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Abstract 23 

Spatiotemporal information on historical peatland drainage is needed to relate past land use to 24 

observed changes in catchment hydrology. Comprehensive knowledge of historical development of 25 

peatland management is largely unknown at catchment scale. Aerial photos and LIDAR data enlarge 26 

the possibilities for identifying past peatland drainage patterns. Here, our objectives are: (1) to 27 

develop techniques for semi-automatically mapping the location of ditch networks in peat-dominated 28 

catchments by using aerial photos and LIDAR data, and (2) to generate time series of drainage 29 

networks. Our approaches provide open-access techniques to systematically map ditches in peat-30 

dominated catchments through time. We focused on the algorithm in such a way that we can identify 31 

the ditch networks from raw aerial images and LIDAR data based on the modification of multiple 32 

filters and number of threshold values. Such data are needed to relate spatiotemporal drainage patterns 33 

to observed changes in many northern rivers. We demonstrate our approach using data from the 34 

Simojoki river catchment (3160 km2) in northern Finland. The catchment is dominated by forests and 35 

peatlands that were almost all drained after 1960. For two representative locations in cultivated 36 

peatland (downstream) and peatland forest (upstream) areas of the catchment; we found total ditch 37 

length density (km/km2) estimated from aerial images and LIDAR data based on our proposed 38 

algorithm varied from 2% to 50% compared against the monitored ditch length available from 39 

National Land survey of Finland (NLSF) in 2018. A different pattern of source variation in ditch 40 

network density was also observed for whole catchment estimates and for available drained peatland 41 

database from Natural Resources Institute Finland (LUKE). Despite such differences no significant 42 

differences were found using the non-parametric Mann-Whitney U-test with 0.05 significance level 43 

based on the samples of pixel based identified ditches between (i) aerial images & NLSF vector files 44 

and (ii) LIDAR data & NLSF vector files.  45 

Keywords: Ditch length density, Drainage, Aerial Images, LIDAR, Peatlands, Forestry, Simojoki.  46 



1 Introduction  47 

In boreal and temperate zones, around 15 million hectares of peatlands have been drained for forestry 48 

and other land uses since the 1950s (Paavilainen and Päivänen 1995). In Finland, peatland forestry is 49 

important as it produces 25% of the annual forest growth. Recent finding stresses the importance not 50 

only of evaluating current status but also understanding the historical evolution of ditch networks in 51 

peatlands (Nieminen et al. 2017). Moreover, to model land use impacts on water quality and water 52 

quantity, we need a good understanding of the past to calibrate and validate numerical models. 53 

However, we currently lack adequate methodologies to quantify historical variation of ditch networks 54 

at a catchment scale. Historical data about catchment drainage can be obtained from forestry statistics, 55 

and more recently from GIS data. However, we lack adequate information on the timing and spatial 56 

extent of ditch network development. Gathering spatial information on past drainage, aerial images 57 

and satellite imagery are useful for large-scale quantitative assessment (Davis et al. 1978; Lambin 58 

1997; Schneider and Gil Pontius 2001; Verburg et al. 1999).  59 

Aerial images have been used to illustrate temporal changes in land use and ditches in peat dominated 60 

(Linderholm and Leine 2004; Torabi Haghighi et al. 2018) and cultivated catchments (Passalacqua et 61 

al. 2012). Automated ditch network identification from aerial images can generate linear features 62 

through the application of a Hough line transformation with a specific counting mechanism (Karnieli 63 

et al. 1996). Niu et al. (2007) proposed an algorithm to extract linear features from remote sensing 64 

images. While the process of detecting features can be automated to certain extent (Artz et al., 2017; 65 

Pirasteh et al., 2013), every step is resolution and image specific. As aerial images contain limited 66 

ranges of spectral information, ditch identification is highly dependent on texture, pattern and context 67 

of the images (Fox et al. 1995).  68 

Using high-resolution digital elevation models (DEM) from LIDAR, Roelens et al., (2018) proposed 69 

a method to extract vector data representing ditch networks based on local morphological features. 70 

Their process identifies possible connections in the ditch network by calculating probability of 71 



connectivity based on used logistic regression where the predictor variables are characteristics of the 72 

ditch center lines derived from DEM. Passalacqua et al. (2012) and Sangireddy et al. (2016) also 73 

developed algorithms that combine nonlinear filtering to remove noise during data pre-processing 74 

with cost minimization principles for feature extraction.  75 

The objective of this study is to develop methodologies to quantify the spatial and temporal 76 

development of past ditching at a catchment scale. Specifically, we will focus on (1) developing a 77 

semi-automatic algorithm to detect ditch networks from aerial images along with LIDAR data and 78 

(2) use the same data sources and the workflow developed here to document spatial and temporal 79 

patterns in the ditch network of a large, peat-dominated Finnish catchment. Documentation of ditch 80 

network development is needed to quantify the environmental impacts of land management. Our 81 

study focuses on a catchment where the peatlands were drained for forestry, peat extraction and 82 

agriculture during the past decades. To our knowledge, this is the first study presenting methods for 83 

quantifying past drainage history in catchments dominated by peatland forestry.  84 

2 Materials and Methods 85 

2.1 Study area 86 

The Simojoki catchment (3160 km2) is located in the southern part of Lapland province in Finland 87 

(Figure 1). The river is unregulated and runs 193 km from its headwaters in Lake Simojärvi to the 88 

Bothnian Bay, dropping 176 m on its course to the sea. Forests on mineral soils (39%), and peatland 89 

forests (53%) dominate (Lepistö et al. 2014) while agriculture covers about 3% of the catchment area 90 

mainly near the catchment outflow (Perkkiö et al. 1995). Peatland drainage was carried out 91 

throughout the catchment to support forest production and peat extraction. Drainage operations 92 

started around 1950 and intensive drainage peaked during the 1970s in Simojoki. However, detailed 93 

information about spatial development of drainage throughout the catchment is lacking. We also 94 

considered two small representative areas for cultivated peatland (red circle in Figure 1a) and peatland 95 



forest (green circle in Figure 1a) in the Simojoki catchment to portray how identification of drainage 96 

systems varied spatially at different timescales.  97 

2.2 Aerial Images, LIDAR data and available ditch network database 98 

We used aerial images from National Land survey of Finland (NLSF 2020). Table A.1 (in 99 

supplemental materials) illustrates the number of images for corresponding years that were available 100 

for the analysis. All available images contain a single band except the images from 2018 which are 101 

RGB images. Each image has 0.5 m x 0.5 m pixel resolution with pixel areas varying from 20 x 20 102 

m2 to 22.5 x 22.5 m2. 103 

Additionally, we used LIDAR data that contains 3D point clouds measured from an airplane with 104 

laser scanning from Paituli, the open source spatial data download portal of the Ministry of Education 105 

and Culture, Finland (Paituli 2019). The point density is about 1 point per 2 m2. Horizontal accuracy 106 

is about 60 cm and vertical 15 cm. We collected 442 LIDAR blocks (each block covers around 9 km2) 107 

for the Simojoki catchment which were flown between 2008 and 2018. The data was arbitrarily 108 

available for different portions of the catchment for different years. Therefore, we decided to use all 109 

the images to cover the catchment from 2008-2018 (Figure A.1 in supplemental materials). 110 

We also used the vector database of known base map ditches (hereafter called as “NLSF vector files”) 111 

from 2005 to 2018 from National Land Survey of Finland (NLSF 2019) to support our analyses. Ditch 112 

locations in the NLSF vector files are mainly derived from the manual addition of field surveys by 113 

the National Land Survey of Finland. The accuracy of NLSF vector files vary from a scale of 1:5000 114 

to 1:10000 with the EPSG: 2393 coordinate system (Datum: Kartastokoordinaattijärjestelmä (1966)). 115 

The NLSF vector file database also includes irrigation channels and other types of ditches. In some 116 

cases, elevation contours were misclassified as a ditch network in national map sources. We only 117 

considered peatland ditches based on the available attribute information. 118 



We also considered a regional database of drained peatland only from 1950 onwards from Finnish 119 

statistical yearbooks developed by Natural Resources Institute Finland (LUKE 2018). This is 120 

questionnaire based database without spatial information and represent province wise temporal 121 

changes of drained peatland in Northern Finland, which was further downscaled and available for 122 

Simojoki catchment.  123 

2.3 Image processing  124 

The image processing workflow presented here consists of four phases to prepare raw data and extract 125 

drainage network features (Figure 2). All code is written in Python 2.7. 126 

2.3.1 Phase-01: Raw aerial Image to Mosaic Image 127 

To process raw aerial images, we wrote Python scripts (Appendix-B in supplemental materials) to 128 

locate all the images at exact location based on a specified projection system (EPSG: 2393; Datum: 129 

Kartastokoordinaattijärjestelmä (1966)). At first, we selected one image from each year to identify 130 

the exact location of that image manually within the catchment. Using horizontal and vertical distance 131 

of the selected image from a specific location, we developed an algorithm to estimate and save all 132 

four coordinates (left, top, right and bottom) of other projected images (Step-01 to Step-03 in 133 

Appendix-B in supplemental materials). Next, we georeferenced all available images for each specific 134 

year based on their estimated coordinates. Results were visualized in ArcGIS 10.7. At this point, there 135 

were still some errors for exact positioning of the image. These errors showed the gap between the 136 

original location and the georeferenced location. To fix these errors we used features from maps 137 

(NLSF 2019) beneath the catchment shape (Step-04 & Step-05 in Appendix-B in supplemental 138 

materials) and performed manual quality control corrections for the projections. It should be noted 139 

that projection errors did not affect the ditch detection procedure. 140 

As numerous images were available for each year (Table A.1 in supplemental materials), 141 

computationally it was not worth merging all the images. Instead, we used the radiometry 142 

computation method (O’Connell et al. 2013) to generate seamlines from spectral patterns of features 143 



within available images in the following manner. First, we created a blank geodatabase file containing 144 

mosaic data for each year. It was important to ensure the same projection system and cell size for 145 

mosaic data added to the geodatabase. After mosaic formation, we built footprints which showed the 146 

outline of each image. By examining the values and patterns in the intersecting area and by computing 147 

a path between the intersecting points, this path was then merged with the footprint to create seamlines 148 

for each image in the mosaic data.  149 

We used this seamline mosaic method to define the line along which images in the mosaic data are 150 

connected. We did blending of the images instead of merging because this option depends on the 151 

distance from the pixel to the edge (Böhner et al. 2006) to determine the value of overlapping pixels. 152 

The option is computationally intensive for mosaicking. The final step of this mosaicking process 153 

was to optimize and built the overview of created mosaicked image.  154 

2.3.2 Phase-02: Raster preparation from LIDAR  155 

LIDAR data (Paituli 2019) were already filtered and available in .lasz format (Heideman 2014). To 156 

use these data, first we used ArcGIS 10.7 to convert all .lasz format LIDAR point cloud files to .lasd 157 

format. Using elevation from .lasd files, we created a 1m Digital Elevation Model (DEM) which 158 

represented the raster used from 2008-2018 for identifying ditch networks (as in section 2.3.3). We 159 

used natural neighbor interpolation technique to determine the cell value of the newly created DEM. 160 

2.3.3 Phase-03: Edge detection 161 

We identified linear features in aerial images and LIDAR data. Phase-03 in Figure 2 represented the 162 

steps after having the mosaicked image of corresponding year. We used the OpenCV Python library 163 

(Bradski 2000; Pulli et al. 2012) to process mosaicked image for identifying linear ditch features. 164 

This library covers associated functions that were used to detect edges from the images. OpenCV 165 

cannot function smoothly if the image window contains too many pixels (e.g. greater than 2000). 166 

Thus, mosaic images were split using a threshold number between 500 and 2000 pixels. We split 167 



rasters to have same number of pixels in a sub raster from the mosaic image. Next, we identified and 168 

extracted pixels representing waterbodies identified using the NLSF vector files (NLSF 2019). For 169 

each split raster, we applied same technique and prepared the raster for masking. At this stage, we 170 

masked the raster with extracted waterbody pixels (as in Figure 3a) to separate pixels which may 171 

contain representative pixels of ditches.  172 

After extraction of water body pixels, we next identified linear features through an initial application 173 

of the Canny edge detection algorithm (Canny 1986) as implemented in OpenCV library (Bradski 174 

2000). Edge detection is susceptible to noise in the raster; so prior to applying the detection algorithm 175 

we used a Gaussian filter followed by Sobel kernels in both horizontal and vertical directions. 176 

Gradient direction is always perpendicular to edges. After identifying gradients, we scanned the raster 177 

to remove all unwanted pixels if the pixel has a position of local maximum in the direction of gradient 178 

(Appendix-C in supplemental materials). At the final stage of Canny edge detection algorithm, two 179 

thresholds such as minimum and maximum values were considered to determine whether the pixels 180 

were part of ditches or not. The pixels which existed between these values based on their connectivity 181 

and gradients, form the edges. One of the major issues we encountered was the choice of these 182 

thresholds for each individual split raster (Bradski 2000). 183 

After identifying edge pixels, the next step filtered the corresponding pixels. To filter pixels, we 184 

applied a morphological transformation based on the raster shape to remove noise using a two by two 185 

kernel filter. Next, we applied opening method by decreasing and then increasing the thickness of all 186 

linear features in the raster layer. This stage generated an intermediate raster which contained some 187 

pixels that did not represent ditch networks and therefore needed to be removed (Figure 3c). To 188 

remove these pixels from the intermediate raster, we selected another threshold based on previously 189 

selected thickness of features to apply opening method (Bradski 2000).  190 



Next, we used a Hough line transform to identify the possible ditch network (Karnieli et al. 1996). It 191 

works with a polar coordinate system (ρ, θ). A line can be formed based on (ρ, θ) values which may 192 

be a possible ditch line where ρ is measured in pixels and θ is measured in radians. For an initial point 193 

on a line (with a value of 0), Hough line transform accumulated a pair of (ρ, θ) values from the 194 

location of that point (x, y) within the raster. For the second point, it incremented the value in the 195 

cells based on the preceding pair. The processes continued for every edge point and for each point, 196 

the final incremented value represented the strength of the positive vote in the cell. Finally, the 197 

transformation evaluated the maximum vote of the accumulator based on the origin and angle of the 198 

image. The maximum vote referred the count of edge points that was used to form the line. We used 199 

a Probabilistic Hough transform as it took only random subset of points and applied iteration with 200 

different thresholds of minimum line segment and maximum allowed gap which determined how 201 

well a line can form from the edge pixels.  202 

2.3.4 Phase-04: Ditch network Identification and Validation 203 

Ditch network identification (Figure 3d) involved multiple steps. At first, pixels identified using the 204 

Probabilistic Hough Transformation method in the preceding step were grouped for each split raster 205 

to represent lines (Figure 3d; Appendix-C in supplemental materials). Next, all identified ditch rasters 206 

from all available aerial images and LIDAR data (after initial processing in section 2.3.2) were 207 

processed by using OpenCV library. Later, polylines were identified and images further processed to 208 

generate final ditches for each split raster in a single polyline shape file. Finally, the resultant ditch 209 

features were used to build time series of ditch networks from 1952-2018 for aerial images and from 210 

2008-2018 for LIDAR data.  211 

To explain spatial and temporal distribution of ditch networks, we considered dataset from two 212 

different locations (Figure 1a) as representative of different landscape types in the Simojoki 213 

catchment from available images for each different year. To identify ditches from cultivated peatland 214 

(mixed land cover) in downstream Simojoki we used threshold values and the ranges of values were 215 



same for similar land cover areas in other parts of the catchment. We used the same approach for 216 

peatland forest areas in other parts of the catchment. In results section, for spatial distribution of 217 

ditches (in section 3.2) initially we showed two representative subsets of the catchment in this 218 

manuscript. For each representative subset, we calculated the total ditch length (km) per sq. km for 219 

each available year. 220 

By following the same approach as stated above, we estimated total ditch length for each available 221 

year from all available split images. At this stage, we also knew the percentage of aerial image 222 

coverage of the entire catchment for each available year. So, we estimated total ditch length per area 223 

of image coverage for entire catchment for each year. Later, the temporal changes of this estimation 224 

was analyzed based on all available resources (aerial images, LIDAR data, NLSF vector files and 225 

LUKE database).  226 

Next, we tested statistical significance of ditch network estimations based on identified ditch lines 227 

from the aerial images and available ditch network from NLSF vector files using the non-parametric 228 

Mann-Whitney U-test with 0.05 significance level. Due to data unavailability from all available data 229 

sources, to analyze statistical Mann-Whitney U-test there was only one common period at year 2018. 230 

We tested the hypothesis that the median of sample of identified ditches from aerial images is equal 231 

to the median of ditches available from NLSF vector files. We applied same hypothesis for Mann-232 

Whitney U-test for identified ditches from LIDAR data and ditches from NLSF vector files. For each 233 

representative location as shown in Figure 1a, we intersected the identified ditches and NLSF vector 234 

files with each pixel boundary for 2018. Then, for both cultivated peatland and peatland forest we 235 

prepared samples of peatland ditches based on aerial images, LIDAR data and NLSF vector files. A 236 

sample of peatland ditches basically represented the number of identified ditches (or features) from 237 

each site for each available data source to apply statistical approach. Finally we applied Mann-238 

Whitney U-test for the prepared sample between (i) aerial images & NLSF vector files and (ii) LIDAR 239 

data & NLSF vector files.  240 



Later, we included an additional analysis based on the percentage of drained peatland (LUKE 2018) 241 

to portray how ditch length would be distributed as drained peatland areas have increased in the 242 

Simojoki catchment over the last 50 years. Inclusion of this analysis do not include peatlands which 243 

are currently undrained. From LUKE database, we used the percent area drained in the Simojoki 244 

catchment as a time series to compare with the ditch network densities obtained from drained peatland 245 

portion of the Simojoki catchment by using the aerial images and LIDAR data.  246 

3 Results 247 

3.1 Semi-Automatic georeferenced aerial images 248 

The techniques presented here enabled us to geo-reference all available images semi-automatically 249 

(Figure 4). For all years as listed in Table A.1 in supplemental materials, application of mosaicking 250 

process as described in section 2.3.1 resulted nine final mosaicked aerial images for year 1952, 1958, 251 

1963, 1978, 1987, 1994, 1998, 2002 and 2018 (Figure 4) which we used to identify ditches (see results 252 

in section 3.2 and section 3.3). The coverage of aerial images over the entire catchment varied from 253 

5.60% in 1952 to 100% in 2018. We found the aerial images covered less than 60% of the catchment 254 

area before 1987 and it increased from onwards. 255 

3.2 Ditch network identification 256 

Our methodology proved successful to identify ditches from aerial images and LIDAR data. The 257 

methodology worked both in single band and RGB images, and at agricultural open areas as well as 258 

in canopy covered peatland forest sites. With the methodology we were able to document the 259 

historical development of drainage networks in the Simojoki river catchment (Figure 5 and Figure 6). 260 

In both cases, our applied methodology recognized plausible existing ditches for all available years 261 

for these different locations in Simojoki catchment.  262 

Based on identified ditches from aerial images, intensive drainage had already started in downstream 263 

parts of the catchment (red circle in Figure 1a) by 1952 (11.63 km/km2), and continued to 1978 (18.93 264 



km/km2) (Figure 5a, Figure 5b). In 1994 (Figure 5c) and 1998 (Figure 5d), the results were almost 265 

same although more ditches (~0.03 km/km2 difference) were identified in 1994 because of better 266 

image quality. The algorithm also underestimated the number of ditches in 2002 (11.81 km/km2), 267 

especially in agricultural areas as shown in Figure 5e. Figure 5f also showed spatial variation of 268 

ditches from NLSF vector files in 2018 where we found 16.68 km/km2 ditch length which was 25% 269 

higher (12.51 km/km2) than identified aerial image ditches. But from our statistical analysis as 270 

described in section 2.3.4, the output did not show any statistically significant difference (Mann-271 

Whitney U = 5614, sample size-01= sample size-02 = 111, p=0.2534). This indicated a similar 272 

distribution for two sample dataset of ditch networks from aerial image and NLSF vector files for this 273 

specific block in Figure 5f. 274 

The upstream, forest dominated parts of the catchment (green circle in Figure 1a) had a different 275 

spatiotemporal development of ditch networks (Figure 6) identified from aerial images. In 1958, there 276 

was no ditch network at all. In the 1970s initial drainage started in this region (Figure 6b). For almost 277 

all other years from 1987 onwards, there was very slight change after initial drainage (around 15.5 278 

Km/km2) in this area. In 2018 we found 16 km/km2 identified ditches from aerial images which were 279 

less than NLSF vector files (21.92 km/km2) by 37% in Figure 6f though we found p=0.3274 (Mann-280 

Whitney U = 2087, sample size-01= sample size-02 = 68) for U-test for the samples of identified 281 

ditches between upstream aerial images & NLSF vector files. 282 

The ditch network density identified using Lidar data was higher with the ditch network density found 283 

by using the aerial imagery and NLSF vector files (Figure 7) in two representative locations shown 284 

in Figure 1a. The ditches identified from LIDAR missions flown between 2008 and 2018 detected 285 

some pixels which presented plausible ditches not identified in the aerial images, and which were not 286 

connected to the total ditch network of that specific block. The parameters such as minimum line 287 

segment and maximum allowed gap, used to identify ditches from LIDAR, are the main reasons for 288 

the differences in ditch network extent identified in these versus aerial images. In 2018, for 289 



downstream Simojoki (Figure 7a) ditch network length derived from LIDAR data (40 km/km2) was 290 

more than 50% higher than the length derived from NLSF vector files (around 21 km/km2) whereas 291 

it was 2% lower (30.23 km/km2) from NLSF vector files (30.77 km/km2) for upstream location of the 292 

catchment in Figure 7b. In spite of having spatial differences for identified ditches between LIDAR 293 

data and NLSF vector files, we found p value (0.2491 for downstream (Mann-Whitney U = 5609, 294 

sample size-01= sample size-02 = 111) & 0.6229 for upstream (Mann-Whitney U = 2199, sample 295 

size-01= sample size-02 = 68)) > 0.05. This also did not indicate statistically significant difference 296 

for Mann-Whitney U test for all the samples for both upstream and downstream locations of the 297 

catchment.  298 

3.3 Temporal variation of ditch network 299 

There were different temporal patterns in the development of ditch network density in the downstream 300 

(Figure 8a) and upstream (Figure 8b) study sites. Based on results from the aerial images from the 301 

downstream site (for same location as in Figure 5), ditch network density (km/km2) increased by 302 

approximately 63% between 1952 and 1978 and then declined (Figure 8a). At this site in 2018, ditch 303 

network density obtained from the NLSF vector files (NLSF 2019) was 16.68 km/km2 whereas it was 304 

estimated to be 12.51 km/km2 based on aerial images. At the upstream forest site (for same location 305 

as in Figure 6); the change of ditch network density occurred from 1958 to 1987, was around 15.5 306 

km/km2. Estimated ditch network density started to decrease again after 1994 but not abruptly as 307 

happened in the downstream site (Figure 8b).  308 

LIDAR estimated ditch network densities (40 km/km2) were higher than estimates derived from aerial 309 

images (12.51 km/km2) or NLSF vector files (around 21 km/km2) in the downstream site (Figure 8a). 310 

At the upstream forest site, LIDAR and NLSF vector files derived estimates of ditch network density 311 

were approximately similar (30.77 km/km2), but were higher than the densities estimated from aerial 312 

images (16 km/km2) (Figure 8b). 313 



A different pattern of source variation in ditch network density was observed for whole catchment 314 

estimates (Figure 9) as compared to estimates for the small scale sites (Figure 8). When making 315 

estimates for the entire catchment, we primarily found an inverse relationship between ditch network 316 

density and percentage of aerial image coverage. As the percentage of available aerial images 317 

changed, ditch network density also varied throughout the study period (Figure 9a). For example, in 318 

1998 area image coverage was 97.61% where we estimated a ditch network density of around 34 319 

km/km2. Whereas in 2002 though the percentage coverage was lower than 1998 (58.27%), ditch 320 

network density increased (44.26 km/km2). This finding was confirmed by examining NLSF vector 321 

files from 2018, that covered entire Simojoki catchment (100%) but only contained 18 km/km2 ditch 322 

network density (green color in Figure 9a). Ditch network densities obtained from NLSF vector files 323 

were around 56% lower than the ditch network density estimated from 2018 aerial images (41 324 

km/km2) (Figure 9a). We found slight changes of ditch length (km/km2), around 8% from 2005 to 325 

2018 for available NLSF vector files (Paituli 2019). Whereas from 2002 to 2018 aerial images, 326 

without considering percentage of coverage area we found the change was around 7.5% for ditches 327 

identified from aerial images.  328 

For the whole catchment (Figure 9a), the ditch network density (34.43 km/km2) estimated from 329 

LIDAR data was greater than that estimated from NLSF vector files (18 km/km2) and less than that 330 

estimated from aerial images (41 km/km2). The statement is also applicable in case of drained 331 

peatlands (Figure 9b) for ditch network density (21.22 km/km2) estimated from LIDAR data. 332 

When we only considered temporal patterns of the percentage of drained peatland in the Simojoki 333 

catchment obtained from forest drainage database (LUKE 2018) (Figure 9b), the situation was bit 334 

different for aerial images than that for the whole catchment (Figure 9a). The percentage of drained 335 

peatland increased from 31% in 1967 to 61.63% in 2018. Ditch network density in drained peatlands 336 

estimated from aerial images showed a slight a decreasing tendency throughout the same period, 337 

especially in 2018 when we found 25.38 km/km2. The decreasing pattern was more visible from 2005 338 



(27 km/km2) in Figure 9b when there was slight change for NLSF vector files (16.56 km/km2 to 17.96 339 

km/km2) for the same period.  340 

4 Discussion 341 

4.1 Development of ditch network maps 342 

Knowledge of ditch network extent and history is essential for sustainable and efficient forest 343 

management, especially to understand environmental changes at the catchment scale (Ecke, 2009). 344 

Previously, identification of ditch networks was based on time consuming field observations or 345 

manual digitalization from aerial images. The approach we developed can automatically identify 346 

peatland ditch networks from aerial images and LIDAR data where ditches are identified as linear 347 

feature based on parameter value thresholds. This methodology is also suitable for open peatlands or 348 

cultivated fields. 349 

For small scale zones, there are some shallow ditches in downstream parts of the catchment which 350 

were identified by LIDAR were not always detected using NLSF vector files (Figure 8). Thus ditch 351 

network density identified from LIDAR data is higher than NLSF vector files in downstream 352 

(cultivated peatland) parts of the catchment and is closer to the NLSF vector files in upstream peatland 353 

forest site. 354 

Conversely at the catchment scale, the methodology identified more plausible ditches from aerial 355 

images than LIDAR, especially from 2008-2018 (Figure 9). The major change in ditch network 356 

detection occurred in forested areas of the catchment, probably as a result of canopy cover masking 357 

ditches on the ground. However, sometimes the method also identified ditches from LIDAR which 358 

are not artificial (natural depression) as addressed by (Duke et al. 2006; Roelens et al. 2018). 359 



4.2 Reliability of proposed techniques to estimate historical ditch network use practices  360 

Processing raw aerial images which lack projection information involves multiple steps from geo-361 

referencing to ditch identification. The technique we present here provides generic tools to correctly 362 

geo-reference large numbers of aerial images and to reliably classify pixels based on threshold values. 363 

For instance, when there are values that exist above or below plausible ditch pixel threshold values; 364 

our proposed method showed some noise, indicative of undrained areas in the image. The ditch 365 

networks identified from both aerial images and LIDAR data sources were slightly different than 366 

those identified from NLSF vector files (NLSF 2020) (Figure 9a).  367 

The approach presented here to identify ditch networks functioned better in areas identified as drained 368 

peatlands (Figure 9b) than for the catchment as a whole (Figure 9a). This occurred because the gap 369 

between the ditch length identified from aerial images for the entire catchment and NLSF vector files 370 

(Figure 9a) is higher than the ditch length identified from aerial images for drained peatlands and 371 

NLSF vector files (Figure 9b).  372 

The approach presented here relies on user-supplied parameter ranges (Appendix-C in supplemental 373 

materials) to determine whether a linear feature should be treated as a ditch line or not. While this 374 

study used a temporal series of aerial datasets to identify ditch age and extent, the proposed approach 375 

can be used with any other high resolution satellite image so long as the limitations of these data 376 

sources recognized. For example, it is recommended to consider only high spatial resolution (0.5 m - 377 

2 m) data sources to adequate identification of ditch networks.  378 

4.3 Uncertainties involved with ditch identification processes 379 

In this study; coarse pixel sizes, multiple bands in images, variable gray colors and image sharpness 380 

were prominent factors that caused errors in estimation of ditch network length. Most of the 381 

uncertainties at the catchment scale occurred due to poor quality of old aerial photos. 382 



Spectral variation among mosaicked images was also an issue in this study. We addressed this 383 

concern and developed a recursive process to split the mosaic so that all the identified pixels within 384 

that image boundary could drop in a certain range. Differences in spectral information among all 385 

mosaic images, even after preprocessing can also affect parameter ranges for Canny edge detection 386 

(Bradski 2000) and Hough line transformation (Karnieli et al. 1996). To overcome this issue, 387 

automated, iterative techniques could be developed based on image spectral information. In this 388 

study, we could not apply same threshold values throughout as spectral information of each image is 389 

unique. Thus, we applied kernel filtering after splitting each image into small rectangles so that the 390 

parameter values can be effective only for the relevant image section. 391 

Unavailability of aerial images was another major issue at the catchment scale. While it was possible 392 

to create one single mosaic image for each specific year, catchment scale ditch network quantification 393 

was challenging as the mosaicked image did not cover the entire catchment. In some cases we noticed 394 

some pixels were recognized as part of ditch network which did not represent the original field 395 

situation. Thus, ditch length for the Simojoki catchment was represented as ditch network density, 396 

i.e., the total length of identified ditches per area coverage of images for each year, recognizing that 397 

this might result in uncertainty for catchment scale.  398 

Therefore, for the entire catchment our approach generates tentative estimates of ditch network 399 

density based on image coverage for each year. This effect is especially relevant before 1987 when 400 

image coverage was less than 60%. Additionally, we also found a sharp rise of ditch network density 401 

in 1998 (Figure 9) even though the spatial extent of image coverage did not change abruptly from 402 

1994. One major reason for the change in estimated density was ditch network maintenance 403 

operations which had been conducted in 1990s. By maintaining ditches, old vegetated ditch sections 404 

became more visible in the aerial images. For example, Figure 4h shows a mosaic image from 2002 405 

that contains multiple segments of the catchment with different drainage patterns, instead of one 406 



combined zone. So, the spatial distribution of ditches based on the proposed technique is always 407 

relative to the specific portion of the image. 408 

Discrepancies were noted when validating results against the available ditch network database for the 409 

Simojoki catchment. Due to lack of spatial information, the local survey-based LUKE drained 410 

peatland database (Figure 9b) may be less accurate for local future analysis compared to our approach. 411 

There are limitations to all of available ditch network databases as the data quality is not known and 412 

the contents are often not up-to-date. Data quality in monitored ditch network databases and threshold 413 

selection are important aspects that need to be addressed in a more detailed way to improve the 414 

identification process of the algorithm presented here. Furthermore, a sensitivity analysis is needed 415 

in the future to address the possible errors that can affect accuracy of ditch density estimates. 416 

4.4 Can the proposed approaches be beneficial for future management of peat dominated 417 

catchments? 418 

From a land manager’s perspective, it is always important to understand the temporal distribution of 419 

ditch networks, especially in catchments containing a high percentage of peat soil. Some 420 

environmental changes, especially in soils, occur slowly (Araújo and Rahbek 2006) and thus 421 

historical land use activities may show impacts for years or even decades. For example, (Nieminen 422 

et al. 2018) found timing of initial drainage can explain decadal-scale variation in nutrient 423 

concentrations in runoff from drained peatland. Vegetation at aapamire complexes have also been 424 

observed in their study to react over decades to small scale drainage. Catchment-scale identification 425 

of timing for initial drainage is needed to better estimate catchment scale consequences of peatland 426 

drainage. By considering ditch network density as an independent variable, our approach can also be 427 

used to estimate water quality variations and biodiversity status of peatlands, especially in spatially 428 

distributed hydrological models. Aspects of catchment-scale hydrology which were not possible to 429 

address previously can be modelled now with our proposed approach to understand the effects of all 430 

transported elements. This can be beneficial in the future to take actions from managerial and 431 



ecological point of view. However, including other relevant factors such as peat depth in the ditch 432 

identification process will require further attention. 433 

The approaches presented here can also be implemented to estimate hydrological fluxes and 434 

emissions from drained peatlands (Ojanen et al. 2019) to guide future potential peatland restoration 435 

actions (Laine et al. 2019). Our approach can be applied for any peat dominated catchment to identify 436 

existing ditch networks and to consider future actions.  437 

5 Conclusions 438 

Analysis of historical aerial images leads to new insights about temporal and spatial distribution of 439 

catchment scale peatland drainage. Our approach was successfully applied in a peatland forestry 440 

dominated catchment where increasing canopy cover made ditch identification challenging. 441 

Introduction of multiple filters increased the possibility of accuracy to identify the ditch networks. If 442 

a user follows our approaches, to identify ditch network from scratch, all small steps associated in 443 

this study can be applied sequentially or part by part. For two representative locations in cultivated 444 

peatland (downstream) and peatland forest (upstream) areas of the catchment, we found total ditch 445 

length density (km/km2) estimated based on our proposed algorithm from aerial images and LIDAR 446 

data varied from 2% to 50% compared against the monitored ditch length available from National 447 

Land survey of Finland (NLSF) in 2018. A different pattern of source variation in ditch network 448 

density was also observed for whole catchment estimates and for available drained peatland database 449 

from Natural Resources Institute Finland (LUKE). We found no statistically significant differences 450 

between ditch network length identified from (i) aerial images & NLSF vector files and (ii) LIDAR 451 

data & NLSF vector files. Our analysis showed the potential of old aerial images and LIDAR data to 452 

identify drainage network changes for sustainable catchment scale management of future land uses 453 

and restoration actions. In future, it may be possible to develop more fragmented algorithmic section 454 

to further improve the approaches of identifying ditches. Our open access methodology and database 455 



can be a source to develop future conceptual models and to apply them in different forest based 456 

managerial and ecological scenarios. 457 
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Figure 1: Location of the Simojoki catchment in Finland: (a) catchment boundary with rivers and two 

specific sites where red circle in downstream part of Simojoki presents cultivated peatland (mixed 

land cover types, mainly agriculture and forest) and green circle in upstream Simojoki shows peatland 

forest , these sites were chosen in this manuscript to present spatial and temporal variability of the 

ditches because of their land cover variations based on (b) existing land cover from Corine 2018 data 

(“adapted from (a) National Land Survey of Finland 2018 and (b) Copernicus land portal 2013”). 

 



 

Figure 2: Detailed processes of data analysis to implement in this study. 

 



 

Figure 3: From split image to ditch detection: (a) a sample split image from 1978, (b) white cells 

represented detected edge pixels after applying Canny edge detection, (c) cells after morphological 

transformation with probable pixels for line formation and (d) final selection of pixels after Hough 

transformation where green lines represented finally detected ditches (“adapted from National Land 

Survey of Finland 2018”). 



 

Figure 4: The mosaicking process and temporal changes of aerial images in the Simojoki catchment. 

The top panel represents section-01 of the methods (I) non-geo referenced images overlapping with 

each other at same point far from (II) catchment boundary and (III) after applying Python scripts from 

Appendix-B (in supplemental materials) georeferenced location of the same images; whereas section-

02 (a - i) show mosaicked output of available aerial images with different coverage portion of entire 

catchment for different years from 1952-2018 (“adapted from National Land Survey of Finland 

2018”). 



 

Figure 5: Samples of identified ditch networks for different years of available aerial images: (a) 1952, 

(b) 1978, (c) 1994, (d) 1998, (e) 2002 and (f) 2018 in downstream Simojoki based on location of red 

circle in Figure 1a with cultivated peatland (mainly agriculture and forest). Figure f also contains 

2018 ditches from NLSF vector files in red color. (“adapted from National Land Survey of Finland 

2018”). 

 

 



 

Figure 6: Samples of identified ditch networks for forested areas in upstream Simojoki (green circle 

in Figure 1a) for different years of available aerial images: (a) 1958, (b) 1987, (c) 1994, (d) 1998, (e) 

2002 and (f) 2018. Figure f also contains 2018 ditches from NLSF vector files in red color (“adapted 

from National Land Survey of Finland 2018”). 

 

 

 

 

 

 

 



 

Figure 7: Identified ditch networks in green lines based on processed and combined database of 

LIDAR (2008-2018) along with ditch networks from NLSF vector files in red lines for (a) cultivated 

peatland in downstream Simojoki for same location as in Figure 5 and (b) forested areas in upstream 

Simojoki for same location as in Figure 6 (“adapted from National Land Survey of Finland 2018”). 

 

 

 

 

 



 

Figure 8: Presents temporal variations of ditch network density (km/km2) estimated for a small scale 

(1∼2 Sq. km) zone in (a) cultivated peatland (downstream) and (b) forested areas (upstream) of the 

Simojoki catchment. Values shown in the figure are the total ditch length found for each available 

year based on each available data source. 



 

Figure 9: Catchment scale temporal variations of ditch network density (km/km2). Total ditch length 

for each available year (a) based on available images for the whole catchment and (b) only for drained 

peatlands. 


