered. A
controller controls the sampling process and decides for each sensor whether it takes a
sample or not at the beginning of each slot. The status update packets of the sensors are
transmitted by sharing a set of orthogonal sub-channels in each slot. The problem of
minimizing the average total transmit power of sensors under the average AoI constraint
for each sensor was formulated. To solve the problem, the Lyapunov drift-plus-penalty
method was used and the optimality analysis was conducted. In the numerical results
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Fig. 28. The average AoI of different sensors as a function of V for ∆max = 4 and N = 10.

section, the performance of the proposed dynamic solution algorithm was shown in
terms of transmit power consumption and AoI of sensors. The results showed that by
using the proposed dynamic control algorithm more than 60 % saving in the average
total transmit power can be achieved compared to a baseline policy. In addition, it was
shown that the sub-optimal solution for the per-slot optimization problems provides a
near-optimal solution.

The numerical results illustrated the inherent trade-off between the average AoI of
the sensors and the average total transmit power that the Lyapunov drift-plus-penalty
method brings in the system. This trade-off is adjusted by the penalty parameter V . A
high value of V is beneficial in that it enforces smaller transmit powers, yet at the cost of
increasing the average AoI of each sensor. The results validated that, regardless of the
value of V , the proposed drift-plus-penalty method met the time average AoI constraints
through successfully enforcing the virtual queue stability. Regarding the selection of
parameter V in practice, it was observed that when V is sufficiently large, increasing it
further does not significantly reduce the power.
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Fig. 29. Evolution of the average total transmit power of the sensors for different values of
V .
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virtual queues as a function of V .
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Fig. 31. The average AoI of different sensors as a function of V .
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5 AoI in wireless sensor networks: A
multi-access channel

Due to the scarcity of radio spectrum and the simplicity of devices in WSNs, it is critical
to implement an appropriate channel access protocol to efficiently send the status update
packets from the sensors to the destination over a shared channel. CSMA/CA is the
most simple and practical contention-based access technique in wireless networks.
CSMA/CA is a distributed channel access scheme that allows each sensor to initiate
transmissions without any admission whenever a sensor has a data packet to transmit.

In this chapter, an application of the derived results for the AoI analysis in M/G/1
queueing models in Chapter 2 is studied. The worst case average AoI and average
peak AoI of a sensor in a simplified CSMA/CA-based WSN under the FCFS policy
are derived. The worst case analysis is carried out by considering that when a sensor
contends for the channel to transmit its status update packet, all the other sensors have a
packet to transmit and thus, the probability of collisions has the highest value.

The remainder of this chapter is organized as follows. Section 5.1 presents the
system model and the AoI metrics. The worst case average AoI and average peak AoI of
the simplified CSMA/CA-based system are derived in Section 5.2. Numerical results are
presented in Section 5.3 and conclusions are drawn in Section 5.4.

5.1 System model and AoI metrics

Consider a simplified CSMA/CA-based WSN consisting of K sensors, denoted by
K = {1, . . . ,K}. Each sensor is assigned to send status update packets of a random
process to a destination. The AoI of one sensor, k, in a worst case scenario where all the
other sensors k′ ∈K \{k} always have a packet to transmit is studied, i.e., the other
K−1 sensors have saturated queues. In this scenario, the probability of collisions for
sensor k has the highest value. It is assumed that the packet arrival rate of sensor k
follows the Poisson process with rate λ , and the server of sensor k works according
to the FCFS policy. In the following, a simplified CSMA/CA technique and the AoI
metrics are presented.
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5.1.1 CSMA/CA mechanism

Here, the main concept of the standard CSMA/CA technique, standardized by IEEE
802.11, is briefly presented. When sensor k has a packet to transmit, it monitors
the shared channel. If the channel is idle for a predetermined period of time named
distributed interframe space (DIFS), the sensor transmits. Otherwise, if the channel is
sensed busy, the sensor persists to monitor the channel until it is found idle for a DIFS
period, denoted by TDIFS. The time immediately following an idle DIFS period is slotted.
At this point, the sensor generates a random number w according to the discrete uniform
distribution taking values in {1, . . . ,C̄} and sets a back-off counter to the generated
number, where C̄ is a fixed contention window size. After choosing the random number,
the back-off time counter of the sensor decrements at the beginning of each slot. Thus, a
slot represents the time interval between two consecutive back-off counter states. When
there is no transmission by the other sensors, the back-off counter state decrements after
a fixed time interval denoted by TF. When a transmission is detected, the counter is
frozen; when the channel is sensed idle for TDIFS, the counter is reactivated. The sensor
starts to transmit its data when the counter reaches zero. After transmitting the data,
the transmitter senses the channel to detect the acknowledgment (ACK) message from
the destination. If the transmitter does not receive an ACK within a predetermined
time, or it detects the signal of other sensors in the channel, it reschedules the packet
transmission according to the random back-off rule. After a successful transmission, if
the sensor has the next packet in its buffer, the transmission process is started from the
random back-off rule.

5.1.2 Average AoI and peak AoI

The considered status update system for sensor k is identical to an M/G/1 queueing
model. Let S denote the service time. Then, the average AoI ∆ and the average peak AoI
A of sensor k is calculated by (see equations (65) and (67))

∆ = E[S]+
λE[S2]

2(1−λE[S])
+

1−λE[S]
λLS(λ )

, (141)

A =
1
λ
+

λE[S2]

2(1−λE[S])
+E[S], (142)
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where E[S] is the expectation of the service time5, E[S2] is the second moment of the
service time, and LS(λ ) = E[e−λS] is the Laplace transform of the PDF of the service
time at the packet arrival rate λ .

In general, the calculation of (1) and (2) requires finding closed-form expressions of
the service time parameters E[S], E[S2], and LS(λ ) for the standard CSMA/CA-based
system. This, however, is intractable due to the intricate nature of the contention
mechanism which results in a dependency of the transmissions of the different sensors.
In this regard, the approximations introduced in [103] are used as follows. It is assumed
that the probability of a collision in each slot for each sensor has a fixed value which
thus disregards the dependencies of the transmission states of other sensors as well as
the influence of the number of retransmissions. It is worth noting that when we are
evaluating the system from the viewpoint of sensor k, the main analysis intrinsically
focuses on the behavior of the system when sensor k has a packet to transmit. On the
other hand, the other sensors always have a packet to transmit. Thus, conditioned on the
transmission stage of sensor k, each of the K sensors in the network sees K−1 sensors
that have a packet to transmit. Moreover, it is assumed that a packet transmission process
is started by the random back-off rule and that the ACK message is instantaneous and
error-free.

5.2 Worst case average AoI and average peak AoI of the simplified
CSMA/CA-based system

To calculate the average AoI and average peak AoI in (141) and (142), respectively, the
three required quantities E[S], E[S2], and LS(λ ) are derived. Let M denote a discrete
random variable that represents the number of (channel access) attempts sensor k uses to
successfully transmit a data packet. Let Sm denote a random variable that represents the
service time conditioned on the event that the number of attempts is M = m, i.e., the first
m−1 attempts are failed and the mth attempt is successful. Accordingly, Sm is expressed
as

Sm =
m−1

∑
j=1

ζ j +ξm, (143)

where ζ j is a random variable that represents the elapsed time of an unsuccessful
transmission of sensor k at the jth attempt and ξm is a random variable that represents
the elapsed time of a successful transmission of sensor k at the mth attempt.

5Note that in Chapter 2, expectation of the service time E[S] was shown as 1/µ , i.e., E[S] = 1/µ .
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By using the law of iterated expectations, the expectation E[S], second moment
E[S2], and Laplace transform E[e−λS] are calculated as follows:

E[S] = EM
[
E[S|M]

]
=

∞

∑
m=1

E[Sm]Pr(M = m),

E[S2] = EM
[
E[S2|M]

]
=

∞

∑
m=1

E[S2
m]Pr(M = m), (144)

E[e−λS] = EM
[
E[e−λS|M]

]
=

∞

∑
m=1

E
[
e−λSm

]
Pr(M = m),

where Pr(M = m) is the probability of the event that m−1 attempts are failed and the
mth attempt is successful. It can seen from (144) that to calculate the expectations
E[S], E[S2], and E[e−λS], we need to calculate the quantities E[Sm], E[S2

m], E[e−λSm ],
and Pr(M = m). These are derived in the following subsections.

5.2.1 Calculation of the first moment of Sm

By using (143), E[Sm] in (144) is written as follows:

E[Sm] =
m−1

∑
j=1

E[ζ j]+E[ξm]. (145)

First, the expectation E[ξm] is derived. Let a discrete random variable W̄ represent the
random number generated by sensor k in the back-off rule. Let ξ j,w denote the elapsed
time of a successful transmission of sensor k at the jth attempt conditioned on the event
that the generated number is W̄ = w. Then, by using the law of iterated expectations,
E[ξ j] can be calculated as follows:

E[ξ j] = EW̄
[
E[ξ j|W̄ ]

]
(146)

=
C

∑
w=1

E[ξ j,w]Pr(W̄ = w)

(a)
=

C̄

∑
w=1

E[ξ j,w]

C̄
,

where equality (a) follows because the random number W̄ is selected according to the
uniform distribution, i.e., Pr(W̄ = w) = 1/C̄.
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By the definition of a successful transmission, ξ j,w in (146) is equal to the summation
of the elapsed time until the back-off time counter reaches zero and the required time to
transmit a packet, i.e.,

ξ j,w =
w

∑
i=1

T̄j,i +TP, (147)

where T̄j,i is a random variable that represents the time interval between two consecutive
back-off counter states i and i−1 at the jth attempt and TP is the required time to
transmit a data packet (which is determined according to the channel rate, data packet
size etc.). By substituting (147) in (146), we have

E[ξ j] =
1
C̄

C̄

∑
w=1

(
w

∑
i=1

E[T̄j,i]+TP

)
. (148)

Similarly as for E[ξ j], the expectation E[ζ j] is derived by introducing a random
variable ζ j,w to describe the elapsed time of an unsuccessful transmission of sensor k at
the jth attempt conditioned on the event that the generated number in the back-off rule
is W̄ = w. Thus, E[ζ j] can be calculated as follows:

E[ζ j] = EW̄
[
E[ζ j|W̄ ]

]
(149)

=
C

∑
w=1

E[ζ j,w]Pr(W̄ = w)

=
C̄

∑
w=1

E[ζ j,w]

C̄
.

The random variable ζ j,w is equal to the summation of the elapsed time until the back-off
time counter reaches zero and the required time to transmit a packet, i.e.,

ζ j,w =
w

∑
i=1

T̄j,i +TP. (150)

By substituting (150) in (149), we have

E[ζ j] =
1
C̄

C̄

∑
w=1

(
w

∑
i=1

E[T̄j,i]+TP

)
. (151)

To calculate E[ξ j] in (148) and E[ζ j] in (151), we need to calculate E[T̄j,i]. The
random variable T̄j,i can be defined based on two events: 1) when there is no transmission
by the other sensors k′ ∈K \{k} between two back-off counter states i and i−1, we
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have T̄j,i = TF, where TF is the maximum duration that the sensor persists to sense the
idle channel before decrementing the back-off counter; 2) when there is at least one
transmission (successful or unsuccessful) of the other sensors k′ ∈K \{k} between
two consecutive back-off counter states i and i−1, the time between states i and i−1 is
equal to the summation of the required time to transmit a packet TP, the DIFS period
TDIFS, and a fraction of the slot size TF (i.e., the time interval between the time instant
that the back-off counter state is decremented to i and the time instant that sensor k
detects a transmission of the other sensors). However, similarly as in the analysis
in [103], this fraction of the slot size is neglected in computing T̄j,i, and thus, we
have T̄j,i = TP +TDIFS. It is worth to note that in a CSMA/CA-based system, TF is
significantly smaller than the time period TP +TDIFS. For example, with the considered
parameters in the numerical results in Section 5.3, TF is less than 2 % of TP +TDIFS.
Let Ptr

j,i denote the probability of having at least one transmission by the other sensors
between two consecutive back-off counter states i and i−1 at jth attempt. Thus, E[T̄j,i]

is given by

E[T̄j,i] = Ptr
j,i(TP +TDIFS)+(1−Ptr

j,i)TF. (152)

Due to the considered assumptions, the probability of having at least one transmission by
the other sensors between each two consecutive back-off counter states at each attempt
has a fixed value and we have [103, Eq. (9)]

Ptr
j,i = Ptr = 1−

(
C̄−1
C̄+1

)K−1

,∀i, j. (153)

Therefore, (152) becomes

E[T̄j,i] = E[T̄ ] = (1−Ptr)TF +Ptr(TP +TDIFS),∀i, j. (154)

Considering (154) and the expressions for E[ξ j] and E[ζ j] in (148) and (151),
respectively, we have:

E[ξ j] = E[ζ j′ ], ξ̄1, ∀ j, j′, (155)

where, by substituting (154) in (148), ξ̄1 is calculated as

ξ̄1 =
(C̄+1)E[T̄ ]

2
+TP. (156)
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Finally, by using (155) in (145), we have

E[Sm] = mξ̄1. (157)

5.2.2 Calculation of the second moment of Sm

By using (143), E[S2
m] in (144) is calculated as follows:

E[S2
m] = E

[(m−1

∑
j=1

ζ j +ξm
)2
]
= E

[m−1

∑
j=1

ζ
2
j

]
(158)

+2E
[m−1

∑
j=1

m−1

∑
j′=1, j′ 6= j

ζ jζ j′

]
+E
[
ξ

2
m
]
+2E

[
ξm

m−1

∑
j=1

ζ j

]
.

Since the elapsed time of each channel access attempt is independent of the elapsed time
of the other attempts, we have

E[ζ jζ j′ ] = E[ζ j]E[ζ j′ ],∀ j, j′, j 6= j′

E[ζ jξ j′ ] = E[ζ j]E[ξ j′ ],∀ j, j′, j 6= j′. (159)

By means of (159), E[S2
m] in (158) can be presented as a function of ξ̄1 in (156), E[ξ 2

m],
and E[ζ 2

j ], j = {1, . . . ,m−1}. By following steps similar to (146)–(155) for E[ξ 2
j ] and

E[ζ 2
j ], it is easy to show that

E[ξ 2
j ] = E[ζ 2

j′ ], ξ̄2, ∀ j, j′, (160)

where ξ̄2 is calculated using the steps similar as for ξ̄1, resulting in

ξ̄2=
1
C̄

C̄

∑
w=1

(
2wE[T̄ ]TP +T 2

P +wE[T̄ 2]+w(w−1)E[T̄ ]2
)

(a)
= T 2

P +(C̄+1)
[
(2E[T̄ ]TP +E[T̄ 2]−E[T̄ ]2)

2
+

(2C̄+1)E[T̄ ]2

6

]
, (161)

where equality (a) follows from the following feature of the finite series [90, Sect. 1.5]

Ū

∑
u=1

u2 =
Ū(Ū +1)(2Ū +1)

6
,
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E[T̄ ] is calculated by (154), and E[T̄ 2] is given by

E[T̄ 2] = (1−Ptr)T 2
F +Ptr(TP +TDIFS)

2. (162)

Finally, by applying (155), (159), and (160), (158) is written by

E[S2
m] = mξ̄2 +m(m−1)ξ̄ 2

1 . (163)

5.2.3 Calculation of the Laplace transform of Sm at λ

By substituting (143) in E[e−λSm ], we have

E[e−λSm ] = E
[

∏
m−1
j=1 e−λζ j e−λξm

]
. (164)

Due to the fact that elapsed time of different attempts are independent of each other, we
have

E[e−λζ j e−λζ j′ ] = E[e−λζ j ]E[e−λζ j′ ],∀ j, j′, j 6= j′

E[e−λζ j e−λξ j′ ] = E[e−λζ j ]E[e−λξ j′ ],∀ j, j′, j 6= j′. (165)

By applying (165), (164) is written as follows:

E[e−λSm ] = ∏
m−1
j=1 E

[
e−λζ j

]
E
[
e−λξm

]
. (166)

By following steps similar to (146)–(155) for E[e−λζ j ] and E[e−λξ j ], it can be shown
that

E[e−λζ j ] = E[e−λξ j′ ], ξ̄3, ∀ j, j′, (167)

where ξ̄3 is given as

ξ̄3 =
1
C̄

C̄

∑
w=1

(
E[e−λ T̄ ]we−λTP

)
(168)

(a)
=

e−λTPE[e−λ T̄ ](1−E[e−λ T̄ ]C̄)

C̄(1−E[e−λ T̄ ])
,
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where equality (a) follows from the following feature of the finite series [90, Sect. 1.5]

Ū

∑
u=1

ᾱ
u =

ᾱ(1− ᾱŪ )

1− ᾱ
,

and E[e−λ T̄ ] is given by

E[e−λ T̄ ] = (1−Ptr)e−λTF +Ptre−λ (TP+TDIFS). (169)

Finally, using (167), E[e−λSm ] in (166) is written as

E[e−λSm ] = ξ̄
m
3 . (170)

5.2.4 Calculation of probability Pr(M = m)

Due to the considered assumptions, the probability of a successful transmission in each
attempt has a fixed value which is denoted by PS. Therefore, Pr(M = m) is given by

Pr(M = m) = PS(1−PS)
m−1. (171)

Since there are C̄ slots in each contention interval, the probability of success in each
contention interval is equal to

PS =
C̄

∑
w=1

Psuc
w Pr(W̄ = w), (172)

where Psuc
w is the probability of successful transmission of sensor k in slot w. When

sensor k chooses to transmit in slot w, probability of having a successful transmission is
equal to the probability that the other K−1 sensors do not transmit in slot w which is
given by [103, Eq. (9)]

Psuc
w =

(C̄−1
C̄+1

)K−1
. (173)

Substituting (173) into (172) we have

PS =

(
C̄−1
C̄+1

)K−1

. (174)
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Final expressions for E[S], E[S2], and LS(λ ) in (144)

Substituting (157), (163), (170), and (171) in (144), we have

E[S] =
∞

∑
m=1

mξ̄1PS(1−PS)
m−1,

E[S2] =
∞

∑
m=1

(
mξ̄2 +m(m−1)ξ̄ 2

1
)
PS(1−PS)

m−1,

E[e−λS] =
∞

∑
m=1

ξ̄
m
3 PS(1−PS)

m−1. (175)

According to the feature of the series, for each 0≤ ᾱ < 1, we have [90, Sect. 8.6]

∞

∑
u=1

uᾱ
u =

ᾱ

(1− ᾱ)2 , (176)

∞

∑
u=1

u2
ᾱ

u =
ᾱ(1+ ᾱ)

(1− ᾱ)3 .

Thus, by applying (176) in (175), E[S], E[S2], and E[e−λS] are calculated as follows:

E[S] =
ξ̄1

PS
, (177)

E[S2] =
ξ̄2

PS
+

ξ̄ 2
1 (2−2PS)

P2
S

,

LS(λ ) =


ξ̄3PS

1− ξ̄3 + ξ̄3PS
, ξ̄3(1−PS)< 1,

∞, Otherwise,

with ξ̄1, ξ̄2, and ξ̄3 given in (156), (161), and (168), respectively. As the outcome, the
expressions in (177) can be used to calculate the average AoI in (141) and the average
peak AoI in (142) in the considered model.

5.3 Numerical results

In this section, numerical results are presented to show the behavior of the AoI
for different system parameters. The system parameters are set as TDIFS = 128 µs,
TF = 50 µs, channel bit rate 1 Mbit/s, and packet size 300 Bytes.
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Figs. 33 and 34 depict the average AoI and average peak AoI of sensor k as a
function of the packet arrival rate λ for different number of sensors with contention
window sizes C̄ = {100,800}, respectively. When the number of sensors K increases,
the average AoI and average peak AoI dramatically increase because the probability of
collisions in the system increases. It is worth noting that when K increases, the values
of the packet arrival rate λ that minimize the average AoI and average peak AoI both
decrease. In addition, the curvatures demonstrate that the range of values of λ that result
in near-optimal AoI becomes narrower for the increasing values of K. This emphasizes
the importance of implementing an optimal generation policy of status update packets in
WSNs with a shared-access channel.

Fig. 35 illustrates the average AoI of sensor k as a function of λ for different
contention window sizes with a fixed number of sensors K = 100. According to this
figure, naively increasing (or decreasing) the contention window size does not minimize
the average AoI and average peak AoI. Namely, C̄ = 1000 leads to a smaller average
AoI than both C̄ = 500 and C̄ = 1500. However, for all larger contention window sizes
C̄ = {500,1000,1500}, the AoI is not very sensitive to the packet arrival rate λ in the
sense that a wide range of values of λ results in relatively low values of the average AoI.

Fig. 36 illustrates the optimal value of the contention window size C̄ as a function
of the number of sensors K and the arrival rate λ . According to this figure, when the
number of sensors increases, the optimal contention window size C̄ increases. This
is because when C̄ increases, the probability of a collision decreases. In other words,
increasing the size of the contention window mitigates the effect of an increased number
of sensors on the probability of a collision. However, C̄ can not be set to an arbitrary
large number because it results in a high value of the average AoI. In addition, the curve
shows that for the small number of sensors, when the packet arrival rate λ increases, the
optimal C̄ increases smoothly. Moreover, the figure illustrates that for a large number
of sensors, when λ increases, the optimal C̄ first increases and then decreases. This
represents the trade-off between the effect of the probability of a collision and the delay
imposed by the contention window size on the average AoI.

5.4 Summary and discussion

The worst case average AoI and average peak AoI of a simplified CSMA/CA-based
system were analytically evaluated. The worst case analysis was carried out by
considering a scenario in which the probability of collisions for one considered sensor
has the highest value. According to the numerical results, the number of contending
sensors significantly affects the AoI due to network congestion. The experiments
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Fig. 33. The average AoI of sensor k as a function of λ for different number of sensors with
a fixed contention window size C̄ = 100 (Reprinted by permission [23] c© 2020, IEEE).
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Fig. 34. The average peak AoI of sensor k as a function of λ for different number of sensors
with C̄ = 80 (Reprinted by permission [23] c© 2020, IEEE).
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Fig. 35. The average AoI of sensor k as a function of λ for different contention window sizes
with a fixed number of sensors K = 100 (Reprinted by permission [23] c© 2020, IEEE).

Fig. 36. The optimal value of the contention window size C̄ as a function of the number of
sensors K and arrival rate λ (Reprinted by permission [23] c© 2020, IEEE).

145



illustrated that optimizing the contention window size and the packet arrival rate can
significantly improve the freshness of status updates in the considered system.

The presented analysis confined to simplifications of CSMA/CA by omitting the
dependencies of sensors’ queues. Analyzing a CSMA/CA-based system where all
sensors have bursty arrivals instead of saturated queues is most likely analytically
intractable. This is true even in a simplified homogeneous scenario, where all sensors
have equal packet arrival rates. This comes from the fact that in CSMA/CA-based
systems, there are complex interactions of queues which result in having highly
correlated queues in various sensors [104, 105].
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6 Conclusions and future work

This chapter summarizes the thesis, discusses the contributions and their insights, and
presents the conclusions. Finally, several future directions are provided.

6.1 Conclusions

The objective of this thesis was to analyze the information freshness and propose various
methods to improve it in future networks and cyber-physical systems. To this end,
the AoI was used as a metric to measure the information freshness. Two different
approaches were investigated: i) analyzing the AoI when we cannot control the sampling
process in the system where the AoI characterization for various queueing modes and
packet management polices was provided; ii) optimizing the AoI when we can control
the sampling process in the system where a dynamic control algorithm to optimize radio
resource allocation and sampling action was provided.

In Chapter 2, a single-server multi-source FCFS queueing model with Poisson
arrivals was considered and the average AoI of each source was analyzed for the M/M/1
and M/G/1 cases. For the M/M/1 case, an exact expression for the average AoI was
derived and for the M/G/1 case, three approximate expressions for the average AoI were
derived. The simulation results showed that the approximate expressions for the average
AoI are relatively accurate for different service time distributions. In addition, they
showed that the delay does not fully capture the information freshness, i.e., minimizing
the average system delay does not necessarily lead to good performance in terms of AoI
and, reciprocally, minimizing the average AoI does not minimize the average system
delay.

In Chapter 3, the effectiveness of applying various packet management policies
in a status update system was studied. A status update system consisting of two
independent sources, one server, and one sink was considered. Three source-aware
packet management policies were introduced and their AoI performance was analyzed.
According to the source-aware policies, a packet in the system can be preempted only by
a packet with the same source index. The average AoI and MGF of the AoI for each
source under the proposed policies were derived. The numerical results showed that in
general the proposed source-aware policies result in higher fairness in the system than
that of the existing policies. Moreover, the results showed that to have a reliable status
update system, higher moments of the AoI need to be taken into account.
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From Chapters 2 and 3, it can be concluded that when there is a possibility to
manage the packets in the system and it is not necessary to deliver all the packets to the
destination, an appropriate packet management policy can significantly improve the
information freshness and the fairness among sources in a multi-source queueing model.

Chapter 4 considered a system where the sampling process can be controlled. A
status update system consisting of a set of sensors and one sink was considered. The
status update packets from the sensors are transmitted by sharing a set of orthogonal
sub-channels in each slot. The problem of average total transmit power minimization
subject to an average AoI constraint for each sensor was studied. To solve the proposed
problem, the Lyapunov drift-plus-penalty method was used. The optimality analysis of
the proposed solution was conducted. In the numerical results section, the trade-off
between the average total transmit power and the average AoI of the sensors was shown.
In addition, the performance of the solution algorithm was illustrated.

In Chapter 5, an application of the derived average AoI and average peak AoI
expressions in Chapter 2 was studied. A simplified CSMA/CA-based WSN was
considered and the worst case average AoI and average peak AoI were derived. The
worst case analysis was carried out by considering that when a sensor contends for
the channel to transmit its status update packet, all the other sensors have a packet to
transmit. Therefore, the probability of collisions has the highest value. The experiments
illustrated that optimizing the contention window size and the packet arrival rate can
significantly improve the freshness of status updates in the considered system.

6.2 Future work

Since the AoI is a relatively new metric to analyze the information freshness, there are
many interesting future works to be considered. Some of the possible research directions
are listed in the following.

Chapter 3 opens several research directions for future study. It would be interesting
to extend the results for more than two sources. As stated earlier, the same methodology
as used in Chapter 3 can be applied for more than two sources; however, the complexity
of the calculations increases exponentially with the number of sources. Another
interesting future work includes calculating the stationary distribution of the AoI in a
computation-intensive multi-source status update system where the information of a
transmitted packet is not available until being processed by the sink. In other words, in
addition to having a queueing system on the transmitter side, we have a queueing system
at the sink side as well. Consequently, different packet management policies can be
considered on both transmitter and sink sides.
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The proposed system model in Chapter 4 could be made more realistic by considering
different types of sensors with various service requirements. More specifically, the
sensors could be divided into two non-overlapping groups: i) a set of AoI-sensitive
sensors and ii) a set of throughput-sensitive sensors. Here, the sink needs the information
gathered by each throughput-sensitive sensor during all the slots, i.e., the throughput-
sensitive sensors have data to transmit in each slot. An interesting future work would be
to study the trade-off between the average AoI of the AoI-sensitive sensors and the
throughput of the throughput-sensitive sensors. In this regard, one can formulate an
optimization problem with an objective to minimize sum average AoI of the AoI-sensitive
sensors subject to minimum throughput requirement for the throughput-sensitive sensors.

As discussed in Chapter 3, considering higher moments of the AoI is essential
to be taken into account in the system design. The proposed optimization problem
in Chapter 4 can be improved by considering the second moment of the AoI as an
additional constraint in the optimization problem. Alternatively, a multi-objective
optimization problem can be considered with the first and second moments of the AoI as
the objectives of the problem.

Another interesting future work would be to address a more realistic setup in a
CSMA/CA-based system, where all sensors have bursty arrivals instead of saturated
queues. However, due to the complex interactions of queues, an exact analysis is most
likely analytically intractable and thus, one may need to resort on numerical simulations.
In addition, machine learning approaches could be used to analyze and improve the
performance of such a system.
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Appendix 1

1.1 Proof of Lemma 1, 2, and 3

1.1.1 Proof of Lemma 1

Using the facts that T1,i−1 and X1,i are independent and the PDF of X1,i is fX1,i(x) = λ1e−λ1x,
P(EB

1,i) can be written as

P(EB
1,i) =

∫
∞

0
P(T1,i−1 ≥ X1,i|T1,i−1 = t) fT1,i−1(t)dt (178)

= 1−
∫

∞

0
e−λ1t fT1,i−1(t)dt

(a)
= 1−LT (λ1),

where equality (a) follows because the system times of different packets are stochastically
identical, i.e., T1,i =

st T2,i =
st T , ∀i [7, 28]; and LT (λ1) denotes the Laplace transform of

the PDF of the system time T at λ1. Because EL
1,i is the complementary event of EB

1,i, we
have

P(EL
1,i) = 1−P(EB

1,i) = LT (λ1). (179)

The relation between the Laplace transforms of the PDFs of the system time T and
service time S is given as [96, Sect. 5.1.2]

LT (a) =

(
1−ρ

)
aLS(a)

a−λ
(
1−LS(a)

) . (180)

Finally, substituting (180) in (178) and (179) results in the expressions (21) and (22),
respectively.

1.1.2 Proof of Lemma 2

The proof of Lemma 2 follows from the fact that for random variables Y1 and Y2 and a
certain event A, the conditional PDF fY1,Y2|A(y1,y2) is given by [106, Sect. 4.4]

fY1,Y2|A(y1,y2) =


fY1,Y2(y1,y2)

P(A)
(y1,y2) ∈ A

0 otherwise.
(181)
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In Lemma 2, Y1 and Y2 are X1,i and T1,i−1, respectively, which are two independent
random variables, and event A is EB

1,i.

1.1.3 Proof of Lemma 3

According to the feature of the Laplace transform, for any function f (y),y ≥ 0, we
have [90, Sect. 13.5]:

L∫ y
0 f (b)db(a) =

L f (y)(a)
a

. (182)

Therefore, using (27) and (182), we have

Lx2FT1 (x)
(a)
∣∣∣∣
a=λ1

= Lx2 ∫ x
0 fT1 (b)db(a)

∣∣∣∣
a=λ1

(183)

=

d2
(

LT (a)
a

)
da2

∣∣∣∣
a=λ1

=
aL′′T (a)−2L′T (a)

a2 +
2LT (a)

a3

∣∣∣∣
a=λ1

=
λ1L′′T (λ1)−2L′T (λ1)

λ 2
1

+
2LT (λ1)

λ 3
1

.

1.2 Values of v̄q0, ∀q ∈Q, for Policy 1

v̄00 =
3ρ4

1 +ρ3
1 (5ρ2 +9)+ρ2

1 (2ρ2
2 +11ρ2 +10)+ρ1(4ρ2

2 +6ρ2 +5)+ρ2
2 +ρ2 +1

µρ1(1+ρ1)2
(
(ρ +1)2−ρ2

)(
ρ2 +ρ(2ρ1ρ2 +1)+1

) ,

(184)

v̄10 =
ρ5

2 +3ρ4
2 +4ρ3

2 +3ρ2
2 +ρ2 +∑

7
k=1 ρk

1γ1,k

µρ1(1+ρ)(1+ρ2)(1+ρ1)2
(
(ρ +1)2−ρ2

)(
ρ2 +ρ(2ρ1ρ2 +1)+1

) , (185)
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where

γ1,1 = 4ρ
5
2 +16ρ

4
2 +26ρ

3
2 +22ρ

2
2 +9ρ2 +1,

γ1,2 = 2ρ
5
2 +25ρ

4
2 +64ρ

3
2 +70ρ

2
2 +35ρ2 +6,

γ1,3 = 11ρ
4
2 +62ρ

3
2 +107ρ

2
2 +72ρ2 +16,

γ1,4 = ρ
4
2 +23ρ

3
2 +75ρ

2
2 +77ρ2 +23,

γ1,5 = 3ρ
3
2 +23ρ

2
2 +41ρ2 +18,

γ1,6 = 3ρ
2
2 +10ρ2 +7,

γ1,7 = ρ
2
2 +10ρ2 +1.

v̄20 =
ρ6

2 +4ρ5
2 +7ρ4

2 +7ρ3
2 +4ρ2

2 +ρ2 +∑
7
k=1 ρk

1γ2,k

µ(1+ρ)(1+ρ1)2(1+ρ2)2
(
(ρ +1)2−ρ2

)(
ρ2 +ρ(2ρ1ρ2 +1)+1

) , (186)

where

γ2,1 = 5ρ
6
2 +23ρ

5
2 +46ρ

4
2 +51ρ

3
2 +32ρ

2
2 +10ρ2 +1,

γ2,2 = 4ρ
6
2 +36ρ

5
2 +108ρ

4
2 +156ρ

3
2 +119ρ

2
2 +46ρ2 +7,

γ2,3 = ρ
6
2 +2ρ

5
2 +100ρ

4
2 +213ρ

3
2 +222ρ

2
2 +111ρ2 +21,

γ2,4 = 4ρ
5
2 +40ρ

4
2 +134ρ

3
2 +202ρ

2
2 +138+33,

γ2,5 = 6ρ
4
2 +39ρ

3
2 +89ρ

2
2 +87ρ2 +28,

γ2,6 = 4ρ
3
2 +18ρ

2
2 +26ρ2 +12,

γ2,7 = ρ
2
2 +3ρ2 +2.

v̄30 =
ρ6

2 +3ρ5
2 +4ρ4

2 +3ρ3
2 +ρ2

2 +∑
7
k=1 ρk

1γ3,k

µρ1(1+ρ)(1+ρ2)(1+ρ1)2
(
(ρ +1)2−ρ2

)(
ρ2 +ρ(2ρ1ρ2 +1)+1

) , (187)
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where

γ3,1 = 5ρ
6
2 +19ρ

5
2 +30ρ

4
2 +25ρ

3
2 +10ρ

2
2 +ρ2,

γ3,2 = 5ρ
6
2 +37ρ

5
2 +84ρ

4
2 +87ρ

3
2 +41ρ

2
2 +6ρ2,

γ3,3 = 2ρ
6
2 +27ρ

5
2 +101ρ

4
2 +149ρ

3
2 +91ρ

2
2 +18ρ2,

γ3,4 = 8ρ
5
2 +55ρ

4
2 +126ρ

3
2 +110ρ

2
2 +30ρ2,

γ3,5 = 12ρ
4
2 +51ρ

3
2 +69ρ

2
2 +27ρ2,

γ3,6 = 8ρ
3
2 +20ρ

2
2 +12ρ2,

γ3,7 = 2ρ
2
2 +2ρ2.

v̄40 =
ρ7

2 +4ρ6
2 +7ρ5

2 +7ρ4
2 +4ρ3

2 +ρ2
2 +∑

7
k=1 ρk

1γ4,k

µ(1+ρ)(1+ρ2)2(1+ρ1)2
(
(ρ +1)2−ρ2

)(
ρ2 +ρ(2ρ1ρ2 +1)+1

) , (188)

where

γ4,1 = 6ρ
7
2 +27ρ

6
2 +53ρ

5
2 +58ρ

4
2 +36ρ

3
2 +11ρ

2
2 +ρ2,

γ4,2 = 6ρ
7
2 +48ρ

6
2 +137ρ

5
2 +193ρ

4
2 +145ρ

3
2 +55ρ

2
2 +8ρ2,

γ4,3 = 2ρ
7
2 +32ρ

6
2 +143ρ

5
2 +286ρ

4
2 +287ρ

3
2 +140ρ

2
2 +26ρ2,

γ4,4 = 8ρ
6
2 +67ρ

5
2 +201ρ

4
2 +281ρ

3
2 +183ρ

2
2 +43ρ2,

γ4,5 = 12ρ
5
2 +67ρ

4
2 +137ρ

3
2 +123ρ

2
2 +38ρ2,

γ4,6 = 8ρ
4
2 +31ρ

3
2 +40ρ

2
2 +14ρ2,

γ4,7 = 2ρ
3
2 +5ρ

2
2 +3ρ2.

v̄50 =
ρ6

2 +3ρ5
2 +4ρ4

2 +3ρ3
2 +ρ2

2 +∑
7
k=1 ρk

1γ5,k

µ(1+ρ)(1+ρ2)(1+ρ1)2
(
(ρ +1)2−ρ2

)(
ρ2 +ρ(2ρ1ρ2 +1)+1

) , (189)
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where

γ5,1 = 6ρ
6
2 +22ρ

5
2 +34ρ

4
2 +28ρ

3
2 +11ρ

2
2 +ρ2,

γ5,2 = 7ρ
6
2 +47ρ

5
2 +103ρ

4
2 +105ρ

3
2 +49ρ

2
2 +7ρ2,

γ5,3 = 3ρ
6
2 +38ρ

5
2 +133ρ

4
2 +190ρ

3
2 +115ρ

2
2 +23ρ2,

γ5,4 = 12ρ
5
2 +78ρ

4
2 +170ρ

3
2 +145ρ

2
2 +40ρ2,

γ5,5 = 18ρ
4
2 +73ρ

3
2 +95ρ

2
2 +37ρ2,

γ5,6 = 12ρ
3
2 +29ρ

2
2 +17ρ2,

γ5,7 = 3ρ
2
2 +3ρ2.

1.3 Values of v̄s
q0 for Policy 2

v̄s
00 =

ρ1

2ρ1ρ2 +ρ +1

[ (1− s̄)2 +ρ2

(ρ1− s̄)(1+ρ1− s̄)2(1+ρ− s̄)2

+
ρ3

1 +ρ2
1 (3−2s̄+ρ2)+ρ1((2− s̄)2 +ρ2(2− s̄)−1)

(ρ1− s̄)(1+ρ1− s̄)2(1+ρ− s̄)2

]
.

v̄s
10 =

ρ2
1

2ρ1ρ2 +ρ +1

[
ρ3

1 (ρ2 +1− s̄)+ρ2
1 α1,1 +ρ1α1,2 +(1− s̄)3

(1− s̄)(ρ1− s̄)(1+ρ1− s̄)2(1+ρ2− s̄)(1+ρ− s̄)
+

(ρ2 +1)2−3ρ2s̄−1
(1− s̄)(ρ1− s̄)(1+ρ1− s̄)2(1+ρ2− s̄)(1+ρ− s̄)

]
,

where

α1,1 = (ρ2 +2)2 +2(s̄−2)2 +3(1−ρ2)−9,

α1,2 = ρ
2
2 (2− s̄)+ρ2(5−6s̄+2s̄2)+3−7s̄+5s̄2− s̄3.

v̄s
20 =

ρ1ρ2

2ρ1ρ2 +ρ +1

[ 1−2s̄+ρ2

(ρ1− s̄)(1+ρ1− s̄)2(1+ρ− s̄)
+

ρ3
1 +ρ2

1 (3−2s̄+ρ2)+ρ1(3(1− s̄)+ s̄2 +(2− s̄))
(ρ1− s̄)(1+ρ1− s̄)2(1+ρ− s̄)

]
.
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v̄s
30 =

ρ2
1 ρ2

2ρ1ρ2 +ρ +1

[
ρ3

1 (ρ2 +1− s̄)+ρ2
1 α3,1 +ρ1α3,2 +(ρ2 +1)2

(ρ1− s̄)(1− s̄)2(1+ρ1− s̄)2(1+ρ2− s̄)(1+ρ− s̄)
+

(1− s̄)3−3ρ2s̄−1
(ρ1− s̄)(1− s̄)2(1+ρ1− s̄)2(1+ρ2− s̄)(1+ρ− s̄)

]
,

where

α3,1 = (ρ2 +2)2 +2(s̄−1)2− s̄(3ρ2 +1)−3,

α3,2 = ρ
2
2 (2− s̄)+ρ2(5−6s̄+2s̄2)+3−7s̄+5s̄2− s̄3.

v̄s
40 =

ρ2
1 ρ2

2ρ1ρ2 +ρ +1

[
ρ3

1 +ρ2
1 (3−2s̄+ρ2)+ρ1(3(1− s̄)

(ρ1−s̄)(1−s̄)(1+ρ1−s̄)2(1+ρ− s̄)

+
ρ2(2− s̄)+ s̄2 +1)+1−2s̄+ρ2

(ρ1− s̄)(1− s̄)(1+ρ1− s̄)2(1+ρ− s̄)

]
.

1.4 Values of v̄s
q0 for Policy 3

v̄s
00 =

ρ1

2ρ1ρ2 +ρ +1

[
ρ2

1 (1− s̄)(1+ρ2)+ρ1ᾱ0,1 +(1+ρ2)
2

(ρ1− s̄)(1− s̄)(1+ρ1− s̄)(1+ρ2− s̄)(1+ρ− s̄)
+

ρ2s̄(s̄−3)+(1− s̄)3−1
(ρ1− s̄)(1− s̄)(1+ρ1− s̄)(1+ρ2− s̄)(1+ρ− s̄)

]
,

where
ᾱ0,1 = ρ2(ρ2 +3)+ρ2s̄(s̄−3)+2(1− s̄).

v̄s
10 =

ρ2
1

2ρ1ρ2 +ρ +1

[
ρ2

1 ᾱ1,1 +ρ1ᾱ1,2 +ρ3
2 +ρ2

2 (3−4s̄)
(ρ1− s̄)(1− s̄)2(1+ρ1− s̄)(1+ρ2− s̄)2(1+ρ− s̄)

+

ρ2(3−8s̄+6s̄2− s̄3)+(1− s̄)4

(ρ1− s̄)(1− s̄)2(1+ρ1− s̄)(1+ρ2− s̄)2(1+ρ− s̄)

]
,

where

ᾱ1,1 = (ρ2 +1)2 +ρ2s̄(s̄−2)+(1− s̄)2−1,

ᾱ1,2 = ρ
3
2 +ρ

2
2 (4−3s̄)+ρ2(5−9s̄+4s̄2− s̄3)+2(1− s̄)3.
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v̄s
20 =

ρ1ρ2

2ρ1ρ2 +ρ +1

[
ρ2

1 (ρ2 +1)+ρ1(ρ
2
2 +3ρ2 +2− s̄(2ρ2 +3))+ρ2

2
(ρ1− s̄)(1− s̄)(1+ρ1− s̄)(1+ρ2− s̄)(1+ρ− s̄)

+

ρ2(2−3s̄)+1−3s̄+2s̄2

(ρ1− s̄)(1− s̄)(1+ρ1− s̄)(1+ρ2− s̄)(1+ρ− s̄)

]
,

v̄s
30 =

ρ2
1 ρ2

2ρ1ρ2 +ρ +1

[
ρ2

1 ᾱ3,1 +ρ1ᾱ3,2 +ρ3
2 +ρ2

2 (3−4s̄)
(ρ1− s̄)(1− s̄)3(1+ρ1− s̄)(1+ρ2− s̄)2(1+ρ− s̄)

+

ρ2(3−8s̄+6s̄2− s̄3)+(1− s̄)2

(ρ1− s̄)(1− s̄)3(1+ρ1− s̄)(1+ρ2− s̄)2(1+ρ− s̄)

]
,

where

ᾱ3,1 = (ρ2 +1)2 +ρ2s̄(s̄−2)+(1− s̄)2−1,

ᾱ3,2 = ρ
3
2 +ρ

2
2 (4−3s̄)+ρ2(5−9s̄+4s̄2− s̄3)+2(1− s̄)3.

v̄s
40 =

ρ2
1 ρ2

2ρ1ρ2 +ρ +1

[
ρ2

1 (ρ2 +1)+ρ1(ρ
2
2 +3ρ2 +2− s̄(2ρ2 +3))

(ρ1− s̄)(1− s̄)2(1+ρ1− s̄)(1+ρ2− s̄)(1+ρ− s̄)
+

(ρ2 +1)2 +3ρ2−3s̄+2s̄2

(ρ1− s̄)(1− s̄)2(1+ρ1− s̄)(1+ρ2− s̄)(1+ρ− s̄)

]
.
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