
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Joonas Tapaninaho

USING NEURAL NETWORKS TO GENERATE
FINNISH WORD EMBEDDING VECTORS

Bachelor’s Thesis
Degree Programme in Computer Science and Engineering

April 2024

Tapaninaho J. (2024) Using Neural Networks to Generate Finnish Word
Embedding Vectors. University of Oulu, Degree Programme in Computer Science
and Engineering, 46 p.

ABSTRACT

This bachelor’s thesis aims to find out how well word embedding vectors trained
with the help of shallow neural networks are suitable for the Finnish language
and how well they can recognize semantically similar words and synonyms. The
word embedding vectors produced by neural networks that are the subject of
comparison in the thesis were trained by using the Word2Vec and FastText
algorithms. These algorithms contain small differences in the functioning of
the neural networks, which can be seen when comparing the word embedding
vectors. The thesis aims to accurately define structural differences and their
effects on word embedding vectors, as well as the historical development of
natural language processing from methods using machine learning to current
neural network-based methods, which utilize deep learning. The common
presupposition is that word embedding vectors trained using the FastText
algorithm should better recognize semantically similar words and synonyms
compared to those trained using the Word2vec algorithm. However, the thesis
shows that this is not necessarily the case with the Finnish language, for example,
the amount of training data and the source of it have a strong influence on the
matter in addition to the dimension of the embedding vectors.

Keywords: Artificial intelligence, natural language processing, machine learning,
Word2vec, FastText

Tapaninaho J. (2024) Neuroverkkojen käyttö suomenkielisten sanojen
upotusvektoreiden generoinnissa. Oulun yliopisto, Tietotekniikan tutkinto-ohjelma,
46 s.

TIIVISTELMÄ

Tämä kandidaatin tutkielma pyrkii selvittämään, kuinka hyvin matalien
neuroverkkojen avulla koulutetut sanojen upotusvektorit soveltuvat
suomenkielelle ja kuinka hyvin niiden avulla pystytään tunnistamaan
samankaltaisia sanoja sekä synonyymeja. Tutkielmassa vertailun kohteena
olevat neuroverkkojen tuottamat sanojen upotusvektorit ovat koulutettu
käyttäen Word2Vec- ja FastText-algoritmeja. Nämä algoritmit sisältävät pieniä
funktionaalisia eroavaisuuksia neuroverkkojen toiminnassa, jotka on nähtävissä
sanojen upotusvektoreita vertailtaessa. Tutkielmassa pyritään avaamaan tarkasti
rakenteellisia eroja ja niiden vaikutuksia sanojen upotusvektoreihin sekä
luonnollisen kielen käsittelyn historiallista kehitystä koneoppimista käyttävistä
menetelmistä nykyisiin syväoppimista hyödyntäviin neuroverkkopohjaisiin
menetelmiin. Ennakko-oletuksen mukaan FastText-algoritmia käyttäen
koulutettujen sanojen upotusvektoreiden tulisi tunnistaa paremmin semanttisesti
samankaltaisia sanoja sekä synonyymeja verrattuna Word2vec-algoritmilla
koulutettuihin. Tutkielma kuitenkin osoittaa, että näin ei välttämättä ole
esimerkiksi suomenkielen kohdalla, jossa opetusdatan määrällä ja lähteellä on
suuri vaikutus upotusvektoreiden ulottuvuuden lisäksi.

Avainsanat: Tekoäly, luonnollisen kielen käsittely, koneoppiminen, Word2vec,
FastText

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION... 8
2. BACKGROUND... 9

2.1. History of NLP ... 9
2.2. Statistical Machine Learning in NLP.. 10

2.2.1. Markov Assumption .. 10
2.2.2. Word and Sentence Generating by Using N-Grams.................... 11

2.3. Statistical ML in NLP ... 12
3. DEEP LEARNING ... 13

3.1. Deep Learning in NLP .. 13
3.2. Learning Types in DL ... 14
3.3. Embeddings in NLP.. 14
3.4. Occurrence-Based Vectors... 15
3.5. TF-IDF .. 16

4. WORD2VEC.. 17
4.1. Structure .. 17

4.1.1. CBOW ... 18
4.1.2. Skip-Gram .. 18
4.1.3. Embedding Matrix .. 19

4.2. Classifier .. 19
4.3. Skip-Gram with Negative Sampling ... 20
4.4. Choosing Noise Words .. 20
4.5. Loss Function ... 21

4.5.1. Gradient Descent Algorithm .. 21
4.6. Stochastic Gradient Descent .. 22

4.6.1. Partial Derivatives ... 22
4.7. Parameter Updating .. 23

5. FASTTEXT .. 24
5.1. Structure .. 24

5.1.1. N-Gram .. 25
5.1.2. Scoring Function ... 25
5.1.3. Embedding Matrix .. 26

5.2. Partial Derivatives... 26
5.3. Parameter Updating .. 28

6. IMPLEMENTATION AND ANALYSIS... 29
6.1. Training Data and Preprocessing.. 29
6.2. Training Models ... 29

6.2.1. Training Parameters... 30
6.3. Evaluating Models .. 30

6.3.1. Evaluation Set ... 30
6.3.2. Evaluating Result .. 31
6.3.3. Note on Evaluation .. 32
6.3.4. Summary of Evaluation ... 32

6.4. Visualization of Models... 32
6.5. Analogy Operations .. 34
6.6. Observations... 35

7. WORD EMBEDDINGS IN SEARCH APPLICATIONS 36
8. DISCUSSION .. 38
9. SUMMARY ... 39
10. REFERENCES ... 40
11. APPENDICES.. 44

FOREWORD

My sincerest thanks to D.Sc(Tech.) Jaakko Suutala for all the help and guidance in
compiling this thesis.

Oulu, April 26th, 2024

Joonas Tapaninaho

LIST OF ABBREVIATIONS AND SYMBOLS

AGI Artificial general intelligence
AI Artificial intelligence
CBOW Continuous bag-of-words
DCNN Deep convolutional neural network
DL Deep learning
FNN Feedforward neural network
GPT Generative Pre-Trained Transformer
HMM Hidden Markov model
LLM Large language model
LM Language model
LSTM Long-short-term memory
ML Machine learning
MLM Masked language model
MT Machine translation
NLP Natural language processing
NNLM Feedforward neural network language model
OOV out-of-vocabulary
OVA One-versus-all
PCA Principal component analysis
PMI Pointwise mutual information
POS Part-of-speech
RNN Recurrent neural network
SGD Stochastic gradient descent
SGNS Skip-gram architecture with negative sampling
SVM Support vector machine
W2v Word2vec

P (A|B) Probability chain rule∏
Product

LCE Loss function
e Euler’s number
log Logarithm∑

Summation
|v| Vector v length
σ Sigmoid function
w Center word w embedding vector
Cneg, Cpos Context word C embedding vector
ŷ predicted similarity between two word embedding vector
∂ Partial derivative
d Derivative
W Embedding matrix storing word embeddings
η Learning rate
s Scoring function s

8

1. INTRODUCTION

Modern Generative Pre-Trained Transformers (GPTs) [1] based chatbots and other
generative artificial intelligence applications are everyone’s know today due to their
recent research breakthroughs, which have led to massive performance improvements.
The most successful generative models like ChatGPT [2] and DALL-E [3] can do
things, that feel like magic but are statistically learned patterns from huge amounts of
data in the end. That does not reduce fact, how impressive those generative models
are, but instead surprises how complex things the computer can learn to do from
picture and text-based training data, without the need for hard-coded instruction. To
generate text or pictures from it, computers need at least some level of understanding
of human language and its structure. To achieve that artificial intelligence (AI) comes
into the picture, which has a long history of solving narrowed tasks in specific ways.
This has created many subfields under artificial intelligence, which some of will be
reviewed in the following paragraphs. Recent breakthroughs, which have helped to
raise artificial intelligence into its current position, often combine the best methods of
several subfields to create state of art applications.

Those state of art applications like ChatGPT have brought up discussions of the
possible development of artificial general intelligence (AGI) [4], which can accomplish
all the same tasks as humans. No one knows for sure when an AGI-level artificial
intelligence system will be achievable, if never, but everyone agrees that it will need
a deep level of understanding of human language. Understanding human language as
general and profound is always been an extremely difficult task for computers, due to
the various hidden meanings and patterns, which it contains. An additional challenge
comes when artificial intelligence systems have to change between different languages,
which have their own special features and structural differences.

Throughout history, there have been several ways and ideas on how to capture
language information and convert it into computer-understandable form, which will
be surveyed in the following chapters. There is not yet developed certain general way,
that works best in all cases, but many of them perform well in several application
areas. However, a common factor in almost every language-based application is
that the words are represented in embedding vector format [5]. Those embedding
vectors of words can capture widely different information about the words and their
relations to other words, which is required in applications like translation [6 ch.13] and
information search [7]. Those types of applications need more wider information about
words, like context and semantic similarity with other words to function in a wanted
way. Previously mentioned problems are fascinating and this thesis partly focuses on
viewing proposed solutions in some of the application areas.

Evaluating how Word2vec and FastText algorithms apply to the Finnish language,
is one of the research questions of my thesis. The second research question is looking
answer to the question, does the synonym or semantic similarity detection with word
embeddings help to find better alternative search results.

9

2. BACKGROUND

The Turing test is a generally accepted way to determine whether the machine exhibits
intelligent behavior or not. Human language is complex, and it captures so much
information, about intelligent behavior, which made language a natural choice for Alan
Turing to determine the human type of intelligence in machines [8 p.20]. This choice
created its own subfield for AI called natural language processing (NLP), which covers
interactions between human language and computers [9].

NLP’s purpose is utilizing machine learning (ML), statistical, and deep learning
(DL) techniques for human language rule-based modeling [10]. Based on Russel and
Norvig [8 p.20] there are three primary reasons for NLP, which are communication,
learning, and scientific understanding. The first reason communication covers
language-based interaction between humans and computers, for example, voice
assistants and chatbots are direct examples of that interaction. To learn and know, the
system needs to understand natural language, because hard coding every knowledge
is not a scalable solution. The final reason is to expand the scientific understanding
of language in general by using a combination of tools from AI with hand-to-
hand information acquired from the fields of linguistics, cognitive psychology, and
neuroscience.

2.1. History of NLP

NLP impacts our everyday life constantly, it is present when you search for
information, translate text, use voice assistants, chatbots, and in countless other ways,
which may not be so obvious. Development in the NLP area often comes by hand-
to-hand with the progress of computers and the need of solving important tasks. It
is not surprising, that after the Second World War, when two superpowers started
competing with each other, and the field of NLP began to form, the first researches
focused on machine translation (MT) between Russia and the English language [11].
MT focused NLP era continued from the 1940s to the late 1960s and suffered from a
lack of computing power and small memory [11].

After that, the focus changed from MT to AI-flavoured and semantic-oriented
topics, which enabled the simple question-answering type of communication between
computers and humans, by using hard-coded rules and ready answer frames without
the computers’ actual understanding of language or conversation itself [11]. This phase
lasted from the late 1960s to the late 1970s and contained successful systems like
LUNAR, SHRDLU [11] and ELIZA [9].

From the late 1970s to 1980s dominant focus area was grammatico-logical, where
the development of grammatical theory and AI field movement toward using logic for
knowledge information influenced strongly [11]. This trend was reflected especially in
the development of conceptual ontology programs, for example, MARGIE, QUALM
and SAM, where real-world information is structured into computer readable data
format [9].

In the 1980s many NLP works focused symbolic approach, which used complex
hard-coded grammars and rules to language parse [12]. Other research lines stayed in
the chatbot approach, which created programs like Racter and Jabberwacky [9]. After

10

the 1980s NLP could be roughly divided into two phases, where statistic machine
learning focused phase lasted from the 1990s to the early 2000s, and deep learning
models started to receive greater interest.

2.2. Statistical Machine Learning in NLP

Most of the traditional machine learning (ML) techniques in the NLP field use statistics
and probabilities to perform specific wanted tasks. Those tasks can be for example
natural language generation or machine translation, which uses probabilities obtained
from the training phase to determine the most likely next word or translation of
sentence [6 ch.3]. These types of models, which use assigned probabilities to the
sequence of words are called language models (LMs), for example, ChatGPT which
is a large language model (LLMs). But instead of using traditional ML techniques
ChatGPT uses deep learning and massively large data sets to assign those probabilities.
The simplest way to assign sentence based probabilities is to determine the probability
of P (w|h), where w is the certain word and h means sentence history before word
w. To visualize that, we can consider example history h = "ML is subfield of" and we
want to know the probability of how likely the next word w is "AI". This probability is
determined by:

P (w|h) = C (ML is subfield of AI)
C (ML is subfield of)

, (1)

where C represents count and we simply calculate how many times we have seen
sentence "ML is subfield of" in training data and how many times word "AI" is followed
that sentence history.

2.2.1. Markov Assumption

This type of probability calculating can work fine in many cases, but even the whole
web isn’t big enough to assign good probability estimations in most cases [6 ch.3].
We can use more clever ways to get estimates for sentence probabilities by using the
Markov assumption, which assumes the probability of the next word depending only
on the previous word [6 ch.3].

By using the Markov assumption and chain rule of probability we can determine the
estimated probability of sentence, as follows

P (w1:n) ≈
n∏

k=1

P (wk|wk−1) · (2)

If we want to, for example, calculate the probability of a sentence s = "ML is subfield
of AI." we use Eq. (2) as

11

P (s) ≈
6∏

k=1

P (wk|wk−1)

≈ P (w1|w0) · P (w2|w1) · P (w3|w2) · P (w4|w3) · P (w5|w4) · P (w6|w5) ,

(3)

which corresponds to multiplying each words probability to respect to past word from
it:

P (s) = P (ML | <s>) · P (is | ML) · P (subfield | is) · P (of | subfield) · P (AI | of) ·
P (</s> | AI) .

Those individual probabilities we get by using maximum likelihood estimation
(MLE), which again counts frequency of word pairs in training data. When looking at
only one word form the past, like for example in P (AI | of) case, MLE is defined as

P (wn|wn−1) ≈
C(wn−1wn)

C(wn−1)
, (4)

where C in Eq. (4) is again the count and normalized estimated probability would be
the count of how many times "of AI" appears in the data divided by the total count
of word "of" appearance. P (ML | <s>) and P (</s> | AI) contains special tags,
which represents how certain is that a sentence starts or ends with that specific word,
and the probability estimation is calculated the same way than others by using MLE.
Sequencing words or characters is called N-grams, and the previous example, where
we used word pairs and Markov assumption (N=2), is called bigram. If instead, we
want to take notice of more than one word from the past, we just increase the size of N
to the wanted size.

2.2.2. Word and Sentence Generating by Using N-Grams

Let us consider a case where we have a sentence generator, which has generated a
partial sentence "ML is subfield of" and we want to use estimated 4-gram probability
to see how likely next additional word is "AI". We calculate the estimated 4-gram
probability as follows

P (wn|wn−N+1:n−1) = P (wn|wn−3:n−1)

= P (AI|is subfield of)

=
C(is subfield of AI)
C(is subfield of)

·
(5)

This equals Eq. (1) calculation, but instead of using whole partial sentence history to
estimate the next words probability, we only use a part of it. A good real-life example
of using N-gram probabilities is search engines and their search suggestions. One
way for search engines to give these suggestions as in Figure 1 is to calculate the
probabilities to different sizes of N-grams from users’ previous search query sentences
and suggest the next word based on the highest probability. For example suggestion

12

icon could have been obtained from 3-gram probabilities, where the highest probability
for w in P (w|machine learning) probabilities are looked at from words, which start
with the character "i".

Figure 1. Example capture from Google search.

In practice, when we calculate n-gram or sentence probabilities in language models,
we get really small numbers. To avoid underflow those probabilities are always
reformed to log probabilities = log(P1 × P2 × · · · × Pn) , which modifies those
probabilities a little bit higher. If we need reform those back to real probabilities,
we just use exponent P1 × P2 × · · · × Pn = elog(P1×P2×···×Pn) to achieve that [6 ch.3].

2.3. Statistical ML in NLP

Statistical ML has helped to produce several real-world applications, which use
natural language. Many of those modern ML algorithms utilize well known old
probabilistic rules and assumptions, which are possible to be included into new
generation algorithms after the increase of computational power. Naive Bayes
classifier uses Bayes’ rule to simplify classifying task to prior probability and
likelihood multiplication, where prior probability corresponds to a certain share of
class c, of the training examples and likelihood features f (contained by document d)
individual probabilities to belong in a category c multiplied together. One of the first
naive Bayes classifier adaptions was spam detection, where emails are classified as
spam or not by looking at features (words), which it contains [6 ch.4].

Another popular ML algorithm for classification task is support vector machine
(SVM), which modern version was first introduced in a paper [13]. SVM approach
is to learn linear or non-linear hyperplane decision boundary to separate data points
belonging to class A or B [14 p.20]. It is also applicable solution to classify more than
two classes, for example by using one-versus-all (OVA) solution, where document d
belongs to class A or class others, and finding the most suitable class by making A or
others comparison, for document d respect to every possible class.

Other important NLP areas like MT and part-of-speech (POS) tagging applications
have utilized Hidden Markov Models (HMM), which is a statistical model, where the
modeled system is assumed to be a Markov chain containing unobservable hidden
states. HMM based solutions have been often used in application areas, which are
believed to contain hidden causal factors and those are possible to observe from data
only once it is generated [14 p.21]. Even though ML algorithms have shown good
performance in many NLP related application areas, they contain limitations compared
to deep learning algorithms. Traditional ML algorithms need structured training
data and often lack possibility to scale, which poses no problem for deep learning
algorithms. Deep learning algorithms can also find hidden and complex patterns from
data, which is impossible to capture by traditional ML methods.

13

3. DEEP LEARNING

Deep learning (DL) is a subfield of machine learning, which uses neural networks
as a general-purpose learning procedure [15]. The development of neural networks
was inspired by the human brain and more specifically the neurons it contains. The
neural network mathematical model was first introduced at paper [16] and a trainable
version of that was demonstrated by Rosenblatt in 1957, which made it an active area
of research until 1959 when Minsky and Papert showed its time-consuming weakness
in a book titled "Perceptrons" [17]. Neural networks contained decades of very little
research interest due to a lack of needed computational power like many other NLP-
related models and algorithms, which later adapted to solve modern problems. Even
though there was several pioneering neural network-related research, it was early
2010s when deep learning models started to outperform other ML methods.

3.1. Deep Learning in NLP

Deep learning started gaining attention in the NLP area, when Bengio et al. proposed
their solution for feedforward neural language model (LM) at paper [18]. The structure
of LM is based on feedforward neural network (FNN) architecture, where in simplified,
data flows from the input layer to the network output layer without going backward.
Bengio et al. proposed LM introduced building blocks to another type of network
structures in the NLP field, which have then displaced classical FNN architectures [12].
Recurrent neural Networks (RNN) uses a different architectural approach compared to
FNN, where instead of flowing data only forward, RNN flows data over history.

Figure 2. Simplified structural difference between FNN and RNN. Adapted From [19
p.6].

More precisely, RNNs contain hidden layer or layers, which can store and utilize
internal state memory to process flowing data [6 ch.9]. As a weakness, RNNs
face rapid information loss over time due to vanishing gradients, which led to the
development of long short-term memory (LSTM) network solution [20]. Instead
of being a completely different solution, LSTM is an extension of RNN model
architecture, which utilizes RNN’s internal state memory approach. As a difference
compared to RNN, LSTM is able to remove information, that is not needed anymore,
and add information, which is assumed to be needed later in decision-making. RNN
and its extensions like LSTM started to gain attention in NLP due to [21] proposed
idea to use RNN for NLP-related tasks, which has strongly impacted to especially

14

applications like MT and language modeling [8 p.826]. Currently, transformers
and its variations are maybe the most important models in the NLP field and have
achieved state-of-art solutions for almost every major NLP task [14 p.25]. Transformer
model was introduced in the paper [22], which adapted a multi-head self-attention
mechanism to model long-distance context without a sequential dependency. The
original transformer model, which contains self-attention and a feedforward layer with
residual connection, has inspired further solution extensions like masked language
model (MLM) BERT [23], which have reached state-of-art performance in Q&A area
and auto-regressive LLM ChatGPT [8 p.930].

3.2. Learning Types in DL

Typically ML algorithms are divided into three main learning types, which are
supervised, unsupervised and reinforcement learning. Supervised learning means
method, where the model tries to learn a way to generate wanted outputs for given
inputs, which are detached from preprocessed data. Unsupervised learning uses the
opposite approach, where the model is given only inputs and its task is to find structure
from it. The last of the main types is reinforcement learning, which as simplified,
learning by trying. Those reinforcement learning models have specific reward systems,
which instruct it into desired functioning.

The previous learning types are the main categories, but there are also several other
types of learning solutions, which are variations of some main category or combination
of them. Deep learning uses a neural network as a structure, but it does not lock it into
certain learning type, which varies according to network structure and specified task.

Modern language models like BERT and ChatGPT, which are based on transformer
structure use transfer learning. The idea behind transfer learning is to use a pre-trained
model as an initialization for the actual model, which is then further trained for its
desired task. This can be compared to for example, if you have been trained to fly a
commercial airplane, you most likely will learn to pilot smaller planes more quickly
than someone without previous experience [8 p.832]. Simplistically, the purpose of
pre-training in LLMs is to train the model, which generates and understands text using,
during the pre-training phase learned embedding representation of subwords. That pre-
trained model is then further trained usually by using reinforcement learning to wanted
tasks like Q&A or chat.

3.3. Embeddings in NLP

The central idea of NLP is to analyze and understand human language to utilize that
knowledge in a needed way. This leads to the question of how, we can get an NLP
system to understand language without manual featuring engineering and still include
information into word representation about it relations to other words [8 p.907].

Most simplest way to present a word is to use one-hot vector representation, where
the length of the vector corresponds to the size of the vocabulary [8 p.907]. The size
and language of vocabulary depend on the task we want our system to perform, if we

15

have for example system, of which vocabulary contains three words [A,B,C], we get
the following one-hot vector representation of this vocabulary:

A = [1, 0, 0]

B = [0, 1, 0]

C = [0, 0, 1] ,

(6)

where in Eq. (6) the corresponding index of the word in the vocabulary is 1 and all
other positions are represented as 0. This is not a very informative way to represent
words and does not give any information about their relation to each other.

There is a better and more efficient way called embedding, where instead of using
long vectors, we reduce vector length to smaller and include relation information
into it, instead of the index of word in vocabulary. This revolutionary idea was first
introduced in article [24], where Osgood et al. used three manually featured values
(Valence, Arousal, Dominance) to represent each word’s meaning in 3-dimensional
space [6 ch.6]. Words are not only information, that can be represented in N-
dimensional space as an embedding format to capture meaning and relations, other
options are for example documents or subwords.

3.4. Occurrence-Based Vectors

Embedding representation introduced by Osgood et al. needs feature engineering,
which is not an effective way and also needs human determination of a words meaning.
We have a simple way to capture some relation information by calculating word
occurrence in a set of documents.

Let us consider the following example of four documents and the occurrence of some
of the words in those documents. In the Figure 3, the count of word occurrence in each
document is represented as rows and each document’s word count is represented as
column in the occurrence matrix. The occurrence matrix gives us the possibility to
compare a word to another word and a document to another document.

Figure 3. Occurrence matrix example.

As Figure 4 demonstrate, we can compare words to each other by using row
vectors (Green) from the occurrence matrix and that way get information about word
similarities. Using the same idea, if we want to find a similar document, we can
compare document column vectors (Red) together.

16

Figure 4. Word and Document comparison.

Figure 5 shows another way to compare words by using a document set is to calculate
the co-occurrence matrix for words, where the value in ith column and jth row, means
the sum of, how many documents contain jth and ith index word from the vocabulary.

Figure 5. Word co-occurrence example.

To compare two same-length vectors X and Y as in occurrence or co-occurrence
matrix, we can use dot product, where vector X is multiplied by vector Y transpose. In
case, we have long vectors, dot product may not be the best way to compare vectors
and instead of use normalized cosine similarity:

cosine(v, w) =
v · w

|v| · |w|
=

∑N
i=1 vi · wi√∑N

i=1 v
2
1 ·

√∑N
i=1 w

2
1

, (7)

where in Eq. (7) vector v and w dot product is divided by multiplication of their length.

3.5. TF-IDF

Comparing words based on their occurrence in documents, in other words by
frequency, is not an effective method, because common words like "the" or "it" get
too much impact and rare, more informative words, are ignored. One solution for that
problem is to use tf-idf weighting instead of occurrence count, which is defined as

wt,d = tft,d · idff , (8)

where in Eq. (8) t means word t in document d and tft,d is simply word t occurrence
count in document d. Multiplier idft is determined as idft = log10(

N
dft
), where N

means total count of documents and dft how many documents word t occurs. Another
alternative solution is to use pointwise mutual information (PMI) proposed by Fano
[25]. Although the above solutions can capture useful information about words, there
is a more powerful way to capture relational hidden meaning of words like GloVe [26]
or Word2vec [27], which are presented in the next chapter.

17

4. WORD2VEC

Depending on the source, Word2vec (W2v) is often described as an algorithm, this
is partly true, but instead of considering W2v as a singular specific algorithm, it
is a common designation for algorithms, that use neural networks to learn word
embeddings in specific way [28]. Those word embeddings are N-dimensional vectors,
which are trained to represent each word in training data vocabulary [6 ch.6]. The
original version of the W2v algorithm was developed by four Google employees,
who tried to find a better and more efficient way to detect semantically similar words
by using a large text corpus as training data for a single-layer neural network [27].
Milkov et al. found that it is possible to train high-quality word embedding vectors
by using simple model architectures, which helps to reduce computational complexity
and enable a much larger data set to use in the training phase [27].

In paper [27], Milkov et al. use earlier proposed techniques [29] for measuring
resulting embedding vector quality with the exception that similar words can have
multiple degrees of similarity in addition that those words also tend to be close of
each other in multidimensional vector space. Paper [29], shows that high-dimensional
word vectors can disclose word similarity by using simple algebraic operations. For
example, vector("King") - vector("Man") + vector("Woman") gives a result vector,
which is closest to the vector("Queen") by comparing result vector cosine similarities
with other word vectors in vocabulary.

Using embedding vectors as a representation of words, contained a long history
before paper [27] and [18], where feedforward Neural Networks Language Models
(NNLM) were proposed as the solution to learn those word vector embeddings [27].
At the time, when paper [27] was published, most of the proposed NNLM architecture
solutions were computationally expensive to train, which inspired Milkov et al. to
develop their problem solutions and further improve those proposed solutions later in
the paper [30].

4.1. Structure

The architecture of the first version of W2v algorithm was a follow-up to Milkov et al.
earlier proposed solutions in paper [31] and [32], which found out that it is possible
to successfully train neural network language model in two steps: at the beginning
use a simple model to learn continuous word vectors and then train N-gram NNLM
on top of those distributed presentations of words [27]. Paper [27] proposed two new
architecture models for algorithms to learn distributed word representation Continuous
Back-of-Words (CBOW) and Skip-Gram, which are bases for most of the further
developed improvement solutions.

18

Figure 6. Structure of CBOW and Skip-gram models. Adapted From [27].

4.1.1. CBOW

CBOW has a similar type of architecture to NNLM, where all words share the same
projection layer, and a non-linear hidden layer is removed [27]. This means that all
vectors are averaged and words projected into the same position, which way word
order history does not influence the projection [27]. CBOW takes in training phase t
amount of context word vectors, where t means the size of ± context window [28]. In
other words, this defines how many words before and after the center word w are taken
notice of when the architecture tries to predict correct output word. In the CBOW
model, the correct output is an actual center word and input words are all other words
from inside the context window.

4.1.2. Skip-Gram

Skip-gram model has a similar type of architecture to CBOW, but it difference by the
way it processes words in the training phase [27]. When the CBOW model architecture
is trying to predict the center word by looking at words around it, Skip-gram does the
opposite and tries to detect correct words around the given center word w. To compare
these two models, while CBOW is faster to train it performs much weaker than the
skip-gram model in total accuracy point of view [27]. Milkov et al. second paper
[30] focuses on proposing improvements to the Skip-gram model architecture to lower
training time which is why skip-gram is a more popular model solution than CBOW.
The following structural explanations are based on skip-gram model architecture.

19

4.1.3. Embedding Matrix

The W2v model architecture core is the embedding matrix, which stores each word’s
embedding vectors. From a structural point of view, this matrix can be split into two
individual matrices W1 and W2, where W1 contains each word embedding vector
representations as the center word and W2 as the context word [28]. Both matrices
W1 and W2 size is |V| x N, where |V| represents the amount of unique words in
training data [28]. N is the length of each word embedding vector, in other words,
dimension, which typically is between 50-1000 depending size of the training data
set [6 ch.6]. Large training data sets can give high accuracy with smaller embedding
vector dimensional, which again reduces computational complexity with each training
epoch [6 ch.6].

4.2. Classifier

To predict the correct context word/words for a given input center word, the skip-gram
model trains a probabilistic classifier, which assigns word probability to being context
word by measuring its similarity with the center word [6 ch.6]. The similarity between
center word w and context word c vectors can be calculated using dot product (w ·c) by
the assumption that two vectors are similar if they have high dot product. Dot product
(w · c) is not yet probability, it is ranging number between −∞ and ∞, which can be
converted to probability by using the sigmoid [6 ch.6] or SoftMax [28] function. Eq.
(9) shows the definition of the sigmoid function, as follows

Sigmoid : σ(x) =
1

1 + e−x
· (9)

The sigmoid function modifies the negative dot product to positive and returns a
number ranging between 0 to 1. By combining the sigmoid function and dot product,
we can define that the classifier purpose is to maximize probability:

P (+|w, c) = 1

1 + e−w·c , (10)

where w represents the current center word vector from embedding matrix W1 and c
is the context word vector from W2 embedding matrix. We also want to minimize that
non-real context words get high probability by minimizing the following eq.(11).

P (−|w, c) = 1− P (+|w, c) = 1

1 + e w·c , (11)

where w is again the center word embedding vector and this time c is a non-context
word embedding vector. Equation (10) calculates probability only for one context word
from context window ± t, which can contain multiple other context words. Skip-gram
assumes context words independence, which allows just multiply word probabilities:

P (+|w, c1:t) =
t∏

i=1

σ(w · ci) , (12)

20

and in log scale:

logP (+|w, c1:t) =
t∑

i=1

log σ(w · ci) · (13)

4.3. Skip-Gram with Negative Sampling

In Milkov et al. second paper [30] they introduced negative sampling as a solution for
reducing computational complexity for learning word embedding vectors. The idea
behind skip-gram with negative sampling (SGNS) is to calculate probability error in
each training epoch only for real context words and k amount of randomly sampled
non-context words, which are selected from training vocabulary [6 ch.6]. A suitable
size of k depending amount of the training examples, with a smaller training data set
the k is recommended to be a number between 5-20 [30]. In case there is a large
training data set, it is enough that the value of k is a smaller number between 2-5 [30].
We can walk through how negative samples are generated by moving context-window,
by exploring the following example, where we have the sentence " I want to know more
about NLP " in training data. Let’s determine that context window t is ± 2 and k = 2.
We start moving the center word index at the sentence from the left and flow word by
word to the right. In first training epoch center word w is "I", context words are w+1

= "want" and w+2 = "to". For each context word, we randomly select 2 non-context
word, as follows

Positive examples: Negative examples:
t cpos w

w+1 want I
w+2 to I

cpos cneg1 cneg2

want ai more
to more like

Different context words can get the same randomly selected negative example word,
but the negative example can not ever be the same word as some of the current context
window [28]. In the fifth training epoch center word w is "more" and we again select
context words around it and randomize negative examples, as follows

Positive examples: Negative examples:
t cpos w

w−2 to more
w−1 know more
w+1 about more
w+2 NLP more

cpos cneg1 cneg2

to like other
know apple car
about ai computer
NLP banana dog

4.4. Choosing Noise Words

Negative examples are randomly sampled with unigram probability, where more
frequent words in vocabulary are selected more often to be cneg than rare words [6

21

ch.6]. It is common to use weighted α when calculating unigram probability, which
gives rare words a little bit more likely to get selected and leads to better performance
[6 ch.6]. Weighted unigram probability is defined as follows

Pα(w) =
count(w)α∑V
i=1 count(wi)α

, (14)

where count(w) is the number of how many times word w occurs in training data
divided by total training data word count [6 ch.6]. Both the numerator and denominator
are powered by weight α, which is usually 0.75 [6 ch.6].

4.5. Loss Function

The goal of the skip-gram algorithm is to adjust words embedding vectors by using
loss function L, which tries to maximize dot product similarity of training pairs
(w,cpos) and minimize similarity of negative example pairs (w,cneg) [6 ch.6]. In other
words, we want that the real context words cpos to be close to the center word w in
embedding vector space and reduce noise words cneg closeness by using loss function
and stochastic gradient descent [6 ch.6].

According to [6 ch.6], in the SGNS case loss function can be determined as follows

LCE = − log

[
P (+|w, cpos)

k∏
i=1

P (+|w, cnegi)

]

= −

[
logP (+|w, cpos) +

k∑
i=1

logP (−|w, cnegi)

]

= −

[
logP (+|w, cpos) +

k∑
i=1

log(1− P (+|w, cnegi))

]

= −

[
log σ(w · cpos) +

k∑
i=1

log σ(w · −cnegi)

]
·

(15)

Loss function calculates prediction error and it is good to notice how it behaves
in extreme conditions. If our model give hypothetically 100% probability for
P (+|w, cpos) and 0% probability for every negative P (+|w, cneg) sample, then LCE =
−[log(1) + k · log(1− 0)], which equals prediction error LCE = 0.

4.5.1. Gradient Descent Algorithm

To train machine learning models and neural networks, a commonly used way to
achieve that is to use an optimization algorithm called gradient descent [33]. Gradient
descent works hand-to-hand with the loss function, which calculates the error between
the predicted output and the wanted output. By using loss function feedback about
network error, it tries to modify parameters, so that the error is as small as possible
[6 ch.6]. There are three types of gradient descent algorithm versions, which differ in

22

the way of updating weights [33]. A common solution in the Word2vec case is to use
stochastic gradient descent (SGD), which uses each word in the corpus as a training
epoch and updates center and context word embedding vectors after each epoch [6
ch.6]. With SGD training is less complex and more efficient from the computational
point of view [33]. It can also help escape from the local minimum, where small
changes to parameters do not reduce loss, which prevents finding a global minimum,
where adjusted parameters give the smallest possible overall loss [33].

4.6. Stochastic Gradient Descent

The reason behind calculating the gradient for the network in each training epoch is to
get information about how much each element affects prediction error by changing
values at flow between input and output inside the neural network [33]. In the
SGNS model, the only parameters that we need to adjust are context and center
word embedding vectors, all other elements inside the network are just mathematical
operations and their flowing output values [6 ch.6]. This network structure can be
resented as a graph where different operations for variables are represented as boxes
and connected to each other with lines.

Figure 7 shows an example of calculation operations in a situation where prediction
error is calculated for real context word cpos. In the case of calculating prediction error
for non-real context words, i.e, noise word cneg, the structure is otherwise the same but
in noise word case LCE = − log(1− σ(y)), instead of LCE = − log(σ(y)).

w

cpos

× σ −Log LCE

y = w · ccpos ŷ

1− 1
ŷ

[σ(y)− 1]

[σ(
y)−

1] · w

[σ(y)− 1] · cpos

Figure 7. Graph example of the structure of calculating the loss function.

4.6.1. Partial Derivatives

Network gradient consists of partial derivatives, which are flowed back to the starting
point in Figure 7 by grey arrows. This method is called backpropagation, which
uses chain rule to backward pass network variables’ partial derivatives with respect
to loss function LCE [33]. This way we can adjust effectively network parameters by
mirroring their impact to computed prediction error i.e. loss [6 ch.6].

23

Because SGNS calculates prediction error in each training epoch only for real
context word cpos and noise words cneg instead of all words in the vocabulary, we
can define partial derivatives as follows:

∂LCE

∂cpos
= [σ(w · cpos)− 1] · w , (16)

∂LCE

∂cneg

= [σ(w · cneg)] · w , (17)

where equations (16) and (17) show, partial derivatives for noise words cpos and real
context word cneg.

The total partial derivative of w is the sum of its individual partial derivatives
representing to prediction error of cpos and noise cneg noise words, which leads
definition as follow:

∂LCE

∂w
= [σ(w · cpos)− 1] · cpos +

k∑
i=1

[σ(w · cnegk)] · cnegk · (18)

4.7. Parameter Updating

After each training epoch, network parameters are adjusted to minimize future
prediction error based it is effect of prediction error LCE , which equals parameter
partial derivative with respect to LCE [6 ch.6]. SGNS model parameter updating is
defined as follows:

ct+1
pos = ctpos − η[σ(wt · ctpos)− 1] · wt (19)

ct+1
neg = ctneg − η[σ(wt · ctneg)] · wt (20)

wt+1 = wt − η

[
[σ(wt · cpos)− 1] · cpos +

k∑
i=1

[σ(wt · cnegi)] · cnegi

]
, (21)

where t represent time step and η learning rate [6 ch.6]. Intermediate stages of
derivatives and the example of full training epoc with parameter updating can be found
in the first appendix.

24

5. FASTTEXT

Even though previous Word2vec algorithm solution example and other similar versions
of that can effectively capture the semantic similarity of words, they have certain
deficiencies. Morphological-rich languages like Finnish, contain internal level word
structure information, which is not utilized by those models. Another deficiency is
their inability to handle out-of-vocabulary (OOV) words, which means that the network
can not represent embedding vectors for those words, which are not in the training
set. As a solution to rectify those deficiencies, four Facebook employees proposed
improvements to the original Word2vec algorithm in three parts [34], [35], and [36].
Paper [35] focuses mainly on model compressing and ways to reduce memory demand,
while papers [34] and [36] proposed architectural improvements, which we focus on
in this chapter.

Joulin et al. found out that their proposed techniques beat almost all state-of-art
solutions in sentiment accuracy and all of them clearly in training speed [34]. The only
algorithm in the comparison group, which gave slightly better sentiment accuracy with
certain data sets, was the very deep convolutional neural network (DCNN) proposed by
Conneau et al. [37], but in single epoch training time comparison, FastText was at best
even 1100 times faster than DCNN. They also found out that the FastText algorithm is
also applicable to modified tag prediction task, where it reached reasonable accuracy
for predicting correct tags into input text sentences [34].

5.1. Structure

In paper [36] Joulin et al. introduced the FastText algorithm structure, which is broadly
similar to the previous chapter SGNS Word2vec version. The difference between
SGNS and FastText comes in the way of handling input words and how to calculate
the probability of word c to be context word for word w [36]. In the original Word2vec
paper [30], the proposed classifier defined probability for words to be context word to
specific word w by using the SoftMax function, defined as follows:

P (w|c) = exp(c · wT)∑V
i=0 exp(ci · wT)

, (22)

where w is the center word and c is the context word, which probability we want to
know. In the denominator, the dot product between each word in the vocabulary and the
center word w is summed up to normalize calculated probability. This solution does
not consider probabilities as independent for each word, because those probabilities
add up to 1, which can limit the learning of word embeddings.

Previous chapter SGNS example used the sigmoid function to calculate probabilities
instead of SoftMax, which way probabilities were considered as independent for each
word. Paper [36] proposed the following solution to calculate probabilities for real
context words Cpos :

P (+|w, c) = 1 + e−s(cpos,w) (23)

25

and negative samples cneg :

P (−|w, c) = 1 + es(cneg ,w) · (24)

Those modifications give us a slightly simpler loss function compared to SGNS,
which can be defined as follows:

LCE =
[
log(1 + e−s(cpos,w)) +

k∑
i=0

log(1 + es(cneg ,w))
]

, (25)

where again k is amount of negatives samples for each positive cpos example and s
represent scoring function, which will be reviewed later.

5.1.1. N-Gram

Another structural change compared to SGNS related into the input layer and first
embedding matrix W1. Previous Word2vec algorithm solutions lack to utilization of
words’ internal structure, which Joulin et al. wanted to reform by using words n-grams
to capture words’ internal structure. N-gram representation of word splits word to a
bag of characters the size of N, which we further represent as lower case n. In the
FastText algorithm, the size of n is typically between 3-6, and the lower or upper size
of n does not capture words’ internal information as precisely [36]. A common way
is also to add special boundary symbols < and > for at the beginning and end of each
word to distinguish words start and ending from other character sequences.

Let’s take an example where n = 4 and the word is the Finnish word "paloauto",
which corresponds to a fire engine in English. We add special boundary symbols
beginning and end of the word "paloauto" and split it into a bag of characters size of 4:[

< pal, palo, aloa, loau, oaut, auto, uto >, < paloauto >
]

·

Notice that the 4-gram representation of a word in the FastText case also contains a
special sequence < paloauto >, which way the model learns to represent each word by
the sum of its n-grams and the word itself. The reason to add n-grams to architecture
can be visualized by looking at the words and their n-grams, for example, the word
"paloauto" is a combination of two Finnish words "palo" and "auto", which equals in
English "fire" and "car". This way model does not represent the word "paloauto" as a
completely different word than "auto" or "palo", because it also contains those words
as n-gram information. However, it does not mean that 4-gram auto is equal to special
word sequence < auto >, which represents word auto itself.

5.1.2. Scoring Function

Compared to SGNS, where scoring function s is word context word cneg or cpos dot
product with center word w, we need a little modification to include n-grams for that.

26

According to Joulin et al. in a paper [36], the FastText scoring function s is defined as
follows:

s(w, cpos/neg) =
∑
g∈Gw

zTg vc , (26)

where g is an index of Gw, which represents a bag of center word w n-grams
embedding vectors and vc is an embedding vector of context word c. This can be
simplified for future examples by using the vector calculus rule: A · C + B · C =
(A+B) · C, which leads scoring function:

s(w, cpos/neg) =
[∑
g∈Gw

zTg

]
· vc , (27)

where all n-gram embedding vectors of center word w are added together and then
multiplied with context word c embedding vector.

5.1.3. Embedding Matrix

Adding words n-gram representations to the model demands also modification to the
embedding matrix. In previous Word2vec algorithm examples, we had two embedding
matrices W1 and W2, which both were the size of |V | × N , where |V | represents
the number of unique words in training data and N length of each word w embedding
vector. FastText algorithm case W2 matrix is again the size of |V | ·N and it contains
each word embedding vector as a context word. Embedding matrix W1 contains each
word special sequences < word >, which equals to word w embedding vector as
center word and also all possible n size n-grams embedding vectors. This leads to
embedding matrix W1 size of (|V |+ ln)×N , where n is the size of n-gram (n is not
equal to embedding vector size N) and l means how many unique letter vocabulary
contains. Including n-grams into embedding matrix W1 increases its size, but it also
creates other benefits than just capturing words’ internal structure. We can represent
OOV words by looking at which n-grams that word contains and adding its n-gram
embedding vectors together, which was not possible when W1 contained only words
embedding vectors.

5.2. Partial Derivatives

Similar to most other Word2vec algorithm versions, FastText uses stochastic gradient
descent (SGD) to train embedding vectors, where corresponding embedding vectors
are adjusted after each training epoch.

In Figure 8, we again can represent algorithm operations by using a graph, where the
size of n = 3 and the center word w is "nlp". At first, we sum all center word-related
embedding vectors from matrix W1 together to get a vector size of 1×N and represent
that by symbol w. We get the aforementioned vector by multiplying embedding
matrix W1 with one-hot encoded input vector [00, 11, 12, 03 · · · 1900 · · · 0|V |+ln], where
corresponding indexes of word w n-grams and <word> itself is 1, all others index

27

locations are 0. Symbol c represent context word cpos or cneg from embedding matrix
W2, in case of cpos we will use 1 + e−y and in noise word case cneg we use 1 + ey.

< nlp >

< nl

nlp

lp >

∑

c

× 1 + e±y Log LCE

y = w · c ŷ

Figure 8. Graph example of calculating the loss function of FastText structure.

As in the SGNS case, we calculate partial derivatives to adjust parameters and use
the chain rule to get know how much each parameter impacts to model loss LCE .
Partial derivatives are:

∂LCE

∂LCE

= 1 (28)

∂LCE

∂ŷ
=

dLCE

dŷ

[
log(ŷ)

]
· ∂LCE

∂LCE

=
1

ŷ
· 1 =

1

ŷ
, (29)

where ŷ = 1 + e±y. We again get slightly different partial derivatives for noise and
real content word c. For real context word cpos we get:

∂LCE

∂y
=

dŷ
dy

[
1 + e−y

]
· ∂LCE

∂ŷ
= −e−y · 1

1 + e−y
=

−1

1 + ey
(30)

∂LCE

∂cpos
=

dy
dcpos

[
c · w

]
· ∂LCE

∂y
= w · −1

1 + ey
=

−w

1 + ecpos·w
(31)

∂LCE

∂w
=

dy
dw

[
c · w

]
· ∂LCE

∂y
= cpos ·

−1

1 + ey
=

−cpos
1 + ecpos·w

, (32)

and for noise word cneg we get:

∂LCE

∂y
=

dŷ
dy

[
1 + ey

]
· ∂LCE

∂ŷ
= ey · 1

1 + ey
=

1

1 + e−y
(33)

28

∂LCE

∂cneg

=
dy
dcneg

[
c · w

]
· ∂LCE

∂y
= w · 1

1 + e−y
=

w

1 + e−cneg ·w
(34)

∂LCE

∂w
=

dy
dw

[
c · w

]
· ∂LCE

∂y
= cneg ·

1

1 + e−y
=

cneg
1 + e−cneg ·w

· (35)

We used the symbol w to represent the sum of n-grams and center word embedding
vectors. Partial derivatives of those corresponding n-grams and center word are equal
to the partial derivative of w with respect to a calculated loss LCE , because:

∂LCE

∂n1

=
dw
dn1

[
n1 + · · ·+ nG + vword

]
· ∂LCE

∂w
= 1 ·

±cneg/pos
1 + e±y

, (36)

where n represent n-gram embedding vector in set [1 · · ·G], which contains all n-grams
of center word w and vword is embedding vector of center word itself.

5.3. Parameter Updating

In FastText network parameters can be adjusted the same way as in SGNS after each
training epoch to minimize future prediction error. This time, the parameters that we
need to adjust are context word cpos, cneg, and all n-grams, which the center word
contains in addition to the center word itself. This leads following embedding vector
adjustment:

ct+1
pos = ctpos − η

[
−wt

1 + ec
t
pos·wt

]
(37)

ct+1
neg = ctneg − η

[
wt

1 + e−ctpos·wt

]
(38)

wt+1 = wt − η

[
−ctpos

1 + ec
t
pos·wt +

k∑
i=1

ctnegi
1 + e−ctnegi

·wt

]
, (39)

where t represents time step and η learning rate. Adjustment wt+1 will be done center
word embedding vector and all its contained n-gram embedding vectors in W1 matrix.

29

6. IMPLEMENTATION AND ANALYSIS

To analyze and learn possible usage possibilities of word embeddings, specific
Word2vec and FastText versions were trained and in this chapter, the intermediate
stages and outcomes of the experimentation are presented.

6.1. Training Data and Preprocessing

Regardless of what type of NLP model is wanted to train, one of the most important
individual element is training data. That’s why trained example models used the
Finnish Wikipedia as a training data set because it contains text from widely different
categories, which minimizes OOV words. Different language Wikipedia versions are
easily available and downloadable as dumps, generated by the Wikimedia Foundation
(The latest Finnish version [38]). Those dumps contain every Wikipedia page in a
raw text format for a specified language. As seen in Figure 9, dumps contain a lot of
additional data like URLs and tags, which need to be removed before training.

Figure 9. Example clip of Wikipedia dump file.

To get rid of tags, non-alphabet characters etc., specific Python code was written
to generate a processed training data set of 89 million total words, which was small
compared to selected comparison versions, of which for example Turku NLP Group
Word2vec version was trained with 4.5 billion words [39].

6.2. Training Models

To train the traditional or FastText version of the Word2vec model, there are many
downloadable code package solutions, in which training time is fast and optimized.
Both traditional skip-gram and FastText versions of the Word2vec model with two
different embedding vector sizes to compare performance and functional differences
were trained. The FastText models were trained by using the FastText API package
[40] and the Skip-gram models by using Gensim [41].

30

6.2.1. Training Parameters

Gensim and FastText API contains several parameter options to train the model, which
can be modified according to need. Those parameters are for example: learning rate,
structure: CBOW vs Skip-gram, context window size, amount of negative samples,
length of embedding vectors etc. and in FastText case you can also modify min and
max n-gram size.

The trained models used embedding vector sizes 300 and 75, context window size
6, Skip-gram structure, 6 negative samples for each Cpos and minimum word count 2,
other parameter options were kept as default. Of the above, especially the minimum
word count is convenient, because the data parsing phase often leaves some garbage
inside data, which can be removed by setting a threshold value to 2 for the minimum
appearance of a word in the vocabulary.

6.3. Evaluating Models

A common evaluation method for word embedding vectors is to use test sets like
SimVerb or SimLex, which calculates word pair similarities and compares the result
to the correct value. Some of those test sets have translated Finnish language versions,
but a different approach in evaluation was wanted. Instead of calculating correct word
pair similarity, a test scenario, where models have to contain correct synonyms or
semantically similar words in top N most similar words result for the input word, was
made. This way, it does not matter, if the input word dot product is enough high with
its synonym or semantically similar word if it is not one of the top N most similar
words. The total amount of word pairs in the test scenario was 200, where 75 were
testing synonyms and 125 semantically similar word detection. In addition to four
trained models, FastText and Word2vec skip-gram with 300 and 75-dimensional word
embedding vectors, there were also two comparison models. Both comparison models
Facebook FastText [40] and Word2vec [39] used 300-dimensional word embedding
vectors.

6.3.1. Evaluation Set

The generated evaluation test set to measure model performance contained some easier
and some trickier word pairs. There were, for example, several word pairs in both
synonym and semantic evaluation test sets, which none of the models could identify.
However, there were also many evaluation test pairs, which all the models could
identify correctly without a problem.

Some of the evaluation test pairs, which none of the models could identify were
surprising because those are commonly used in language. Those word pairs, were
for example, synonym pairs: ("loma","vapaa") = "holiday" , ("matematiikka",
"matiikka") = "math" and ("bugi", "vika") = "bug" or semantically similar pairs like
("kahvi = coffee", "tee = tea") and ("kello = watch", "koru = jewerly").

The main reason for that, in the case of trained models, may be the lack of different
types of training examples, but in the case of comparison models, accurate speculation

31

is not possible, because specific information about training examples is not available.
For example, many words can have two or more different meanings in language and
be synonyms with each other only by one meaning. Those connections are not usually
visible in a standard language, in which way, for example, Wikipedia is mainly written.

The evaluation test set included also trickier evaluation test pairs, which were mainly
semantically similar. Those pairs had clear semantic connections to each other, but
the purpose was to test, which type of semantic similarity the models could identify
and could those models identify multiple types of semantic similarity. For example,
Finnish word "lehti" can mean in English word "leaf" or "magazine", due to which
evaluation test set contains pairs ("lehti = leaf", "puu = tree") and ("lehti = magazine",
"sanomalehti = news paper") . Some of the models identify semantic connection
between "lehti" and "sanomalehti", but none of them between "lehti" and "puu". Also
connections like ("paloauto = fire truck", "palomies = fireman") were for models
too difficult to identify and most similar words for input "paloauto" were another type
of vehicles like "ambulanssi = ambulance". The full list of evaluation set pairs is
available in [42].

6.3.2. Evaluating Result

Table 1 shows that the Word2vec comparison model outperform in both evaluation sets
clearly and it gave almost every time really good or reasonable results into input words
in a synonym or semantically similarity point of view. In synonym testing Facebook
FastText model gave the second-best performance, but in semantic similarity testing
Word2vec skip-gram model trained in this work with 75-dimensional word embedding
vectors outperformed the Facebook model and got the second-best performance.

Table 1. Evaluation result table of accuracy in percent

Test set and
version

Synonym
N=5

Semantic
N=10

W2v
Turku NLP

57.33 56.00

W2v D75 21.33 48.00
W2v D300 22.67 40.00
FastText
Facebook

33.33 44.00

FastText
D75

10.67 21.60

FastText
D300

10.67 13.60

Both FastText models with 300 and 75-dimensional embedding vectors, which were
trained by using the same training data set as Word2vec skip-gram models, performed
quite badly. In general, training embedding vectors with smaller training data sets like
in this thesis, smaller dimensional word embedding vectors usually perform better than
higher dimensional like 300.

32

6.3.3. Note on Evaluation

To evaluate the models, there are general things related to training data, which need
to be taken into account. For example in the Finnish language anna means give in
English, but Anna means name in both languages. If you change all characters in
training data to lowercase, the model considers "anna" and "Anna" as the same word.
But in case you do not lowercase them, the model considers some of the same words
as two different words, because every sentence starts with a word with an uppercase
character. Another case is punctuation marks because in Wikipedia text file contains
many punctuation marks between words, which are not compound words. Punctuation
marks were chosen to be replaced with spaces in training data, but this decision affected
the models, in a way that those could not recognize compound words.

6.3.4. Summary of Evaluation

Even though the trained FastText models, performed badly compared to others, there
were common synonyms or semantically similar words, which all models captured
as the most similar word. For example, all models detect semantically similar color
words like red - blue or numbers five - six easily. Those semantic connections are
easily recognizable for humans, but clearly also strongly visible in training data.

In evaluation, there were also some cases in which some models detected the correct
target synonym as the top 6 results, but threshold values were decided to be kept in
5 as synonym evaluation and 10 in semantic case. Because synonym or semantic
similarity word pairs, which were selected for the evaluation set, contained mainly
clear connections, which are easily identifiable for humans.

6.4. Visualization of Models

From trained models, the Word2vec model with a 75-dimensional embedding vector,
was selected to be used in visual analysis, because it performed best in comparison
to other models in both evaluation tests. To visualize word embeddings, used method
was principal component analysis (PCA), which is directly available as a function in
for example in scikit-learn software library [43]. With PCA, selected 75-dimensional
word embedding vectors were reduced into 2-dimensional to see how certain words
distribute in embedding space as shown in Figure 10.

33

Figure 10. Visualization of Word2vec skip-gram model.

There can be seen some overlapping between words, which are synonyms together or
semantically similar. For the visualization, there were also purposely chosen a couple
of tricky words to see how they are located compared to each other in vector space. For
example, the Finnish word "kuusi" means the number 6 and also specific wood. In
Figure 10, there is two other wood "mänty" and "koivu", which are correctly close
to each other, but "kuusi" is further away, because the model keeps it more similar
with words "seitsemän = 7" and "tuhat = 1000". Also in the wood case "kuusi"
is closer to the word "jääkiekko = hockey" than "mänty", which can be due to the
successful finnish hockey player brothers Mikko and Saku Koivu. Overlapped words
in the Figure 10 were expected, because they have a strong connection to each other.
For example "bändi" and "yhtye" are synonyms together for English word band.
Also words like "kuningas = king" and "kuningatar = queen" are semantically so
similar, that they were expected to be really close to each other.

Figure 11 shows another interesting observation which was made by visualizing
the same model. The evaluation test set contained a word pair ("lasku", "yhtälö =
equation"), where the word "lasku" has three different semantic connections. It has
strong semantic connections in Finnish to words like "matematiikka = math", "yhtälö
= equation", "mäki = hill", "rinne = slope", "osto = purchase" and "kauppa = deal",
but none of those were among top ten most semantically similar with the word "lasku".
The observations led to consideration, of whether could it be possible that, because
of its semantic connection to three different topic groups, those different groups are
pulling the word "lasku" near them alternately. This may be true on some level because
the word "lasku" is located almost in the middle of those three different groups in
Figure 11.

34

Figure 11. Visualization of Word2vec skip-gram model.

6.5. Analogy Operations

As mentioned on page 17, word embedding vectors are capable of analogy operations,
where the models try to find the most similar word embedding vector by using simple
+- operations and cosine similarity. The aforementioned type of testing was done with
the Word2vec skip-gram D75 model, which shows that in some cases it works fine, but
the same structure usually does not work in multiple cases.

Table 2 shows some examples, that the model succeeded in identifying correctly or
poorly.

Table 2. Analogy testing examples

Correctly Poorly
mies + tyttö - poika = nainen sisko + poika - tyttö = pojanpoika
suomi + obama - niinistö = usa italia + audi - ferrari = unkari
helsinki + japani - suomi = tokio kuningas + nainen - mies = kuninkaan
jalkapallo + selänne - litmanen = jääkiekko isä + nainen - mies = isoisä

Table 3 on the other hand shows, some examples, of where the structure works in
certain cases, but not after changing a word or words.

Table 3. Analogy testing examples

Correct Not correct
laulaja + dicaprio - shakira = näyttelijä laulaja + dicaprio - adele = kehonrakentaja
saksa + monarkia - demokratia = alankomaat suomi + monarkia - demokratia = tanskalle
usa + nokia - apple = suomi suomi + apple - nokia = esityskielen

To test the analogy some cases, word pairs do not even need to be related to each
other. For example, model gave the correct answer to this analogy:

35

neliö + mies - kolmio = nainen

where the word "mies = man" as well "nainen = women" are sexs and word
"neliö = square" as well "kolmio = triangle" are shapes.

6.6. Observations

Major observation in the evaluations was the importance of training data amount and
its quality. It is possible to train the model with a comparatively small training data
set, which works well in clear and narrow topic areas, but if you want generally
good performance, you need a big training data set. Also, experience due to testing
four trained and two pre-trained models is that architectural difference (FastText vs.
Traditional Word2vec) is emphasized when the size of training data is smaller. The
performance difference between Facebook FastText and Turku NLP Word2vec model
was a lot smaller and those work really similarly compared to the performance between
two architecturally different trained models.

Trained Word2vec skip-gram models, worked similarly to comparison models,
but models, based on FastText architecture, worked completely differently in some
cases. FastText models, which were trained perform quite badly in synonym and
semantic similarity recognition, but those models recognize quite well for example
inflectional forms for input verbs. As example, input word "juosta = run" with other
models give verbs like "kävellä = walk" or "hypätä = jump" as result, which are
semantically similar words, while results of trained FastText models, were inflections
like "juosten", "juostiin", and "juoksemalla". However, that type of behavior looks
to changes when the training data set is enough big or it contains in addition other
types of text than Wikipedia articles. This can be seen by comparing trained model
outputs for inputs like "juosta" with comparison models, which were trained by using
data from several sources.

36

7. WORD EMBEDDINGS IN SEARCH APPLICATIONS

Using word embeddings in a search engine environment, where similar types of
information are sought, has many possibilities to get alternative results, if the user
query does not match any good indexed information. Next, we will get through a
couple of scenarios, how to possibly use those word embeddings to do that by using
visual examples of Google search results and word embedding operations of model
Word2vec skip-gram D75. To remark, Google uses LM called BERT [23] in their
search engine to give better search results. BERT differs from the Word2vec model
from a word embedding point of view, in that instead of having a single embedding
vector for each word, it has several to capture word meaning in different contexts. As
mentioned on page 34 the problem of that word "lasku" has an individual meaning in
three different contexts and the purpose of BERT is to capture all of them.

An easy way to visualize the possible use of word embeddings to get alternative
search results is to consider the case that you are buying a new wallet. In Finnish,
there are a couple of commonly used words for a wallet, which are "lompakko" and
"rahapussi". As you can see in Figure 12, the user query is "ruskea rahapussi",
but the search result uses the word "rahapussi" synonym "lompakko" instead of it.
Models, which are trained with large data sets, have an easy task to recognize the
word "lompakko" as one of the most similar words for input "rahapussi" and search
engines can use those most similar words as alternative search words.

Figure 12. Example search from a synonym point of view.

Figure 13 shows an example of a semantic point of view.

Figure 13. Example search from a semantic point of view.

Let’s consider the case that the user remembers the same news title partly, which
occurs in Figure 13, but the user remembers the color wrong. In that case, user search
by query "keltainen auto ei enää", but Google does not find the same news anymore.
There are not even matching results for the part sentence "ei enää" in the top result

37

for query "keltainen auto ei enää" as Figure 14 shows. In this type of case, where
a perfect result fitting into the query is not found, could be the potential use case for
finding alternative search results by using word embedding vector similarity. For a
model, detecting the correct color in this case "punainen" is an easy task, when the
input is "keltainen", because those colors are semantically so similar.

Figure 14. Comparison search result for semantically similar query.

Another example is to use sentence comparison by using word embeddings, which
for example Gensim API [41] enables. For this, we can use an example, where
someone is seeking information about the leader of Canada. There is a possibility
that some people mistakenly thinks that Canada’s leader is the President instead of
the Prime minister. Naturally, there is not any indexed information about Canada’s
President, which matches the sentence "kanadan presidentti = The President of
Canada". We again can use word embeddings to detect the most similar words to
input "presidentti = president", where the top 3 results in a model Word2vec skip-
gram D75 are: "presidentin = presidential", "varapresidentti = vice president" and
"pääministeri = prime minister". So in this case correct target prime minister is the
third most similar word, but if we calculate sentence similarities, where "presidentti"
is changed for alternatively most similar words, the sentence "kanadan pääministeri
= Canada’s prime minister" gets the highest similarity score. Similairty scores:
"kanadan presidentin = 0.2199", "kanadan varapresidentti = 0.2367" , "kanadan
pääministeri = 0.2553" for comparison sentence "kanadan presidentti".

38

8. DISCUSSION

As mentioned in the previous section, the amount of training data has a big impact on
that how well the models work. However, each of the models showed comparatively
good performance to a limited extent and were able to recognize synonyms and
semantically similar words. The amount of training data used in the models, which
were trained, was small compared to the comparison models, although it contains
almost a hundred million words in total. The functional differences due to a smaller
amount of training data were especially visible for synonyms and semantically similar
words, which are not as clear as, for example, the semantically strongly connected
words like "men" and "women". However, the clearest difference to the comparison
models was highlighted when looking at the ten most similar words given by the
models to the inputs, which often contained words that have no clear semantic or
synonymous connection with the input word. The comparison models, especially the
Word2vec version [39], succeeded very well and the ten most similar words of the
input words almost always contained a clear semantic connection with the input word,
if it was not a synonym of the word.

Also, character-specific choices made in the preprocessing and parsing of the
training data, for example removing punctuation marks, had clear effects on the
functioning of the models. As a result, data parsing and preprocessing can be
considered to be the most challenging step because it is difficult to estimate in advance
how certain choices in the preprocessing step affect the final model. This is not as
critical if you are using "clean" training data that does not contain non-normal notation
methods for words and other extras, such as Wikipedia’s text data, which needs those
notation methods for the correct creation of articles on the web page. The sources of
the teaching data also matter, because naturally, for example, Wikipedia articles and
the news are written in different text styles, which affects the final functionality of the
different models. This was noticeable for the comparison models that also contained
another type of training data than the Finnish language Wikipedia articles. In further
studies, the intention is to investigate more precisely the effect of the preprocessing
phase decisions and other parameters such as context window size on the functioning
of the models. In addition to this, another tendency of further research is also to
investigate the effect of different types of training data on the model’s functionality
and more precisely possible use cases for those models.

For studying the effect of training data style on the functioning of models, a potential
and interesting way could be pre-editing the training data to mimic different text styles.
This means that different versions of the training data are created, where the training
data is rewritten to mimic for example news article style by using ChatGPT or another
generative model, in which case the order of words or some of the words will change in
sentences. The potential uses for the Word2vec and FastText models are in practically
almost any application, where similar information is looked for based on text or it is
wanted to be classified. Depending on the use case, there are often more powerful
solutions, that are specified for that particular use case, but the advantage of Word2vec
and FastText models is their fast and easy training. One possible application area, that
could be interesting to study more in the future is the possibility of using FastText
architecture for word error correction, where character level n-grams are used to detect
the most similar word from vocabulary if the input word is not found in it.

39

9. SUMMARY

The main focus area of this thesis was word embeddings and their usage possibilities
for synonym and semantically similar word detection in the Finnish language. As the
results show, it is possible to train a model, that performs well in this type of task, but
it also contains limitations. Some of those limitations could possibly be remedied by
adding specific types of training examples into training data, but others are complex to
fix. For example in cases, where the same word has multiple meanings in the language.
In some situations, there could be possible benefits of using word embeddings to detect
word synonyms or semantically similar words in search engine cases, if the perfectly
fitting match is not found by using a search query. Those possible benefits can be seen
by changing words in search queries for synonyms or other semantically similar words
and comparing those search results. Another point of view could be to train models to
find the most similar historical search queries, which to use as alternative queries and
compare those search results.

The evaluation also showed the importance of the amount and quality of training
data, which, however, do not guarantee generally great performance in all topic areas
at least in the case of the Finnish language. The thesis introduces some of the
application areas, where word and sentence information can be used and recognizing
words synonyms or semantically similar words, have various application possibilities
of areas like search engines, which seek similar types of information from data sets.
There are also other interesting discovered use cases for word embedding, which have
been trained by using the Word2vec algorithm or its variations. This type of possible
use purposes are for example word and phrase translation [44] and analyzing change
of words wider public meaning over different points of time [45].

One of this thesis work’s additional purposes was to give a comprehensively better
understanding of natural language processing strengths and weaknesses in the word
embedding area for readers regardless of background knowledge of the topic and also
motivate them to do their own research about the topic.

40

10. REFERENCES

[1] What is GPT? URL:https://aws.amazon.com/what-is/gpt/.
Accessed 24.04.2024.

[2] ChatGPT. URL:https://chat.openai.com/auth/login. Accessed
24.04.2024.

[3] Dall.E 3. URL:https://openai.com/dall-e-3. Accessed 24.04.2024.

[4] Getting ready for artificial general intelligence with examples. URL:https:
//www.ibm.com/blog/artificial-general-intelligence-
examples/. Accessed 24.04.2024.

[5] What are Embeddings? URL:https://learn.microsoft.com/en-us/
semantic-kernel/memories/embeddings. Accessed 24.04.2024.

[6] Jurafsky D. & Martin J. (2023) Speech and Language Processing (3rd ed. draft).
Book (Online).

[7] Vectors in Azure AI Search. URL:https://learn.microsoft.com/en-
us/azure/search/vector-search-overview. Accessed 24.04.2024.

[8] Russel S. & Norvig P. (2021) Artificial Intelligence, A Modern Approach, Fourth
Edition. Pearson Education Limited, 1161 p.

[9] Natural Language Processing (Wikipedia). URL:https://en.wikipedia.
org/wiki/Natural_language_processing. Accessed 20.11.2023.

[10] What is natural language processing? (IBM). URL:https://www.ibm.
com/topics/natural-language-processing. Accessed 1.11.2023.

[11] Jones Spark K. (1994), Natural language processing: A historical review. URL:
https://dmice.ohsu.edu/bedricks/courses/cs662/pdf/
sparck_jones_1994.pdf. Accessed 5.11.2023.

[12] A Brief History of Natural Language Processing — Part 1 (MEDIUM)).
URL:https://www.ibm.com/topics/natural-language-
processing. Accessed 1.11.2023.

[13] Cortes C. & Vapnik V. (1995) Support-vector networks. Springer 20, pp. 273–
297. DOI: https://doi.org/10.1007/BF00994018.

[14] Vajjala S., Majumder B., Gupta A. & Surana H. (2020) Practical Natural
Language Processing. O’Reilly Media, 454 p.

[15] LeCun Y., Bengio Y. & Hinton G. (2015) Deep learning. Nature 521, pp. 436–
444. DOI: https://doi.org/10.1038/nature14539.

[16] McCulloch W. & Pitts W. (1943), A logical calculus of the ideas immanent in
nervous activity. DOI: https://doi.org/10.1007/BF02478259.

https://aws.amazon.com/what-is/gpt/
https://chat.openai.com/auth/login
https://openai.com/dall-e-3
https://www.ibm.com/blog/artificial-general-intelligence-examples/
https://www.ibm.com/blog/artificial-general-intelligence-examples/
https://www.ibm.com/blog/artificial-general-intelligence-examples/
https://learn.microsoft.com/en-us/semantic-kernel/memories/embeddings
https://learn.microsoft.com/en-us/semantic-kernel/memories/embeddings
https://learn.microsoft.com/en-us/azure/search/vector-search-overview
https://learn.microsoft.com/en-us/azure/search/vector-search-overview
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://www.ibm.com/topics/natural-language-processing
https://www.ibm.com/topics/natural-language-processing
https://dmice.ohsu.edu/bedricks/courses/cs662/pdf/sparck_jones_1994.pdf
https://dmice.ohsu.edu/bedricks/courses/cs662/pdf/sparck_jones_1994.pdf
https://www.ibm.com/topics/natural-language-processing
https://www.ibm.com/topics/natural-language-processing
https://doi.org/10.1007/BF00994018
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/BF02478259

41

[17] Hardesty L., Explained: Neural networks (MIT News). URL:https:
//news.mit.edu/2017/explained-neural-networks-deep-
learning-0414. Accessed 3.12.2023.

[18] Bengio Y., Ducharme R., Vincent P. & Janvin C. (2003) A neural probabilistic
language model. J. Mach. Learn. Res. 3, pp. 1137–1155. URL: https://api.
semanticscholar.org/CorpusID:221275765.

[19] Krenker A., Bester J. & Kos A. (2011) Introduction to the Artificial Neural
Networks. Accessed 10.1.2024.

[20] Hochreiter S. & Schmidhuber J. (1997) Long short-term memory. Neural
computation 9, pp. 1735–80.

[21] Mikolov T., Karafiát M., Burget L., Cernocký J. & Khudanpur S. (2010)
Recurrent neural network based language model. vol. 2, pp. 1045–1048.

[22] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A., Kiser L.
& Polosukhin I. (2017), Attention is all you need. DOI: https://doi.org/
10.48550/arXiv.1706.03762.

[23] Devlin J., Chang M.W., Lee K. & Toutanova K. (2018), Bert: Pre-training of
deep bidirectional transformers for language understanding. DOI: https://
doi.org/10.48550/arXiv.1810.04805.

[24] Osgood C. E. S.G.J..T.P.H. (1957) The measurement of meaning. univer. Illinois
Press .

[25] Fano R. (1961) Transmission of information. A Statistical Theory
of Communication URL: https://mitpress.mit.edu/
9780262561693/transmission-of-information/.

[26] Pennington J., Socher R. & Manning C. (2014) GloVe: Global vectors for word
representation. In: A. Moschitti, B. Pang & W. Daelemans (eds.) Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Association for Computational Linguistics, Doha, Qatar, pp. 1532–
1543. URL: https://aclanthology.org/D14-1162.

[27] Milkov T., Chen K., Corrado G. & Dean J. (2013), Efficient estimation of
word representations in vector space. DOI: https://doi.org/10.48550/
arXiv.1301.3781.

[28] word2vec (TersonFlow). URL:https://www.tensorflow.org/text/
tutorials/word2vec. Accessed 8.11.2023.

[29] Mikolov T., Yih W.t. & Zweig G. (2013) Linguistic regularities in continuous
space word representations. In: L. Vanderwende, H. Daumé III & K. Kirchhoff
(eds.) Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Association for Computational Linguistics, Atlanta, Georgia, pp. 746–751. URL:
https://aclanthology.org/N13-1090.

https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://api.semanticscholar.org/CorpusID:221275765
https://api.semanticscholar.org/CorpusID:221275765
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://mitpress.mit.edu/9780262561693/transmission-of-information/
https://mitpress.mit.edu/9780262561693/transmission-of-information/
https://aclanthology.org/D14-1162
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://www.tensorflow.org/text/tutorials/word2vec
https://www.tensorflow.org/text/tutorials/word2vec
https://aclanthology.org/N13-1090

42

[30] Milkov T., Sutskever I., Chen K., Corrado G. & Dean J. (2013), Distributed
representations of words and phrases and their compositionality. DOI: https:
//doi.org/10.48550/arXiv.1310.4546.

[31] Mikolov T. (2008) Language models for automatic speech recognition of czech
lectures. URL: https://api.semanticscholar.org/CorpusID:
13934103.

[32] Mikolov T., Kopecký J., Burget L., Glembek O. & ernocký J.H. (2009)
Neural network based language models for highly inflective languages.
2009 IEEE International Conference on Acoustics, Speech and Signal
Processing , pp. 4725–4728URL: https://api.semanticscholar.
org/CorpusID:14518311.

[33] What is gradient descent? (IBM). URL:https://www.ibm.com/topics/
gradient-descent. Accessed 1.11.2023.

[34] Joulin A., Grave E., Bojanowski P. & Mikolov T. (2017) Bag of tricks for
efficient text classification. In: M. Lapata, P. Blunsom & A. Koller (eds.)
Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers, Association for
Computational Linguistics, Valencia, Spain, pp. 427–431. URL: https://
aclanthology.org/E17-2068.

[35] Joulin A., Grave E., Bojanowski P., Douze M., Jégou H. & Milkov T. (2016),
Fasttext.zip: Compressing text classification models. DOI: https://doi.
org/10.48550/arXiv.1612.03651.

[36] Bojanowski P., Grave E., Joulin A. & Mikolov T. (2016) Enriching word vectors
with subword information. Transactions of the Association for Computational
Linguistics 5, pp. 135–146. URL: https://api.semanticscholar.
org/CorpusID:207556454.

[37] Conneau A., Schwenk H., Barrault L. & Lecun Y. (2017) Very deep convolutional
networks for text classification. In: M. Lapata, P. Blunsom & A. Koller
(eds.) Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, Long Papers, Association
for Computational Linguistics, Valencia, Spain, pp. 1107–1116. URL: https:
//aclanthology.org/E17-1104.

[38] Wikipedia dumps (Finnish). URL:https://dumps.wikimedia.org/
fiwiki/latest/. Accessed 15.10.2023.

[39] Turku NLP Word2vec demo. URL:http://epsilon-it.utu.fi/wv_
demo/. Accessed 18.10.2023.

[40] FastText. URL:https://fasttext.cc. Accessed 15.10.2023.

[41] Gensim. URL:https://radimrehurek.com/gensim/. Accessed
15.10.2023.

https://doi.org/10.48550/arXiv.1310.4546
https://doi.org/10.48550/arXiv.1310.4546
https://api.semanticscholar.org/CorpusID:13934103
https://api.semanticscholar.org/CorpusID:13934103
https://api.semanticscholar.org/CorpusID:14518311
https://api.semanticscholar.org/CorpusID:14518311
https://www.ibm.com/topics/gradient-descent
https://www.ibm.com/topics/gradient-descent
https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068
https://doi.org/10.48550/arXiv.1612.03651
https://doi.org/10.48550/arXiv.1612.03651
https://api.semanticscholar.org/CorpusID:207556454
https://api.semanticscholar.org/CorpusID:207556454
https://aclanthology.org/E17-1104
https://aclanthology.org/E17-1104
https://dumps.wikimedia.org/fiwiki/latest/
https://dumps.wikimedia.org/fiwiki/latest/
http://epsilon-it.utu.fi/wv_demo/
http://epsilon-it.utu.fi/wv_demo/
https://fasttext.cc
https://radimrehurek.com/gensim/

43

[42] Evaluation word pairs. URL:https://github.com/Jtapsa/
WordEmbedding/blob/main/evaluation.txt. Created 13.1.2024.

[43] PCA (scikit-learn). URL:https://scikit-learn.org/stable/
modules/generated/sklearn.decomposition.PCA.html.
Accessed 26.12.2023.

[44] Jansen T. (2017), Word and phrase translation with word2vec. DOI: https:
//doi.org/10.48550/arXiv.1705.03127.

[45] Hamilton W.L., Leskovec J. & Jurafsky D. (2016) Diachronic word embeddings
reveal statistical laws of semantic change. In: K. Erk & N.A. Smith (eds.)
Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Association for Computational Linguistics,
Berlin, Germany, pp. 1489–1501. URL: https://aclanthology.org/
P16-1141.

https://github.com/Jtapsa/WordEmbedding/blob/main/evaluation.txt
https://github.com/Jtapsa/WordEmbedding/blob/main/evaluation.txt
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://doi.org/10.48550/arXiv.1705.03127
https://doi.org/10.48550/arXiv.1705.03127
https://aclanthology.org/P16-1141
https://aclanthology.org/P16-1141

44

11. APPENDICES

Appendix 1 Partial derivatives of Word2vec

∂LCE

∂LCE

= 1 (40)

∂LCE

∂ŷ
=

dLCE

dŷ

[
− log(ŷ)

]
· ∂LCE

∂LCE

= − 1

ŷ
· 1 = − 1

ŷ
, (41)

where ŷ = σ(y).

∂LCE

∂y
=

dŷ
dy

[
σ(y)

]
· ∂LCE

∂ŷ
=
[
σ(y) · (1− σ(y)

]
· −1

ŷ

=
−[σ(y)− σ(y)2]

σ(y)
= [σ(y)− 1]

(42)

∂LCE

∂cpos
=

dy
dcpos

[
w · cpos

]
· ∂LCE

∂y
= w · ∂LCE

∂y

= [σ(y)− 1] · w = [σ(w · cpos)− 1] · w
(43)

Partial derivative for noise words cneg differences from real context word cpos
only for slightly. Prediction error for noise words is determined as follow
log(P (−|w, cnegi)), which equals log(1 − P (+|w, cnegi)) and leads following (44)
modification for partial derivative in respect to (43).

∂LCE

∂cneg

=
∂LCE

∂LCE

· ∂LCE

∂ŷ
· ∂ŷ
∂y

· ∂y
∂cneg

= 1 · dLCE

dŷ

[
− log(1− σ(ŷ))

]
· ∂ŷ
∂y

· ∂y
∂cneg

=
1

1− ŷ
· dŷ
dy

[
σ(y)

]
· ∂ŷ
∂y

=
σ(y)− σ(y)2

1− σ(y)
· ∂ŷ
∂y

= σ(y) · dy
dcneg

[
w · cneg

]
= [σ(w · cneg)] · w

(44)

Individual partial derivative of w: ∂LCE

∂w
differences from ∂LCE

∂Cpos
and ∂LCE

∂Cneg
only by

outer multiplier. Instead of:

∂LCE

∂cpos
=

∂LCE

∂y
· dy
dcpos

[w · cpos] = [σ(w · cpos)− 1] · w , (45)

we get:

45

∂LCE

∂w
=

∂LCE

∂y
· dy
dw

[w · cpos] = [σ(w · cpos)− 1] · cpos , (46)

and for cneg case we get:

∂LCE

∂w
= [σ(w · cneg)] · cneg · (47)

The total partial derivative of w is the sum of its individual partial derivatives
representing to prediction error of cpos and noise cneg noise words, as follows

∂LCE

∂w
= [σ(w · cpos)− 1] · cpos +

k∑
i=1

[σ(w · cnegk)] · cnegk · (48)

Appendix 2. Example training epoc 46

To visualize part of the SGNS training epoch we can use three elements: stored
vocabulary index table, W1 and W2 embedding matrix, which stores center and
context word embedding vectors:

Vocabulary

1 w1

...
...

500 ai
...

...
V − 1 nlp
V zebra

W1

w1
1 w2

1 · · · wN
1

...
... · · · ...

w1
500 w2

500 · · · wN
500

...
... · · · ...

w1
V−1 w2

V−1 · · · wN
V−1

w1
V w2

V · · · wN
V

W2

c11 · · · c1500 · · · c1V−1 c1V
c21 · · · c2500 · · · c2V−1 c2V
... · · · ... · · · ...

...
cN1 · · · cN500 · · · cNV−1 cNV

Index word V × N N × V

Let us consider a case, where we have the word ai as center word and one of the
context words cpos is nlp. There is also marked noise word cneg, which is zebra.

To get the center word w embedding vector, we just multiply the embedding matrix
W1 by One-hot encoded input vector, where the corresponding centre word index is 1
and all others is 0: [01, 02 · · · 1500 · · · 0V−1, 0V]× W1 = [w1

500, w
2
500 · · ·wN

500] = w
Next step is to multiply word ai embedding vector (w), with context word nlp

embedding vector, which located in embedding matrix W2: [w1
500, w

2
500 · · ·wN

500] ×
[c1V−1, c

2
V−1 · · · cNV−1]

T = w · cpos
To get loss LCE use Sigmoid (σ) and calculate: − log[ŷ], where ŷ correspond

1
1+e−w·cpos , after we know LCE , we can adjust corresponding embedding vectors using
partial derivatives.

Updating center word ai embedding vector:

wt+1
500 = wt

500 − η
[
[σ(wt

500 · ctV−1)− 1] · ctV−1

]
Updating context word nlp embedding vector:

ct+1
V−1 = ctV−1 − η

[
σ(wt

500 · ctV−1)− 1
]
· wt

500

Which equals following embedding vector adjustment:

wt+1
ai = w1

500 − η × [(ŷ − 1)× c1V−1] · · · wN
500 − η × [(ŷ − 1)× cNV−1]

ct+1
nlp = c1V−1 − η × [(ŷ − 1)× w1

500] · · · cNV−1 − η × [(ŷ − 1)× wN
500]

where t represents the time step and η learning rate.

	Introduction
	Background
	History of NLP
	Statistical Machine Learning in NLP
	Markov assumption
	Word and sentence generating by using N-grams

	Statistical ML in NLP

	Deep learning
	Deep learning in NLP
	Learning types in DL
	Embeddings in NLP
	Occurrence-Based Vectors
	TF-IDF

	Word2Vec
	Structure
	CBOW
	Skip-gram
	Embedding matrix

	Classifier
	Skip-gram with negative sampling
	Choosing noise words
	Loss function
	Gradient Descent Algorithm

	Stochastic Gradient Descent
	Partial derivatives

	Parameter updating

	FastText
	Structure
	N-gram
	Scoring function
	Embedding matrix

	Partial Derivatives
	Parameter updating

	Implementation and Analysis
	Training Data and Preprocessing
	Training models
	Training parameters

	Evaluating models
	Evaluation set
	Evaluating Result
	Note on evaluation
	Summary of Evaluation

	Visualization of Models
	Analogy operations
	Observations

	word embeddings in search Applications
	Discussion
	Summary
	REFERENCES
	Appendices

