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Natural environments are subject to a range of anthropogenic stressors, with 

pharmaceutical pollution being among the fastest-growing agents of global change. 

However, despite wild animals living in complex multi-stressor environments, 

interactions between pharmaceutical exposure and other stressors remain poorly 

understood. Accordingly, we investigated effects of long-term exposure to the pervasive 

pharmaceutical contaminant fluoxetine (Prozac®), and acute temperature stress, on 

reproductive behaviours and activity levels in the guppy (Poecilia reticulata). Fish were 

exposed to environmentally realistic fluoxetine concentrations (measured average: 38 or 

312 ng/L) or a solvent control for 15 months using a mesocosm system. Additionally, 

fish were subjected to one of three acute (24 h) temperature treatments: cold stress (18 

°C), heat stress (32 °C) or a control (24 °C). We found no evidence for interactive 

effects of fluoxetine exposure and temperature stress on guppy behaviour. However, 

both stressors had independent impacts. Fluoxetine exposure resulted in increased 

male coercive copulatory behaviour, while fish activity levels were unaffected. Under 

cold-temperature stress, both sexes were less active and males exhibited less frequent 

reproductive behaviours. Our results demonstrate that long-term exposure to a common 

pharmaceutical pollutant, and acute temperature stress, alter fundamental fitness-

related behaviours in fish, potentially shifting population dynamics in contaminated 

ecosystems.
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Contamination of aquatic habitats by pharmaceuticals is a major environmental 

problem, evoking concern among scientists, health officials, and communities around 

the globe.1–3 Most pharmaceuticals are incompletely metabolised when consumed and 

their metabolites can remain biologically active when excreted.4,5 Wastewater treatment 

plants (WWTPs) are typically not designed to remove pharmaceutical compounds from 

sewage6 and discharge of wastewater effluent into the environment is, therefore, a 

primary source of contamination.7 Accordingly, pharmaceuticals such as antibiotics, 

painkillers, cardiovascular drugs, blood lipid regulators, and antidepressants, are 

frequently detected in surface and ground waters around the world.3 The presence of 

these active pharmaceutical products in natural environments is problematic because of 

their capacity to induce a range of sub-lethal effects in exposed organisms.1,8,9 Indeed, 

pharmaceuticals can disrupt fundamental behavioural processes, such as reproductive 

behaviour, aggression, boldness, activity levels, and feeding rates.1,10 Changes to such 

behaviours can directly impact the strength and direction of selection, fitness, and even 

population viability, with potential for broader ecosystem and evolutionary 

consequences.11–14 

Fluoxetine (Prozac®) is one of the most widely prescribed antidepressants globally,15 

being used to treat depression and anxiety-related disorders in humans and 

domesticated animals.16,17 Fluoxetine is also a relatively stable compound (half-life of 68 

days in water at pH 7 under light conditions)18 that is commonly detected in freshwater 

environments worldwide.19,20 In aquatic habitats, fluoxetine concentrations range 

between <1 ng/L to as high as 1400 ng/L,3,20,21 although concentrations above 350 ng/L 
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tend to only occur in direct sewage effluent.20 Fluoxetine inhibits the reuptake of 

neuronal serotonin (5-hydroxytryptamine), which acutely increases synaptic serotonin 

levels and, after 2–3 weeks, produces anxiolytic effects in humans.16 The serotonergic 

system is conserved across all vertebrate classes22 and, consequently, fluoxetine has 

the capacity to alter behaviour in a wide range of species.23 
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Continuous discharge of fluoxetine-contaminated effluent from WWTPs, coupled with 

the stability of dissolved fluoxetine, results in long-term (‘pseudo-persistent’) exposure 

of many aquatic environments.8 Duration-dependent effects have been observed in 

mussels (Mytilus californianus), with some physiological changes manifesting only after 

6 weeks of fluoxetine exposure.24 Yet, most studies investigating impacts of fluoxetine 

are conducted using short-term exposure durations (i.e. <1 month) that represent a 

small fraction of the model species’ lifespan.25–30 This is problematic because effects 

that persist after long-term exposure may have important consequences on the lifetime 

fitness of individuals and population dynamics, making studies addressing effects of 

chronic exposure to pharmaceutical contaminants, such as fluoxetine, an urgent 

research priority. 
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Aquatic species are subjected to a range of environmental stressors 

contemporaneously.31 It is, therefore, important to understand how species respond to 

pharmaceutical pollutants in the presence of other concurrent stressors, especially 

because joint effects of interacting stressors can be challenging to predict. In particular, 

effects of combined stressors can be less, or greater, than expected (i.e. antagonistic or 

synergistic, respectively), compared to stressors tested in isolation. For example, in the 

Mediterranean mussel (Mytilus galloprovincialis), concurrent exposure to fluoxetine and 
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the high blood pressure medication propranolol resulted in an antagonistic interaction 85 

with regard to cell signalling,32 with the combined effect of both pharmaceuticals being 

less than what would be expected if the independent effects were simply summed 

together. 
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Temperature is an important stressor, especially in aquatic environments. Increased 

temperature variability represents a disproportionately greater threat to organisms than 

mean temperature increases,33 and ambient environmental temperature is crucial to 

body temperature regulation in ectotherms.34 In this respect, aquatic ectotherms are 

poorly adapted to cope with large temperature fluctuations,35–37 especially in the context 

of reproduction.38 Furthermore, temperature stress can compromise an individual’s 

ability to respond effectively to other environmental stressors.39 For instance, toxicity of 

pesticides to juvenile coho salmon (Oncorhynchus kisutch) was elevated at higher 

temperatures.40 In zebrafish (Danio rerio), isolated exposures to high temperature or the 

endocrine disruptor progestin had a negative effect on female fecundity, whereas 

exposure to both of these stressors simultaneously resulted in complete reproductive 

failure.41 Similarly, in the water flea Daphnia magna, fluoxetine and temperature 

variability had an adverse synergistic effect on reproductive success and population 

growth.42 More generally, however, interactive effects between temperature and 

exposure to realistic levels of pharmaceutical pollution have received surprisingly little 

attention to date. Indeed, more work is clearly needed, given the prevalence of 

pharmaceutical contaminants in aquatic environments and the importance of 

temperature to ectothermic species. 

  4



Here, we investigated how two important determinants of fitness, reproductive 

behaviour and activity, are influenced by two stressors, chronic fluoxetine exposure and 

acute temperature stress, in a freshwater fish. Specifically, guppies (Poecilia reticulata) 

sourced from mesocosm populations were exposed to environmentally realistic levels of 

fluoxetine (nominal concentrations: 30 ng/L or 300 ng/L) or left unexposed (i.e. solvent 

control only) for a period of 15 months and then underwent one of three temperature 

treatments. Fish were placed under cold stress (at 18 °C), heat stress (at 32 °C), or 

maintained at a control temperature (24 °C) for 24 h prior to experimental trials. We then 

investigated how reproductive behaviours and activity levels of guppies were impacted 

by the fluoxetine and temperature treatments. Because isolated exposure to fluoxetine 

and cold stress have been shown to generate opposite effects on reproductive 

behaviour in fish—i.e., increased male copulatory behaviour resulting from fluoxetine 

exposure25,28,43 and decreased male sexual motivation due to cold stress44—we 

hypothesised that these two stressors would act antagonistically, with the effect of one 

countering the effect of the other when experienced in combination. We also predicted 

that heat stress and fluoxetine exposure would, in turn, interact synergistically to 

increase levels of courtship and copulation.45 For activity levels, we tested the generality 

of previous findings suggesting that fluoxetine may not significantly affect fish 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

activity.30,46,47 We predicted, instead, that activity increases with temperature.48 125 
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Study species 

The guppy is a small poeciliid fish native to freshwaters of northern South America.49 As 

a highly successful invader, the guppy is now found in tropical and subtropical regions 

around the world.50 The preferred temperature range of guppies is 24–27 °C,51–53 with 

females having fewer offspring per brood under heat stress (i.e. ≥32 °C)54 and males 

subjected to cold stress (i.e. ≤20 °C) courting less.44 Guppies undergo internal 

fertilisation, with males inseminating females using a modified anal fin, the 

gonopodium.49 Male guppies exhibit two alternative mating strategies, either performing 135 

courtship displays to elicit consensual copulations with choosy females or carrying out 136 

coercive ‘sneak’ copulations that circumvent female mate choice.55 Courtship displays 137 

involve the male positioning himself in the female’s line of sight, bending his body into 138 

an s-shape and quivering (termed ‘sigmoid display’).49 Sneak copulation attempts 139 

involve a male chasing a female from behind and attempting to insert his gonopodium 140 

into the female’s genital pore without first performing courtship.49 Because the latter 141 

strategy is associated with lower insemination efficiency and reduced offspring quality,56 142 

changes in the relative use of these two strategies can impact the quality and quantity of 

progeny55, potentially altering population dynamics and size.  
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Mesocosm system and fluoxetine treatments 

Guppies used in this experiment were sourced from mesocosm populations that had 

been maintained in a temperature-controlled greenhouse facility under natural (i.e. 

ambient) light conditions at Monash University, Melbourne, Australia. These mesocosm 

populations were founded using wild-caught guppies collected in November 2016 from 

Alligator Creek, a rainforest-fed stream located within Bowling Green Bay National Park, 
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Townsville, Australia (19°23'50.3'' S, 146°56'56.5'' E; collection permit: WITK17685216). 

Water samples taken from this site at the time of fish collection revealed no 

contamination with fluoxetine (Envirolab Services; all samples under the minimum 

detection limit of 2 ng/L, n = 5). After collection, fish were housed in 12 stainless steel 

mesocosm tanks (648 L; 180 cm × 60 cm × 60 cm), each of which was established with 

a founding population of 300 sexually mature guppies at an equal sex ratio, with these 

mesocosm populations having since been utilised for a series of experiments, including 

the present study. Mesocosm tanks were filled with carbon-filtered fresh water to a 

depth of 30 cm and contained aquatic plants (Java moss, Taxiphyllum barberi) and a 3-

cm layer of gravel substrate (~7 mm grain size). Commercial air pumps (Resun LP100) 

were used to aerate tanks, and aquarium heaters used to maintain water temperature. 

The temperature and pH of all tanks were tested weekly (temperature: mean = 23.4 °C, 

SD = 1.0 °C, n = 720; pH: mean = 7.36, range = 5.08–9.67, n = 720). Fish were fed ad 

libitum once every two days with commercial food pellets (Aquasonic Nutra Xtreme C1 

pellets; 0.8 mm). Once per week, 20% water changes were conducted for each tank. 

Mesocosm tanks were randomly allocated to one of three fluoxetine exposure regimes, 

a low-fluoxetine treatment (nominal concentration: 30 ng/L, n = 4 tanks), a high-

fluoxetine treatment (nominal concentration: 300 ng/L, n = 4 tanks) or an unexposed 

treatment (i.e. solvent control, n = 4 tanks) from April 2017. The low-fluoxetine treatment 

is representative of concentrations commonly found in surface waters, whereas the 

high-fluoxetine treatment represents levels detected in effluent-dominated 

systems.3,20,21 A population survey conducted in the month following behavioural 

experiments (August 2018) showed that adult densities within the twelve mesocosms 
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were similar across the treatments (mean ± SD: 78 ± 57, 66 ± 39, and 62 ± 26, for the 

control, low, and high treatments, respectively). 

To maintain the desired fluoxetine water concentrations, dosing solutions were added to 

the low- and high-exposed tanks twice weekly. This involved fluoxetine hydrochloride 

(Sigma Aldrich; product number: F132, CAS: 56296-78-7) being dissolved in methanol 

to form two separate 100 mL stock solutions (20 and 200 mg/L for the low- and high-

fluoxetine treatments, respectively), which were then used to create dosing solutions 

twice weekly. Dosing solutions were prepared by diluting 1 mL of either stock solution in 

1 L of reverse-osmosis water. To eliminate any potential for solvent effects57 and to 

ensure consistency in the level of handling and disturbances across treatments, a 

solvent solution (1 mL of methanol in 1 L of reverse-osmosis water) was added to all 

control tanks twice weekly (equates to 0.0006% methanol by volume). 

Analytical verification of fluoxetine treatment levels 

Throughout the experiment, water samples (40 mL) were drawn approximately once per 

month from each of the low- and high-fluoxetine treatment mesocosm tanks to 

determine the concentrations of fluoxetine and norfluoxetine (the major metabolite of 

fluoxetine)19 using gas chromatography–tandem mass spectrometry (7000C Triple 

Quadrupole GC-MS/MS, Agilent Technologies, Delaware, USA; minimum detection 

limit: 2 ng/L). Control tanks were also sampled every second month using the same 

method, to ensure the absence of contamination. Water analyses were performed by 

Envirolab Services (MPL Laboratories; NATA accreditation: 2901; accredited for 

compliance with ISO/IEC: 17025) within 4 days of collection. A detailed description of 

the water analysis protocol is provided in Bertram et al.25 Mean measured fluoxetine 
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concentrations in the low- and high-fluoxetine mesocosm tanks were 38 ng/L (SD = 24, 

n = 60) and 312 ng/L (SD = 214, n = 60), respectively. Fluoxetine was not detected in 

any of the control tanks (all samples under the minimum detection limit, n = 30). 

Norfluoxetine was not observed in any of the tested samples. Fluoxetine readily sorbs to 
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sediment in water/sediment systems.19,58 Hence, while the gravel substrate used in the 

mesocosm system was important in simulating more natural environmental conditions, it 

likely contributed to the variability in measured fluoxetine concentrations observed. 
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Experimental procedure and temperature treatments 

The goal of the study was to investigate behavioural effects of long-term fluoxetine 

exposure under ecologically realistic conditions comprising multiple overlapping and 

interacting generations, which is reflective of guppy populations in nature. 49,59,60 Trials 

were conducted in July 2018, resulting in a 15-month exposure protocol. Given an 

approximate generation time of 4 months in guppies, up to 4 generations were present 

within the mesocosm system at the time of trials.59,60 One week prior to experimental 

trials, sexually mature fish were caught and separated by sex into fine-mesh cylinders 

(35 cm × 32 cm, diameter × height, water depth: 30 cm) within their respective 

mesocosm tanks. To ensure that fish were sexually mature, we selected females that 

were over 15 mm in standard length, and males displaying nuptial colouration and a 

fully developed gonopodium.49 Fish were then sourced from these cylinders for use in 

trials, ensuring individuals were only tested once. Twenty-four hours prior to 

experimentation, fish underwent temperature manipulations in 1 L cylindrical glass tanks 

(10 cm × 30 cm, diameter × height, water depth: 20 cm, maximum 3 fish per tank), with 

males and females housed in separate tanks. Three temperature treatments were 
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employed: heat stress (32 °C), cold stress (18 °C), and a control temperature treatment 

(no change; 24 °C). The control treatment was chosen to represent the long-term 

average temperature observed across mesocosm tanks (mean = 23.4 °C, SD = 1.0 °C, 

n = 720). The heat stress treatment involved an 8 °C increase over the average 

mesocosm tank temperature. This temperature increase was selected to simulate heat 

stress but, importantly, was still below the critical thermal maximum of guppies (i.e. 38 

°C).61 The cold stress treatment involved a 6 °C reduction from the average mesocosm 

tank temperature, which was chosen because guppies are more vulnerable to rapid 

decreases in temperature than to rapid increases in temperature.62 The temperature 

changes of +8 °C and −6 °C used in these experiments are plausible in an 

environmental context, with daily fluctuations of this scale having been observed within 

the guppy’s native range.53 To avoid shock caused by instantaneous temperature 

changes, temperature alterations occurred over a period of 6 h, which is common 

practice in temperature manipulation experiments involving fish.63,64 The tanks remained 

at the new temperatures for the subsequent 18 h before fish were tested in behavioural 

trials. 

Experimental trials 

Behavioural trials (n = 162) were conducted on the day after fish were exposed to 

temperature manipulations, in glass tanks (60 cm × 30 cm × 30 cm, water depth: 15 cm) 

filled with carbon-filtered water maintained at 18 °C (mean: 18.2 °C, range: 17.8–18.5 

°C), 24 °C (mean: 24.3 °C, range: 24.0–24.5 °C) or 32 °C (mean: 32.3 °C, range: 31.8–

32.5 °C). The male and female used in each trial had been subjected to the same 

fluoxetine and temperature treatment (solvent control treatment [i.e. 0 ng/L fluoxetine]: 
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control temperature: n = 20, low temperature: n = 17, high temperature: n = 17; low-

fluoxetine treatment: control temperature: n = 16, low temperature: n = 20, high 

temperature: n = 19; high-fluoxetine treatment: control temperature: n = 19, low 

temperature: n = 18, high temperature: n = 16). Fish tested in each trial were sourced 

from different mesocosm tanks to ensure that male-female experimental pairs were 

novel to each other. This was done to control for familiarity, which is known to influence 

mate choice in guppies.65 Each trial involved the male and female being placed into 

separate acclimation chambers (opaque cylinders; 7.5 cm × 20 cm, diameter × height, 

water depth: 15 cm) in an experimental tank matching the desired temperature used in 

the temperature manipulation. Fish were acclimated for 5 min, after which the 

acclimation chambers were removed so that the two fish were free to explore the trial 

tank and interact for 40 min. Tank water was replaced between each trial to prevent any 

potential for chemical cues to influence fish in subsequent trials.66 

Throughout behavioural trials, tanks were video-recorded from above (Panasonic HC-

V180), with male and female behaviour subsequently scored from recordings, blind to 

treatment, using behavioural observation key-logging software (BORIS v. 6.3).67 

Specifically, the time taken for the male to first attempt a sneak copulation and the 

number of attempted sneak copulations were scored for each trial. The time until the 

first courtship display and the number of courtship displays performed by each male 

were also recorded. Additionally, activity levels of the male and female were evaluated 

using 5 cm grid squares marked on the base of each experimental tank. We counted 

the number of 5 cm grid squares crossed by each fish for 1 min every 5 min over the 

40-min trial, resulting in a total of 8 min of observations for each fish. We then estimated 
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activity as movement/time (cm/sec). After each trial, both of the fish were measured for 

body mass (±0.0001 g) and standard length (i.e. body length excluding tail; ±0.01 mm). 

The fish were then returned to their respective mesocosm source tanks, where they 

were isolated from untested fish. 

Statistical analyses 

Statistical analyses were performed in R 3.5.1.68 As a proxy for body condition, we 

calculated a scaled mass index, which was done separately for males and females.69 

Specifically, we performed a standard major axis regression on the log of body mass 

and standard length of fish (sma function, smatr package), and calculated a sex-specific 

beta coefficient, which was then used (with mean standard length) to obtain the scaled 

mass for each fish. These scaled mass indices for males and females were initially 

included in all models but were later removed as they did not significantly improve their 

fit, as tested by Akaike information criterion comparisons. 

Generalised linear mixed models (GLMMs) were used to test the effects of fluoxetine 

treatment, temperature treatment, and the interaction between them, for both sneak 

copulations and courtship displays, separately. For sneak copulations, a negative 

binomial distribution (NB GLMM; nb.glmer function, MASS package) was selected to 

account for overdispersion. For courtship displays, a binomial distribution was selected 

over a Poisson distribution because an insufficient number of fish conducted the 

behaviour for it to be analysed as a count variable (i.e. 19.8% across all groups). To 

account for possible mesocosm tank effects, the source tank IDs of male and female 

fish, as well as the combination of male and female source tank IDs, were included as 
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random effects in both GLMM models (see supplementary tables S1–S4 for random 

effects results). 

To analyse potential effects of the fluoxetine and temperature treatments, and their 

interaction, on the time taken for males to perform their first sneak copulation and 

courtship display, we applied separate Cox's mixed effect (COXME) proportional hazard 

models (coxme function, survival package) for the two response variables (i.e. sneak 

attempts and courtship displays). Both models met the assumption of proportionality, as 

determined by examining the interaction between Schoenfeld residuals and log time 

(cox.zph function, survival package). 

Data on fish activity levels were square-root transformed so that assumptions of 

normality and homogeneity of variance were satisfied (Shapiro-Wilk test, shapiro.test 

function and Bartlett test, bartlett.test function). We then analysed activity levels of fish 

using linear mixed effects models (LME; lmer function, lme4 package). Fluoxetine and 

temperature treatments, the interaction between the two, and sex, were included as 

fixed effects, and mesocosm source tank ID was added as a random effect. 

Where relevant, general linear hypothesis tests (GLHTs) with Tukey’s post-hoc p-

adjustments were used to generate pairwise comparisons (glht function, multcomp 

package). 

Effects of fluoxetine exposure on morphology (weight, standard length, and scaled 

mass index) were investigated for each sex, using Kruskal-Wallis tests to account for 

non-normal distributions in data (KWT; kruskal.test function). Dunn’s tests were used 

with Bonferroni corrections for pairwise comparisons (dunnTest function, FSA package). 
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Results 

Reproductive behaviours 

No significant interaction was detected between fluoxetine treatment and temperature 

treatment for the number of sneak copulations performed by males (NB GLMM: χ2 = 

3.885, df = 4, p = 0.43). We did, however, find a significant difference between the 

number of sneak copulations conducted by males in different fluoxetine treatments (NB 

GLMM: χ2 = 7.843, df = 2, p = 0.019; Fig. 1a), with unexposed fish performing fewer 

sneaks than males in the low- and high-fluoxetine treatments (NB GLMM: z = −2.455, p 

= 0.037, and z = −3.129, p = 0.005, respectively). The low- and high-fluoxetine 

treatments did not differ significantly (NB GLMM; z = 0.3595, p = 0.63; Fig. 1a). 

Temperature treatment also significantly affected the number of sneak copulations 

performed by males (NB GLMM; χ2 = 20.33, df = 2, p < 0.001; Fig. 1b). Males under 

low-temperature stress performed fewer sneak copulations than did those in the heat 

stress and control treatments (NB GLMM: z = 4.745, p < 0.001, and z = 3.370, p = 

0.002, respectively; Fig. 1b). No significant difference was detected between the control 

and heat-stress treatments (NB GLMM; z = 1.728, p = 0.19; Fig. 1b). 
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Figure 1. Number of male coercive ‘sneak’ copulations performed in the (a) unexposed 

(0 ng/L; n = 54), low-exposed (38 ng/L; n = 55) and high-exposed (312 ng/L; n = 53) 

fluoxetine treatments, and in the (b) low (18 °C; n = 54), control (24 °C; n = 56) and high 

(32 °C; n = 52) temperature treatments 

 

We found no significant interactive effect between fluoxetine exposure and temperature 

treatment in terms of time taken to the first male sneak copulation (COXME: χ2 = 1.491, 

df = 4, p = 0.83). Furthermore, fluoxetine treatment did not affect the time elapsed 

before males attempted a sneak copulation (COXME: χ2 = 3.783, df = 2, p = 0.15; Fig. 

S1) but temperature treatment did (COXME: χ2 = 13.17, df = 2, p = 0.001; Fig. 2). 

Specifically, males at 18 °C were significantly delayed in performing their first sneak 

relative to males at 32 °C (GLHT: z = 2.387, p = 0.043). Males in the 24 °C control 
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341 

342 

temperature treatment did not differ significantly from those at 18 °C (GLHT; z = 2.045, 

p = 0.098) or 32 °C (z = 0.5680, p = 0.83). 
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Figure 2. Time taken to first coercive ‘sneak’ copulation for males by temperature 

treatment, right-censored at 2400 sec. The solid line represents the low-temperature 

treatment (18 °C; n = 54), the dashed line represents the control temperature treatment 

(24 °C; n = 56) and the dotted line represents the high-temperature treatment (32 °C; n 

= 52) 

 

There was no significant interaction between fluoxetine and temperature treatments 

regarding the proportion of males that performed courting behaviours (GLMM: χ2 = 

2.559, df = 4, p = 0.63), nor was there a significant effect of fluoxetine treatment 

(GLMM: χ2 = 1.906, df = 2, p = 0.39), with 14.8% of males in the control treatment, 

16.4% in the low-fluoxetine treatment, and 28.3% in the high-fluoxetine treatment 
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performing at least one courtship display. Temperature, however, did significantly 

influence the proportion of males that performed courtship displays (GLMM: χ2 = 7.284, 

df = 2, p = 0.026). A significantly lower proportion of males in the low-temperature 

treatment performed at least one courtship display (3.6%), relative to those in the 

control treatment (30.9%; GLMM: z = 3.138, p = 0.002), and the high-temperature 

treatment (25.0%; GLMM: z = 2.791, p = 0.005). No significant difference between the 

control and high-temperature stress treatments was observed for courting behaviour 

(GLMM: z = 0.6820, p = 0.52). 

For the time elapsed until first courtship display, there was no significant interaction 

between temperature and fluoxetine treatment (COXME: χ2 = 3.877, df = 4, p = 0.42), 

nor was there a significant main effect of fluoxetine exposure (COXME: χ2 = 5.066, df = 

2, p = 0.41; Fig. S2). A marginally non-significant main effect was, however, observed 

for temperature treatment (COXME: χ2 = 10.88, df = 2, p = 0.054, Fig. S3). 

Activity levels 

We found no significant interaction between fluoxetine treatment and temperature 

treatment on fish activity levels (LME: χ2 = 5.385, df = 4, p = 0.25). Fluoxetine exposure 

did not influence activity (LME: χ2 = 1.217, df = 2, p = 0.54; Fig. S4) but temperature did 

(χ2 = 118.6, df = 2, p < 0.001; Fig. 3). The cold-temperature treatment resulted in a 

significant reduction in activity levels relative to the control and heat-stress treatments 

(GLHT: z = 5.902, p < 0.001, and z = 4.904, p < 0.001, respectively) but there was no 

significant difference between the control and heat-stress treatments with regard to 

activity levels (GLHT: z = −0.8040, p = 0.70). Regardless of exposure treatment, female 

fish were significantly less active than males (χ2 = 7.577, df = 1, p = 0.006), and activity 

  17



378 

379 

380 

381 

382 

383 

384 

385 

level correlated with a variety of reproductive behaviours. Specifically, activity level was 

negatively correlated with time to first courtship display (Spearman's rank correlation: 

rho = –0.273, df = 160, p < 0.001) and time to first sneak copulation (Spearman's rank 

correlation: rho = –0.301, df = 160, p < 0.001). In addition, activity was positively 

correlated with the propensity to conduct at least one courtship display (Spearman's 

rank correlation: rho = 0.273, df = 160, p < 0.001), as well as the number of sneak 

copulations performed (Spearman's rank correlation: rho = 0.304, df = 160, p < 0.001). 

 

 386 

387 
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390 

Figure 3. Activity levels of fish in the low-temperature treatment (18 °C; n = 108), the 

control temperature treatment (24 °C; n = 112), and the high-temperature treatment (32 

°C; n = 104) 

Morphology 
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Fluoxetine exposure did not impact weight (KWT: χ2 = 2.527, df = 2, p = 0.28), standard 

length (KWT: χ2 = 1.925, df = 2, p = 0.38), or scaled mass (KWT: χ2 = 0.9388, df = 2, p 

= 0.63) in male guppies. Fluoxetine did, however, impact weight (KWT: χ2 = 9.115, df = 

2, p = 0.010) and standard length (KWT: χ2 = 9.263, df = 2, p = 0.010) in females. 

Specifically, females in the low-fluoxetine treatment were heavier (z = 2.995, p = 0.008) 

and longer (z = 2.958, p = 0.009) than those in the control treatment. There was no 

difference between unexposed and high-exposed fish (weight: z = 1.165, p = 0.73; 

standard length: z = 0.8590, p = 0.39), or low- and high-exposed fish (weight: z = 1.810, 

p = 0.21; standard length: z = 2.081, p = 0.11). Fluoxetine exposure did not have a 

significant effect on female scaled mass (KWT: χ2 = 5.539, df = 2, p = 0.063). 
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Discussion 

Contrary to predictions, we did not find an interaction between fluoxetine exposure and 

temperature stress on guppy reproductive behaviour. We did, however, find that both 

stressors generated independent effects on reproductive behaviour. Specifically, for 

fluoxetine, long-term (15-month) exposure resulted in an increase in male coercive 

mating behaviour (i.e. sneak copulations) in both the low (38 ng/L) and high (312 ng/L) 

treatments, but did not alter courtship behaviour. With regard to the effect of 

temperature on reproductive behaviours, we found that acute (24 h) cold stress (i.e. 18 

°C) resulted in reduced courtship by males, as well as a delay in the time taken to first 

perform a coercive mating attempt. Activity levels, in turn, were not affected by the 

interaction between fluoxetine exposure and temperature stress, or by fluoxetine 
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exposure independently. There was, however, an independent effect of temperature 

stress on activity levels, with cold stress causing a reduction in activity in both males 

and females. 

To date, we know of only one other study addressing impacts of fluoxetine exposure 

under varying temperature conditions. In contrast to the results of the present study, 

Barbosa et al.42 reported that chronic (fourth-generation) fluoxetine exposure interacted 

synergistically with temperature variability to impair reproductive success in water fleas 

(Daphnia magna). However, that study examined temperature variability and rate of 

reproduction, rather than acute temperature stress and reproductive behaviour, which 

may explain the disparity in results. We also cannot rule out differences in species-

specific sensitivities to fluoxetine or temperature stress.30,52 In this regard, it is worth 

noting that previous research in guppies has also failed to find interactions between 

fluoxetine (61 ng/L and 350 ng/L for 28 days) and another common environmental 

stressor, predation risk.43 Yet, it is important to highlight that two stressors inducing 

independent effects can nevertheless be detrimental, if an individual is exposed to both 

stressors simultaneously. 

For fluoxetine, our study shows that, irrespective of temperature, environmentally 

realistic exposure levels (i.e. 38 ng/L and 312 ng/L) can disrupt reproductive behaviours 

in fish, with exposed males increasing their use of a coercive mating strategy. In this 

regard, it is important to note that effects of fluoxetine on reproductive traits can vary 

between species. For instance, fluoxetine has been shown to increase nest defence 

behaviours in fathead minnows (Pimephales promelas; 1000 ng/L for 28 days),70 reduce 

courtship displays in starlings (Sturnus vulgaris; 2700 ng/day for 28 weeks),71 and 
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increase copulatory behaviours in livebearing fish (479 ng/L for 30 days;25 350 ng/L for 436 

28 days;43 31 ng/L for 35 days28), while shorter-term exposure has been shown to have 

no effect on reproductive behaviours in Siamese fighting fish (Betta splendens; 540 ng/L 

for 5 h).26 The mechanisms by which selective serotonin reuptake inhibitors alter 

reproductive traits are not fully understood.23,72, One possible explanation is that 

fluoxetine can influence circulating levels of hormones via the hypothalamic–pituitary–

gonadal axis by affecting the retention of serotonin and, more generally, the 

serotonergic system.23,73 For example, in fish, increases in extracellular serotonin can 

stimulate the release of gonadotropin-releasing hormones, gonadotropic hormones, and 

androgens. Such hormonal changes can, in turn, alter levels of sexual motivation74 and 

potentially modify how attractive individuals are to the opposite sex by, for example, 

altering chemical and visual cues of sexual fitness in males and females.75 However, 

pinpointing precise physiological factors and hormones affected by fluoxetine is 

challenging. For example, female starlings exposed to fluoxetine were courted less by 

males than were unexposed females, but no differences in body condition or levels of 

circulating testosterone or oestradiol (sex hormones) were observed between females 

from different exposure treatments (2700 ng/day for 28 weeks).71 Further research 

targeted at identifying what physiological changes underpin observed effects of 

fluoxetine on reproductive behaviours would be valuable in understanding differences 

between species, and in determining which species may be particularly susceptible to 

fluoxetine-mediated alterations to reproductive processes. 
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While the physiological processes underpinning fluoxetine’s effects on reproductive 

traits remain unclear, this study has nonetheless shown that long-term exposure to 
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fluoxetine generates an increase in coercive reproductive behaviour in male guppies. 

The relative shift towards this unsolicited sneaking strategy over cooperative mating (i.e. 

male courtship) could impair fitness by, for example, reducing the ability of females to 

exercise mate choice. Female mate choice plays an important role in reproduction and, 

when females are unable to select males displaying indicators of high fitness to mate 

with, the quality and quantity of offspring may be impacted.13 Additionally, increases in 

male sneaking behaviour often result in females spending more time actively avoiding 

males, with consequences for female fitness even in a non-reproductive context. For 

example, female guppies will alter their habitat use to areas where predation risk is high 

to avoid sexual harassment by males,76 and suffer reduced foraging opportunities when 

targeted by male sneaking behaviours.77 Female avoidance tactics further impair male 

fitness by reducing interaction between the sexes and mating opportunities for males. 

Moreover, sneak copulations confer a lower insemination efficiency compared to post-

courtship copulations.56 Hence, although fluoxetine exposure increased the number of 

male copulation attempts performed, it may actually reduce overall male fitness. 

Because effects of fluoxetine may be dependent on exposure duration, we employed a 

long-term 15-month experiment to identify effects of chronic exposure on reproductive 

traits. Recently, a shorter-term experiment on guppies found that 28 days of fluoxetine 

exposure at 350 ng/L caused males to perform more frequent sneaking behaviour than 

unexposed fish, but this effect was not seen in males exposed at the lower 

concentration of 61 ng/L.43 The latter finding contrasts with our results in that 15-month 

exposure to 38 ng/L of fluoxetine did increase sneaking behaviour in the present study. 

Given that both studies were conducted in a similar fashion and on the same species, 
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we contend that exposure duration is the most likely explanation for the different results 

observed, with male guppy reproductive behaviour being relatively more vulnerable to 

disruption by longer-term fluoxetine exposure. Our study, therefore, provides new 

evidence for time-dependent effects of fluoxetine exposure on behavioural traits, and 

underscores the importance of longer-term studies for understanding impacts of 

environmentally realistic pharmaceutical contamination. In this regard, it is important to 

note that this study was specifically designed to simulate a realistic exposure scenario, 

with up to four overlapping generations exposed and allowed to interact, as is reflective 

of natural populations. However, future studies investigating long-term effects of 

pharmaceutical exposure and disentangling plastic versus genetic responses to 

contamination will also be valuable. 

In contrast to reproduction, fluoxetine exposure had no effect on activity levels in male 493 

or female guppies. This is consistent with studies in zebrafish (100 000 ng/L for 2 494 

weeks),78 killifish (Aphanius dispar; 300 ng/L for 7 days),46 and mosquitofish (Gambusia 495 

holbrooki; 31 and 374 ng/L for 35 days),28 in which no impacts of fluoxetine on activity 496 

were observed. In contrast, activity levels increased in mosquitofish after 28 days of 497 

exposure to a low level of fluoxetine (25 ng/L), although no change in activity was seen 498 

at a higher dosage (226 ng/L).79 These studies highlight the potential for fluoxetine to 499 

induce non-monotonic effects (i.e. where the slope of a dose–response curve changes 500 

direction within the range of tested doses) and generate contrasting results depending 501 

on exposure concentration and duration, and the species tested. While fluoxetine was 502 

not found to affect activity in the present study, it is important to emphasise that activity 503 

is just one aspect of spatial use. In particular, Egan et al.78 found that fluoxetine-504 
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exposed zebrafish were quicker to enter the top half of a trial tank and spent more time 505 

in the upper portion of the water column. Fish that spend more time near the water’s 506 

surface are more vulnerable to aerial predators80 and, therefore, exposure to fluoxetine 507 

may increase vulnerability to predation. These potentially costly alterations to behaviour 508 

would not have been identified if only activity levels had been measured, suggesting 509 

that future research may benefit from investigating how other aspects of swimming 510 

performance, movement, and spatial use respond to fluoxetine exposure. 511 

512 

513 

514 

515 

516 

517 

518 

519 

520 

521 
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Regarding independent effects of temperature, we found that cold stress leads to a 

reduction in reproductive-related traits in fish, whereas elevated temperatures did not 

affect these traits. Reproductive processes are sensitive to temperature and are often 

impaired when temperature falls outside of an organism’s optimal range.81,82 For 

example, courting behaviours are lower in guppies exposed to temperature 

decreases,44 and reproductive performance is hindered in female pejerrey (Odontesthes 

bonariensis) under heat stress.83 It may, therefore, seem counterintuitive that the heat-

stress treatment employed in our experiment did not alter reproductive behaviour. 

However, this may be because the temperature used was not sufficiently high to induce 

a notable stress response in guppies. 

Guppies under low-temperature stress showed reduced reproductive behaviours 

relative to other treatments. Such temperature stress in aquatic organisms can generate 

responses including changes to behaviour, metabolic rate, and the expression of heat 

shock proteins.44,84 Under acute stress, these changes are usually temporary and are 

reversed when ambient temperature returns to normal.84 The temperature 

manipulations used in this study were acute, indicating that the reproduction-related 
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behavioural changes observed may not persist once temperatures return to the long-

term average of 24 °C. Future research may, therefore, benefit from investigating 

whether such temperature-mediated short-term adjustments in mating behaviours have 

long-term impacts on the reproductive success of individuals and populations. 

In line with our predictions, fish exposed to cold-temperature stress were significantly 

less active than those undergoing heat stress or maintained at an intermediate control 

temperature, irrespective of fluoxetine treatment. Temperature variation results in shifts 

to metabolic rate in aquatic ectotherms, and behavioural changes, such as adjusted 

activity, are a key mechanism used by animals to restore metabolic homeostasis.85 

Swimming speed increases with temperature, meaning that fish at low temperatures 

tend to have lower cruising speeds,86 which is consistent with the results of the current 

experiment. This reduction in swimming speed may have fitness consequences 

because fish that are slower when encountering predators are less likely to escape 

and/or survive.87 

The 15-month fluoxetine exposure resulted in sex-specific, non-monotonic changes to 

fish morphology, with females in the low-fluoxetine treatment being heavier and longer 

than unexposed fish. This contrasts with research on goldfish (Carassius auratus), in 

which exposure resulted in decreased weight gain (540 000 ng/L for 28 days),88 and 

juvenile guppies, which had reduced weight and standard length under fluoxetine 

exposure (30 and 500 ng/L for 35 days).89 It is worth noting that fluoxetine has 

previously been reported to alter foraging dynamics in mosquitofish (215 ng/L) following 

a 28-day exposure, while no associated changes in morphological traits (i.e. weight, 

body length and body condition) were detected.90 It is important to point out, however, 
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that the earlier studies on goldfish, guppies and mosquitofish employed relatively short-

term exposures. Further research into the mechanisms causing morphological changes 

in long-term fluoxetine exposure would be valuable in identifying why the observed non-

monotonic, sex-specific differences arise. It is also important to highlight that fluoxetine-

induced non-monotonic effects have previously been reported in a wide range of 

species, especially in the context of behavioural traits.79,91–97 The mechanism(s) driving 

these types of fluoxetine-induced non-monotonic effects is/are not yet fully understood. 

However, a number of mechanisms that are known to drive other non-monotonic 

effects98 have the potential to apply to fluoxetine. 

In summary, we found no interaction between chronic exposure to the pervasive 

pharmaceutical contaminant fluoxetine and acute temperature stress on reproductive 

behaviour or activity levels in guppies. However, long-term (15-month) exposure to 

fluoxetine led to an increase in the frequency of coercive sneak copulations carried out 

by male guppies at both of the environmentally realistic dosages tested, while male 

courtship behaviour, and activity levels in both sexes, were not affected. Regarding 

effects of temperature, males exposed to acute (24 h) cold stress were slower to first 

perform a coercive copulation (relative to males in the heat-stress treatment), performed 

fewer such copulations, and were less likely to perform courtship behaviour. In addition, 

cold-temperature stress was associated with reduced activity levels in both males and 

females. In combination, our findings demonstrate complex independent effects of 

multiple stressors on ecologically important behavioural processes in fish. Despite a 

growing appreciation of the importance of a multi-stressor approach, there remains a 

dearth of knowledge on this topic, particularly for novel stressors like pharmaceutical 
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pollutants, as well as the direct and indirect effects they can generate. Such studies are 

clearly necessary, however, if we are to gain a more holistic understanding of the 

potential impacts of pharmaceutical contaminants on wildlife populations around the 

globe. 
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